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Abstract: Dams are one of the most important hydraulic structures. In view of unrecoverable
damages occurring after a dam failure, analyzing a dams’ break is necessary. In this study, a dam
located in Iran is considered. According to adjacent tourist and entertainment zones, the breaking
of the dam could lead to severe problems for the area and bridges downstream of the river. To
investigate the issue, a numerical FORTRAN code based on the 2D finite volume Roe-TVD method
on a fixed bed is provided to assess the effects of the dam break. Turbulence terms and dry bed
conditions were considered in the code. A numerical wave tank (NWT) with a triangular barrier in
the bed was numerically modeled and compared with analytical models to verify the capability of
the code. Comparing numerical, experimental and analytical results showed that estimated water
level and mass conservation in the numerical model is in good agreement with the experimental data
and analytical solutions. The 2D approach used has reduced the cost of computing compared to a 3D
approach while obtaining accurate results. The code is finally applied to a full-scale dam-break flood.
Six KM of the natural river downstream of the dam, including two bridges, B1 and B2, is considered.
Flood flow hydrographs and water level variations at bridges B1 and B2 are presented. The results
denoted that bridges B1 and B2 will be flooded after 12 and 21 min, respectively, and are at risk of
the potential break. Thus, it is necessary to announce and possibly evacuate the resort area alongside
the dam in order to decrease losses.

Keywords: numerical model; shallow water equations; dam break; dry and wet beds modeling

1. Introduction

In recent years, the statistics of the dam break phenomenon have been collected to
improve the knowledge for the construction dams. The primary goals of the studies are
considering and implementing the new findings in designs to have safe dams adjacent
to urban areas and keeping the projects time and cost-efficient. On the other hand, the
consequences of a dam break need to be considered in the designing stage in order to
prevent probable damage to nearby infrastructure and resort areas.

Modeling and analyzing dam breaks have been carried out by several researchers.
In some one-dimensional models, the non-conservative form of the shallow water equations
has been solved [1,2]. Zoppou et al., in 2000 [3], described a two-dimensional numerical
model for dam-break problems. The model was able to consider shocks, complex geome-
tries, including steep bed slopes, and was capable of simulating the wetting and drying
process. In this research, the performance of 20 numerical schemes used to solve the SWE
for simulating the dam-break problem was examined, and some form of flux or slope
limiter was used to eliminate oscillations.

Bradford et al., in 2002, developed a model based on the finite-volume method for 2D
unsteady, shallow-water flow over arbitrary topography with moving lateral boundaries.
They also introduced a new technique to prevent numerical truncation errors caused by
the pressure and bed slope [4]. In the same year, Valiani et al. validated their code with
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the Malpasset dam-break [5]. In 2003 also, Ying et al. [6] developed a numerical model
to simulate flood inundation due to a dam break. Sanders et al., in 2008, by applying
Reynolds transport theorem to a finite control volume, derived shallow-water equations
appropriate for urban flood modeling [7]. Ni et al., in 2018, presented an approximate
solution to dam breaks [8]. The proposed method only worked on uniform slope channels
and cannot be applied to real dam-break problems.

Fent et al. [9] investigated the vertical velocity distribution of a dam-break wave using
experimental equipment. Using the OpenFOAM, a new code for modeling the two-phase
flow in the dam break problem that was created by Park et al. [10], the accuracy of the new
method was confirmed by comparing the results with laboratory data. The solution domain
was wet in the proposed model. The effect of an obstacle in the river on the hydraulic
characteristics of the dam-break flow was investigated by Issakhov et al. [11].

Different forms of obstacles were investigated numerically and experimentally. Dif-
ferent numerical methods for dam-break flow modeling were reviewed by Yang et al.
in 2017 [12]. This study showed that Navier–Stokes equations with turbulence modeling
have good accuracy. The finite volume method has been applied to a wide range of nu-
merical methods [13]. In this method, volume integrals in a partial differential equation
are converted into surface integrals, using the divergence theorem. In this regard, deter-
mining the passing flux through the surface is the primary goal of this method. However,
estimation of the flux on the dry surface is more complicated. Haltas et al., for the failure
problem, reviewed the calculation of the flux at the dry boundary [14]. An individual
system is conducted to specify the dry, semi-dry and wet elements in any models. The wet
cells remain in the simulation, and dry cells remove from the calculated boundary. The
wet-dry method was applied in a three-dimensional finite-difference model by Medeiros
and Hagen in 2013 [15]. In their model, different conditions have been used to ensure
that the cell is wet and remains in the computational interval during each time step. The
drought control was performed based on a length scale, defining the bed roughness. The
points that must be removed from the calculated domain are specified after estimating
the water depth in each cell side and cell center. In order to reconsider the cells into the
calculated domain, the length scale is used, and it is compared with the water depth of
the surrounding points. If it guarantees the conditions of the flow, then the cell returns
to the next calculations time step. Casulli and Walters combined a three-dimensional
difference-finite volume model with a dry-wet method [16]. In their method, the water
depth was estimated, and the distance of vertical points was also updated based on each
time step. By measuring the water depth as zero, the surface velocity and height were set
to zero. Hou et al., in 2013 [17], experimentally investigated dam-break flow on a dry bed.
The effect of topography was investigated in this study. Ji et al. used the Environmental
Fluid Dynamics Code (EFDC) [18] and applied the dry-wet method presented by Hamrick
and William to analyze flood and drought behaviors [19]. In this method, determining dry
cells are the key, and if the cells are specified as dry, then the transmitted flux would be zero.
In Brufau’s finite volume model, the dry side is similar to the boundary, and water flow
is controlled by the depth [20,21]. In this light, to preserve the conservation of mass, bed
elevation deference is redefined locally. The finite volume Roe-TVD scheme was applied to
the 2D shallow water equation by Cea [22]. He considers three depth average turbulence
models by considering the behavior of wet-dry fronts for river flow. Song et al. used
the Godunov-type finite volume model in order to simulate two-dimensional dam-break
floods over complex topography with wetting and drying [23]. Vichiantong et al., in 2019,
used a well-balanced finite volume method for flood simulation [24]. In their work, a
well-balanced scheme with bottom slope approximation was developed. The accurate sim-
ulation of dam-break problems was investigated numerically by Antunes et al. in 2019 [25].
They presented an efficient technique for switching from Serre [26] to Saint-Venant in the
breaking zone. The majority of these models are only applicable to dam-break flows over
fixed beds [27]. Spinewine and Zech [28] used two-layer models to simulate dam-break
flows over mobile beds. These models were applied to the morphological changes caused
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predominately by the non-equilibrium transporting of bedload. The impact of a dam-break
wave on an erodible embankment with a steep slope was studied by Di Cristo et al. [29]. The
simulation was carried out using a two-phase depth-integrated model. Recently, smoothed
particle hydrodynamics (SPH) modeling represents a valuable numerical method of CFD
particularly suitable for the simulation of dam-break floods [30]. The internal boundary
condition was used to apply the bridge piers boundary condition of 2D shallow water
equations by Dazzi et al. [31]. They confirmed the capability of this boundary condition in
different flow regimes. Different methods of considering the bridge piers on 2D shallow
water equations were investigated by Ratia et al. [32]. They applied the headloss method
(HL) and solid wall boundary (MD) to consider the effects of the bridge piers, and it was
concluded that the MD approach achieves results close to reality even when regimes other
than free surface flow are involved.

When a dam breaks, it can cause casualties. These casualties are dependent on the
extent of the inundation area, the population in the flood zone and the amount of alert time
available. An investigation of the history of dam failures in the world shows that a large
number of dams have broken and caused great financial and human losses. For example,
the failure of dams Vajont (1963) in Italy, Johnstown (1889) in the USA and Macho (1979) in
India caused 2600, 2200 and 2000 deaths, respectively [33]. According to Coasta [34], the
death toll when a dam breaks without a flood warning or weak warning is 19 times higher
than if there is a proper flood warning system in the area. Due to the critical situation at
the time of dam failure, field data of the flood flow characteristics, such as flow depth,
flow velocity, etc., are very limited. Therefore, the use of numerical modeling can be
useful to determine the flood zone or the duration of response to the flood wave due to
dam failure [33]. In this regard, a dam located in East Asia is considered to investigate
the consequences after breaching. Breaking of the dam can initiate a detrimental risk to
downstream structures, highways, and infrastructure and flow could cause the failure of
two bridges, B1 and B2, and also an important highway. In this paper, the 2D finite volume
method (Roe-TVD) is used on a fixed bed in order to model the dam break and assess
its potential risks. Therefore, a numerical code is developed to model the dry bed. The
maximum time that is necessary to apply precautionary behaviors to prevent potential
risks is also presented. Due to the limited availability of real-scale flood data caused by
dam break, code validation has only been performed with laboratory-scale data [35].

2. Shallow Water Equations

Shallow water equations are used when the length of the flume is much longer
than depth, i.e., rivers. These equations can be obtained by integrating the 3D Navier–
Stokes equations over the flow depth, considering the incompressibility of fluid and the
hydrostatic pressure distribution. The equations are applied to study a wide range of
physical phenomena such as dam break, flow in an open channel, flood waves, forces on
offshore and nearshore structures [36,37] and pollution transfer. The two-dimensional form
is [22]:

∂W
∂t

+
∂Fx

∂x
+

∂Fy

∂y
=

3

∑
k=1

Gk, (1)

where

W =

 h
qx
qy

; Fy =

 qy
qxqy

h
q2

y
h + gh2

2

Fx =

 qx
q2

x
h + gh2

2qxqy
h

; (2)

where W is the vector of the conserved variables, including the water depth h, and the
unit discharges in each direction are qx and qy as well as the vectors Fx and Fy account
for the convective fluxes in the x and y directions, and g is the acceleration due to gravity,
respectively. The vector Gk is a source term composed of the bed slope G1, bed friction G2,
and turbulence terms G3:
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G1 =

 0
−gh ∂Zb

∂x
−gh ∂Zb

∂y

; G2 =

 0
− τb,x

ρ

− τb,y
ρ

; G3 =


0

−
∂h u′iu

′
j

∂x

−
∂hu′iu

′
j

∂y

 (i, j = 1, 2) (3)

where Zb is the bed elevation, τb,x and τb,y are the bed shear stresses due to the friction in
the x and y directions, ρ is the fluid density and u′iu

′
j is Reynolds stress.

3. Numerical Solution for Equations by Finite Volume Method

Different methods have been used for generating a mesh in finite volume methods.
In the unstructured method, triangular cells are used, and the center of the triangular cell
is the basis of numerical computation. Bermudez et al., in 1998, introduced unstructured
quadrilateral cells [38]. In this method, first, the domain is divided into some triangles
(Figure 1a). Then the middle of each side of the triangle is considered as the center of
a quadrilateral cell. The two corners of this latter cell are the start and the end of the
triangular cell side, and the other two corners are the triangular cell centers around the line
(Figure 1b).

Figure 1. Finite volume cells [22]: (a) Initial triangle cell; (b) control volume.

A numerical code in the FORTRAN by using the finite volume Roe-TVD method is
written to solve shallow water equations. A second-order method is applied by discretizing
equations in time and using a semi-step. A multi-dimensional slope limiter is proposed
to achieve second-order accuracy. Two depth-averaged turbulence models, including the
k− ε model and algebraic stress model (ASM), are used to calculate turbulence terms (G3).
The flowchart of the code is presented in Figure 2.

By time discretization of the system (1) and simplification, the following equations are
obtained with a second-order of accuracy in time, [39]:

Wn+ 1
2 = Wn − ∆t

2

(
∂Fx
∂x (Wn) +

∂Fy
∂y (W

n)
)
+ ∆t

2

3
∑

k=1
Gn

k

Wn+1 = Wn − ∆t
(

∂Fx
∂x

(
Wn+ 1

2

)
+

∂Fy
∂y

(
Wn+ 1

2

))
+ ∆t

3
∑

k=1
Gn+ 1

2
k

(4)

where Wn is the vector of conserved variables at time tn, and ∆t is the time step. For
spatial discretization, an upwind model may be implemented. In the upwind method, the
numerical flux is defined as:
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φij =
Z(Wi ,nij)+Z(Wj ,nij)

2 − 1
2

∣∣φ(Wi, Wj, nij
) ∣∣ (Wj −Wi

)
|φ| = X|D|X−1 ; Z = Fxnx + Fyny

|D| =


∣∣λ1
∣∣ 0 0

0
∣∣λ2
∣∣ 0

0 0
∣∣λ3
∣∣
 ;

X =

 0 1 1
−ñy Ux + C ñx Ux − C ñx
ñx Uy + C ñy Uy − C ñy


λ1 = nx Ux + ny Uy ; λ2 = λ1 + C Lij ;

λ3 = λ1 − CLij

(5)

The averaged values in the first-order scheme of Roe at each cell are defined as:

Ux =

√
hiUx,i +

√
hjUx, j

√
hi +

√
hj

Uy =

√
hiUy,i +

√
hjUy, j

√
hi +

√
hj

C =

√
g

hi + hj

2
(6)

where Ux,i and Uy,i are the velocities of the flow in cell i in the x- and y- directions,
respectively, ϕij is the numerical flux at the cell face ij, hi is the water depth in cell i, Li is the
boundary of the cell i, and ñ =

(
ñx, ñy

)
is the unit vector normal to the cell face, Figure 1a.

To achieve a second order accuracy in the method of Roe, the conserved variables at the
triangular cell faces are reconstructed using a spatial limiting technique [38], Figure 3b:

WI j = Wi + r∇1
i W (7)

in which WI j is the value of Wi at the boundary with cell j, r is the distance vector between
the cell area center i and the middle of Lij, and ∇1

i is the limited gradient of variables at
cell i, defined by:

∇1
i W = wa∇Wa + wb∇Wb + wc∇Wc (8)

where wa, wb and wc are weighting factors, and ∇Wa, ∇Wb and ∇Wc are unlimited gradi-
ents of the three surrounding cells a, b and c. The unlimited gradient for cell i is computed
using the area-weighted average gradients at the three faces:

∇Wi =
Ai1a2(∇W)1 + Ai2b3(∇W)2 + Ai3c1(∇W)3

Ai1a2 + Ai2b3 + Ai3c1
(9)

where Ai1a2 is the area of quadrilateral i1a2 (Figure 3a), and (∇W)m is the gradient of the
variable W at the face m of cell i. This gradient may be computed from the divergence
theorem and an area-weighted average of two triangles around each face. For example, for
face 1 in Figure 1a, it can be written:

(∇W) 1 = A1a2∇W|1a2 +A1i2∇W|1i2
A1a2+A1i2

;
∇W|1a2 = 1

A1a2

∮
Γ WndΓ

(10)

in which Γ is the integral path along the circumference of each sub-triangle (e.g., 1a2). The
weighting functions wa, wb and wc are defined as:

wa =
(gbgc+ε2)

(g2
a+g2

b+g2
c+3ε2)

; wb =
(gagc+ε2)

(g2
a+g2

b+g2
c+3ε2)

;

wc =
(gagb+ε2)

(g2
a+g2

b+g2
c+3ε2)

(11)

where ε is a small value (on the order of 10−4 and less), and ga, gb and gc are the functions
of the gradients of variables in the cells surrounding cell i (i.e., cells a, b and c in Figure 1a)
defined by:
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ga = ‖∇Wa‖2
2; gb = ‖∇Wb‖2

2; gc = ‖∇Wc‖2
2 (12)

In Equation (12), ‖∇W‖2
2 is the second norm of the unlimited gradient of a specified

variable. By definition, the norm L2 of a vector is the sum of the squares of its elements.
Using the above equations, the limited gradient of a variable may be determined, and the
data may be reconstructed at the cell boundaries.

The slope and friction source terms, G1 and G2, in Equation (3) may be defined as, [39]:

G1 =

 0
−ghS0x
−ghS0y

 ;G2 =

 0
−c f Ux|Ux|
−c f Uy

∣∣Uy
∣∣
 ;c f =

gn2

h
1
3

(13)

where S0x and S0y are the bed slopes in the x- and y- directions, respectively, cf is the bed
coefficient of friction, and n is the Manning roughness. During the numerical computations,
G1 and G2 are calculated based on the data obtained for the cell centers.
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Figure 3. (a) A typical initial control volume cell. (b) Reconstruction of the conservative variables
from the cell centers to the cell faces.

The Boussinesq assumption is the basis of all of the turbulence eddy viscosity models.
It relates the Reynolds stresses to the mean velocity gradients via the eddy viscosity. Using
this assumption in the averaged Reynolds stress models, the effects of the Reynolds stress
in the shallow flows (G3 in Equation (3)) may be written as:

G3 =


0

∂
∂x

(
υth ∂Ux

∂x

)
+ ∂

∂y

(
υth ∂Ux

∂y

)
∂

∂x

(
υth

∂Uy
∂x

)
+ ∂

∂y

(
υth

∂Uy
∂y

)
 (14)

where υt is the turbulence eddy viscosity. To discretize this term, a semi-implicit method
may be applied. When the viscosity is large, it is required to discretize the diffusive term
implicitly. This term can be divided in two parts:

G3 = G3,⊥ + G3,‖ (15)

where G3,⊥ is the orthogonal viscosity, and G3,‖ is the non-orthogonal viscosity. For
the momentum component in the x-direction, the two components of viscosity may be
calculated from [39]:

G3,⊥, x = ∑
j∈Ki

ΓD⊥Ux,j −
ΓD⊥
hi

qx,i (16)

G3,‖ = ∑
j∈Ki

υt,ijhij
dij

d⊥,ij
(Ux,B −Ux,V)

(
α̃x,ijñx,ij + α̃y,ijñy,ij

)
(17)

in which ΓD⊥ = υt,ijhij
|nij|
d⊥,ij

is the orthogonal diffusion, qx,i is the unit discharge at a cell i
in the x-direction, hij and υt,ij are the averages of the depth and turbulent eddy viscosity
in cells i and j, Ux,B and Ux,V are velocities in the x-direction at points B and V in Figure 4,
α̃ij = (α̃x,ij, α̃y,ij) is a unit vector perpendicular to the line that connects the centers of the
cells i and j, and d⊥,ij is the projection of the distance between the two cell centers i and
j over a line perpendicular to the common face of the two cells. All of the variables in
Equation (16) are evaluated at time tn except the unit discharge qx,i, which is calculated
at tn+1. Therefore, no additional system of equations must be solved to increase the
computational cost. The turbulence terms in the y-direction may be calculated similarly.

In the above equations, the eddy viscosity term may be computed using any of the
turbulence modeling theories. The details of methods are presented by Alamatian and
Jafarzadeh [39].
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Figure 4. Discretization of the turbulent diffusion term.

4. Modeling of Dry Bed

Dam break simulation is possible in both dry and wet bed conditions. In 2012,
Alamatian and Jafarzadeh [39] considered the initial computational domain as wet. In the
dry bed simulation domain, the riverbed of the dam is initially considered as dry. In the wet
bed modeling, by approaching the water depth as zero in every single cell (h ≈ 0), the flux
increases sharply and creates instability in numerical modeling. It is possible to consider a
minimum initial water depth in computational domain cells to avoid a dry bed condition;
however, the accuracy of this method for dam-break simulation is limited. Various methods
for modeling dry and wet bed conditions have been introduced in different studies [22]. In
some methods, the computational domain cells can consider both the dry and wet domain
of the solution [6].

In this paper, the active method is used for wet-dry behavior [22]. This method of
work is based on activating and deactivating each computational cell for wet and dry bed
conditions, respectively. These zones may be added or removed from the computational
domain, and computational cells would be directly considered as active (wet) and inactive
(dry) in the solution matrix. In this paper, the cell is assumed dry when its water depth
is less than 1.0 mm. When the cell is inactive (dry bed), the computational flux in the
boundary of that cell is ignored. In this method, the bed elevation is updating for obtaining
an exact balance at the wet-dry front between the bed slope and the hydrostatic pressure
term for hydrostatic conditions. If the wet-dry front occurs between the cells Ci and Cj, the
modified bed elevation at the front is defined as [22]:

∆zb,ij =
{hi−hj i f

zb,j−zb,i otherwise (18)

This method is time-efficient since the computational domain decreases by drying the
bed. When the computational domain contains shocks, this method is more accurate [15].

4.1. Numerical Model Verification

The numerical model results are compared with experimental data to verify the
performance of the code. The experiments were carried out by Soares-Frazao in 2007 [40].
The length and width of the considered flume are 5.6 and 0.5 m, respectively. A sluice gate
is placed at x = 2.39 with a reservoir depth of 0.111 m upstream. A symmetrical triangular
barrier with 0.065 m height and ±0.14 slope on each side, at x = 4.45, is considered. The
water depth of 0.02 m at the downstream side of the barrier is considered, and the other
parts are assumed as dry (Figure 5).
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By immediately opening the sluice gate, which simulates the breaking of the dam,
three probes start measuring the water depth in different locations. In the numerical
simulation, the no-slip condition is applied for all wall boundaries [22]. A total of 14,618
unstructured triangular cells are considered with a Manning roughness coefficient and
Courant–Friedrichs–Lewy (CFL) number of 0.011 and 0.9, respectively. The water level
fluctuation of G1 and G2 during the 10 and 30 s after the dam break is investigated to verify
the numerical simulation. The results of the numerical modeling and the experimental
results are shown in Figures 6 and 7.

Figure 6. Water level variations at the station of G1 during the 30 s after dam break.

Figure 7. Water level variations at the station of G2 during the 30 s after dam break.

Conservation of Mass Verification

One of the crucial issues in every CFD numerical code is to check the continuity or
conservation of mass. To verify the ability of the code to conserve the mass in a dry canal,
a numerical wave tank (NWT) with a barrier is considered. The NWT is defined with a
length and width of 4.5 and 0.5 m, respectively. A triangular barrier is modeled in the
center of the canal with a base of 1.5 m, a height of 0.5 m and 0.5 m in width (Figure 8).
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Figure 8. The geometry of the NWT in the test of flow passing barrier and stability above the
barrier level.

The computational domain is considered as 12120 unstructured triangular cells. The
no-slip condition is applied for all wall boundaries [22]. The initial conditions are composed
of a water column with a height of 2 m and a length of 1 m in which its width is equal
to the canal’s width. The acceptable error of 10−8 is considered for the numerical code.
Figure 9 shows the initial conditions of the test.

Figure 9. Initial conditions in the test of flow passing barrier and stability above the barrier level.

Figure 10 shows the flow passing through the barrier and the stability of water above
the barrier at different time steps. The numerical test result is compared with the analytical
method. In this regard, the volume of water and barrier volume are added together, and
by dividing this volume with the solution domain, the water level after stability can be
obtained. Table 1 presents the analytical solution and water level after stability.

Accordingly, the water level will be equal to 0.53 m along the canal after reaching the
stable stage. Figure 11 shows numerical and analytical solution results in comparison. It
is observed that numerical and analytical solution results are in good agreement, and the
conservation of mass is preserved favorably.

Table 1. Analytical solution and water level after stability.

Properties Water Volume (m3) Barrier Volume (m3) Total Volume of
Barrier and Water (m3) Domain Area (m2) Water Level after

Stability (m)

Values 2 × 1 × 0.5 = 1 [(0.5 × 1.5)/2] × 0.5 = 0.188 1 + 0.188 = 1.188 4.5 × 0.5 1.188/(4.5 × 0.5) = 0.53
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Figure 10. Progress of a wave in the test of flow passing the barrier and stability above the barrier level.

Figure 11. Numerical and analytical results in the test of flow passing barrier and stability above
barrier level.
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5. Modeling of the Dam Break

The Golestan dam has been constructed on a river in the north of Iran. It has a length
of 30.6 m at the bottom with a crest length of 130 m, it is 20 m in height, and its reservoir
volume is 2.7 million cubic meters. The area of the watershed dam is 1,010,000 hectares.
The Golestan dam is a historic barrier dating back 150 years that was built using traditional
materials. This dam has been exposed to various earthquakes. The changing of the land use
upstream of the dam has caused increasing water to enter it and increased the likelihood of
failure. In this paper, the length of 5400 m of the river downstream of the dam has been
modeled. The topography of the area, dam reservoir and pathway plan have been obtained.
Figure 12 shows the river plan and land risks.

Two bridges, B1 and B2, are located at distances of 3900 m and 5320 m downstream of
the dam, respectively. These two bridges are critical for the area, and the dam break could
cause a serious problem for these bridges. Their properties are presented in Table 2.

Table 2. Bridges Properties.

Bridge Details B1 Bridge B2 Bridge

Pier radius 0.6 m 0.6 m
Number of piers 48 16

Bridge height 6 m 7 m

Figure 12. River plan and land risks.

Only bridge piers have been applied in the modeling, and due to the size of the
computational domain, a slip condition has been used at the wall boundaries of the bridge
piers [22]. At the downstream end, the dependent variables (h, qx and qy) were interpolated
from the solution domain, which is reasonable due to the supercritical nature of the
flow [39]. The Courant–Friedrichs–Lewy (CFL) number is considered as 0.8. Figure 13
shows a change of maximum flow depth with different numbers of computational cells at B1
and B2 bridges. According to this figure, 35,628 unstructured triangular cells were chosen.
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Figure 13. Maximum flow depth versus different numbers of computational cells.

Due to the sand-bed river without vegetation downstream of the dam, the value of the
Manning roughness coefficient varies between 0.025 and 0.033 [41]. The maximum depths
of flood flow versus Manning roughness are shown in Figure 14 for the points attached
to bridge B1 and B2. It is observed that with increasing Manning roughness from 0.025
to 0.033, the maximum depth of the flood wave increases by about 11%. For reliability,
Manning roughness is considered as 0.033.

Figure 14. Maximum depths of flood flow versus Manning roughness.

6. Results and Discussion

The dam break is simulated using the above information. The analysis continued
up to the point where water level approaches the elevation of the bridge. The travel
time duration of the first wave that hits the bridges is calculated. Figure 15 shows flood
zoning in different periods. In this figure, the river border and computational domain are
distinguished by red lines. Flood zoning indicates that water depth decreases gradually in
the reservoir after the dam breaks, and it takes 22 min and 30 s.
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Figure 15. Flooded zoning due to the dam break.

Figures 14 and 15 show a closer look at the flood wave when it arrives at the B1 bridge
at a time of 620 and 660 s, respectively. The flow depth distribution across the river and the
bridge’s piers are seen in Figures 16 and 17.
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Figure 16. Water level at B1 bridge at time 620 s.

Figure 17. Water level at B1 bridge at time 660 s.

The velocity vectors and the contours of streamlines at the B1 bridge at time 1100 s are
shown in Figure 18. According to this figure, the proper performance of the wall boundary
condition is confirmed.

Figure 18. The velocity vectors and the contours of streamlines at the B1 bridge (t = 1100 s).
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Flood flow hydrographs at bridges B1 and B2 are presented in Figure 19. It can be
seen that the maximum flood discharge at the locations of bridges B1 and B2 is 120 (at time
16.5 min) and 110.2 (at time 28.5 min), respectively.

Figure 19. Flood flow hydrographs at bridges B1 and B2.

Figures 20 and 21 present the water level at B1, B2 pier locations. The B1 deck bridge
would suffer from flooding at 11 to 40 min after the break and encounter dangerous waves
with greater heights than the deck bridge elevation. It is observed that the height of the
waves reaches up to 4 m above deck bridge level, which could cause a disaster. According
to Figure 20, it is observed that 11 min after the dam break, the height of the flood wave
reaches the level of the bridge deck. Consequently, for this bridge, there are only 11 min
after the breaking of the dam to apply necessary proceedings and evacuate the adjacent
roads. Precautionary measures should be taken during the safe periods.

The results based on Figure 21 showed that the B2 bridge would be flooded from 21 to
50 min. The maximum wave height of 9.54 m will occur about 27 min after the breaking of
the dam, which is 2.5 m greater than the bridge elevation. Therefore, for bridge B2, there is
only 21 min available before the bridge is completely flooded, and road evacuation should
be considered to prevent future risks.

Figure 20. Water level variations at the B1 bridge.
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Figure 21. Water level variations at the B2 bridge.

7. Conclusions

Real-scale dam-break modeling using 3D numerical models has a high computational
cost. It is very useful to use 2D models that can reduce the cost of calculations while being
accurate. In this paper, a real-scale dam-break wave was simulated using the 2D finite
volume Roe-TVD method. For this purpose, a numerical code was developed to solve the
2D depth average, shallow water equations on unstructured triangular cells considering
turbulence terms and a dry bed front. In order to validate the code, at first, available
experimental data were considered, the water level in the flume has been predicted and
compared with the experimental data. Furthermore, a numerical tank was simulated
to study the capability of the model in passing the flow over a barrier in the dry canal,
conserving mass and to reach a steady flow case above the barrier level. Comparing the
analytical and numerical solutions indicated that the conservation of mass is satisfied. After
verifying the model, the real-scale dam break has been simulated, and the flow behavior
from encountering the two bridges was analyzed along the pathway. The flood wave
arrival time to the bridges, flooded area and the duration of flooding of the bridges were
studied. The results of the dam break simulation showed that B1 and B2 bridges are at
risk of flooding in the case of a dam break. Long waves affect the structures and can cause
severe damage. Vehicle traffic should be banned at the moment of dam break. Furthermore,
it is necessary to evacuate any vulnerable objects from these areas. The maximum required
time for the evacuation of the two bridges is 12 and 21 min, respectively.
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