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Abstract: Early flood forecasting systems can mitigate flood damage during extreme events. Typically,
the effects of flood events in terms of inundation depths and extents are computed using detailed
hydraulic models. However, a major drawback of these models is the computational time, which
is generally in the order of hours to days for large river basins. Gaining insight in the outflow
hydrographs in case of dike breaches is especially important to estimate inundation extents. In this
study, NARX neural networks that were capable of predicting outflow hydrographs of multiple dike
breaches accurately were developed. The timing of the dike failures and the cumulative outflow
volumes were accurately predicted. These findings show that neural networks—specifically, NARX
networks that are capable of predicting flood time series—have the potential to be used within a
flood early warning system in the future.

Keywords: outflow hydrograph; dike breach; artificial neural network; flood forecasting system;
flood prediction

1. Introduction

Inundation of the hinterland due to dike breaches poses a worldwide flood risk.
It is expected that flood losses will significantly increase in the future due to climate
change and as societies become wealthier [1]. Accurate prediction of potential dike breach
locations, as well as the timing of a dike failure and resulting outflow hydrograph, are
crucial for decision-makers to establish appropriate flood mitigation measures such as
evacuation plans. Up until now, two-dimensional (2D) hydraulic models are generally
used to predict the disastrous consequences of river flood events (e.g., [2–4]). However,
the computational times of these models are relatively long, especially when large river
basins are considered. Furthermore, many hydraulic simulations are required according to
a probabilistic approach to find the potential dike breach locations since the critical water
level at which a dike may fail is highly uncertain and varies spatially along a river reach. In
crisis situations, a quick estimate of the dikes most prone to breach is essential. Therefore,
2D hydraulic models cannot be used for real-time flood forecasting purposes, even with a
computational cluster.

For this reason, neural networks are applied more frequently in the field of hydrology
in recent times [5]. Neural networks are data-driven models trained based on the input–
output relations of a physically-based model or field measurements. A neural network
has as advantage that it is fast with simulation times of less than a second, that it can
handle incomplete and noisy input data, and that it is able to reproduce complex nonlinear
behavior between input and output [6–8]. Most of the studies that developed neural
networks for flood forecasting purposes focused on the prediction of discharges and/or
water levels at specific sites based on data of upstream gauge stations without considering
the effects of dike failure (e.g., [9–13]). Shen and Chang [8] extended the use of neural
networks by developing NARX neural networks that were capable of predicting flood time
series in terms of inundation extents in urban areas. These inundations were caused by
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extreme precipitation events. It was found that a NARX neural network can effectively be
used for multistep-ahead forecasts even when imperfect input data is used for rainfaill
triggered flood events [8]. Bomers et al. [14] showed the applicability of neural networks
in case of dike breaches by predicting maximum water levels during an extreme historic
flood event. However, the study made use of predefined dike breach locations while
these locations are highly uncertain in reality. Furthermore, breach outflow peaks and
hydrographs have already been successfully predicted using neural network approaches
(e.g., [15,16]). These studies focused on a single breach only and prediction of the dike
breach location along a river stretch was not included in the analysis.

Even though the previous studies successfully showed the possibilities of neural
networks to be used in a flood forecasting system in the future, no models exist that can
predict both fast and accurately the dike breach location, timing, and outflow volume in
case of extreme flood events. This study shows the potential of using neural networks
to predict if a dike section will fail during a flood event, the timing a dike will fail, and
the corresponding outflow hydrographs, since these parameters are the main drivers of
the total flood damage during a flood event. Multiple dike breach locations in a river
delta with multiple river bifurcations are considered. The developed neural networks
should be able to correctly predict outflow hydrographs of the dike breaches based on an
upstream discharge wave. To do so, the effects of a dike breach on downstream water level
reductions and, consequently, dike failure probabilities of the remaining potential dike
breach locations should be accurately captured by the neural networks.

To reach the objective of this study, several simplifying hypotheses are made. First,
a deterministic approach is applied in which dike sections only fail due to overtopping
failure mechanism, independent of the type of structure. Consequently, based on the
hydraulic modeling simulation, the potential dike breach locations are known. Neural
networks are only developed for the dike sections that breached during at least one of the
multiple flood events simulated with the hydraulic model to generate the training data.
The trained neural networks predict if these dike sections will fail and predict the resulting
outflow hydrographs.

If the outflow hydrographs of multiple dike breaches during potential flood events can
be predicted both fast and accurately, this study shows the applicability of neural networks
to be used in real-time flood forecasting systems in the near future. The Dutch Rhine river
delta is used as a case study (Section 2). However, the proposed methodology can be
applied to any river system in the world where flood defenses may fail, resulting in outflow
hydrographs. First, training data is generated using a one-dimensional–two-dimensional
(1D–2D) coupled hydraulic model in which the river is solved in 1D and the hinterland in
2D. The hydraulic model setup is described in Section 3.1. The upstream peak discharge
and shape of the discharge wave is varied to ensure that a wide range of potential realistic
flood events are simulated (Section 3.3). These upstream discharge waves result in dike
breaches and, consequently, outflow hydrographs in the studied area. These input–output
relations of the hydraulic model are used to train the neural networks (Figure 1), presented
in Section 4. The results are shown in Section 5. The paper ends with a discussion and
conclusions in Sections 6 and 7, respectively.

Figure 1. The proposed methodology to train the artificial neural networks that are capable of
predicting outflow hydrographs of potential dike breaches.
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2. Study Area

The Rhine river originates in the Alps of Switzerland and flows through Germany,
where the flood-prone area increases until it becomes a river delta in the Netherlands [17].
The Rhine river enters the Netherlands at Lobith, where it bifurcates into the Waal river
and Pannderdensch Canal (Figure 2). Subsequently, the Pannerdensch Canal bifurcates
into the Nederrijn and IJssel rivers.

In this study, we focus on the the discharge-dominated part of the Rhine river delta in
the Netherlands. The downstream river sections influenced by the tide of the North Sea
are not included to reduce model complexity. In the considered area, floods mainly evolve
during the winter months due to heavy precipitation events in combination with frozen or
saturated soils in the upstream parts of the river basin. Currently, the Dutch water policy
assumes a fixed discharge partitioning along the Dutch Rhine river branches during such
extreme events. Of the total discharge at Lobith, it is assumed that approximately 65% flows
to the Waal river, 19% to the Nederrijn river, and around 16% to the IJssel river [18]. These
river branches are protected by dikes in order to protect the hinterland from being flooded.
These dikes may fail under extreme conditions influencing this predefined discharge
partitioning due to a reduction in the local water levels and backwater effects [2]. The
hydraulic model used to generate the training data used to train the neural networks has
to be able to include this dynamic behavior during flood events (Section 3).

Figure 2. (Left) The Dutch Rhine river delta used as a case study. The red arrows indicate the
flow direction; the orange dot indicates the location of the upstream model boundary (Emmerich,
Germany). The Rhine river enters the Netherlands at the German–Dutch border. (Right) The
potential dike breach locations included in the analysis. The red dots represent all potential dike
breach locations considered in the hydraulic simulations, whereas the green dots represent the dike
breach locations that failed during one or more of the hydraulic simulations.

3. Hydraulic Model
3.1. Model Setup

The one-dimensional–two-dimensional (1D-2D) coupled hydraulic model of
Bomers et al. [2] is used in this study. The model domain of this calibrated and validated
model is decreased to reduce computational times. In this study, the upstream boundary
is located at Emmerich, Germany, and the model domain stretches to the Dutch Deltaic
area (Figure 2). The model bathymetry, roughness classifications, and the locations and
heights of the dikes represent the present situation. These data were provided by the Dutch
Ministry of Infrastructure and Water Management and the Landesamt für Natur, Umwelt
und Verbraucherschutz (LANUV) of Northrhine-Westfalia.

At Emmerich, a discharge wave is used as an upstream boundary condition, whereas
normal depths are used as downstream boundary conditions [19]. HEC-RAS (v. 5.0.3), de-
veloped by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers,
is used to perform the hydraulic simulations using the diffusive wave equations. In this
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model, the main channel and floodplains are discretized by 1D profiles. During extreme
flood events, the flow typically has a dominant flow direction in these regions, making
the use of 1D profiles suitable as it reduces computational times compared to a fully 2D
model. The hinterland is discretized on a 2D grid to accurately capture the inundation
patterns and extents caused by the potential dike breaches (Figure 3). The 2D grid has a
resolution of approximately 150 × 150 m. This 2D grid is aligned with higher grounds
such that overland flow patterns are accurately captured by the model. Furthermore, the
2D grid extends upstream of the 1D main channel and floodplain boundary to ensure that
the storage capacity of the hinterland is correctly captured (Figure 3).

Figure 3. The 1D-2D coupled hydraulic model setup.

The 1D profiles and 2D grids are connected by a structure representing the dike
sections along the various river reaches. In this study, we assume that dikes will only
fail by the overtopping failure mechanism, which is the most common failure mechanism
of modern dikes [20]. It is assumed that the various potential dike breach locations will
fail if the simulated water level is equal to the dike crest level. Consequently, no detailed
information about the age and construction techniques of the dikes, determining the failure
probabilities, are required. In total, 28 potential dike breach locations are considered
(Figure 2). These locations are selected based on their expected consequences in case of a
dike failure [21]. As a result, a dike breach in a specific dike section leads to similar overland
flow patterns independent of the exact dike breach location in that specific dike section.
Furthermore, the various dike sections are modeled as infinitely high dikes, meaning that
water will only leave the river system through the dike breaches. Additional overflow
along surrounding dike sections is not included in the model setup to reduce complexity
of the system.

Dike breach growth is highly uncertain. Many models exist that try to simulate this
uncertain process by predicting breach dimensions over time. However, overland flows
and inundation extents are not sensitive to the breach growth model used [22]. Even
though the use of different breach growth models, predicting different breach dimensions
over time, resulted in different outflow hydrographs, the total outflow volumes were found
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to be predicted more or less the same by the different breach growth models. Correct
prediction of the total outflow volume is important since this determines the inundated
areas to a large extent. Therefore, in this study, we use a simple approach and assume
that dikes immediately breach to the level of the natural terrain when the simulated water
level is equal to the critical water level. Furthermore, a constant breach width of 150 m is
implemented.

3.2. Calibration and Validation of the Hydraulic Model

The hydraulic model was calibrated and validated by Bomers et al. [2]. Calibration
was performed such that simulated maximum water levels were close to measurements
by changing the main channel roughness. During the calibration procedure, a maximum
deviation in simulated water levels of 10 cm was assumed. The 1995 Rhine river flood
event was used for calibration, resulting in a maximum discharge of around 12,060 m3/s
at Lobith, the German-Dutch border. This event corresponds with a return period of
approximately 60 years [23]. Calibration was performed based on 14 measurement stations
present in the model domain. After calibration, the maximum water levels were predicted
with an average deviation of 1 cm compared to measurements.

The 1993 discharge wave with a maximum discharge of around 11,100 m3/s at Lobith,
having a return period of approximately 30 years [23], was used for model validation. At
the 14 measurement stations, a deviation of less than 7 cm in simulated maximum water
levels compared to measurements was found. Furthermore, the discharge partitioning
along the Dutch Rhine river branches was predicted with high accuracy, only deviating
3.7% from measurements on average. For more details about the calibration and validation
procedure of the hydraulic model, we refer to Bomers et al. [2].

The calibration and validation results give confidence in the accuracy of the hydraulic
model to be used for large future flood events. However, both the 1993 and 1995 flood
events did not result in any dike breaches. Furthermore, no overtopping occurred. As a
result, only the instream flow conditions could be validated. The last time dike breaches
occurred in the Dutch Rhine river system was in 1926. However, many river interventions
have been executed (e.g., dike reinforcement projects, widening of river floodplains),
making this flood event unsuitable for calibration purposes.

3.3. Training Data: Upstream Discharge Waves

This study aims to develop neural networks that are capable of predicting dike breach
failures and corresponding outflow hydrographs during extreme events. To ensure that
sufficient realistic flood events are used to train the neural networks, 80 model runs are
performed with varying upstream discharge shapes and peak values. In total, 80 different
discharge shapes are considered that may occur under current climate conditions. These
discharge shapes are based on GRADE (Generator of rainfall and discharge extremes),
which has a data set consisting of 50,000 years of discharges based on resampled measured
weather conditions such as precipitation and temperature [24]. Of this data set, flood events
having a peak value larger than 12,000 m3/s were selected. A 30-day time window was
used to generate various potential flood events. Using this data set compared to measured
discharges has as an advantage the fact that a much larger variety of potential discharge
shapes can be included in the training data set (e.g., a flood event with a sharp peak, broad
peak, or two peaks) (Figure 4). The measured data set only goes back to 1901 and only the
largest flood event that occurred in 1926 had a discharge larger than 12,000 m3/s [25].

For the Dutch Rhine river branches, a maximum design discharge is considered
corresponding to a return period of 100,000 years. This corresponds to a peak value of
between 16,500 and 19,300 m3/s at the German–Dutch border [26]. This range is used
to scale the 80 different discharge shapes in terms of its peak value (Figure 4). A Latin
hypercube sampling method is used to ensure that this range is sufficiently captured by
the limited model runs [27]. The discharge range (16,500–19,300 m3/s) is divided into eight
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subintervals, each having an equal probability of occurrence. As a result, 10 peak values
are randomly sampled in each subinterval, resulting in 80 potential flood events.

Figure 4. Different normalized discharge waves that are used to get realistic potential flood events
by multiplying these discharge wave shapes with the sampled peak values.

4. The NARX Setups

Even though many data-driven models exist, we focus on the development of neural
networks. Neural networks are the most commonly used response surface surrogate
models in water resources problems [5] since they provide an attractive solution to problems
in complex systems because they can, theoretically, handle incomplete and noisy data [6].
Furthermore, neural networks have shown to be highly accurate in predicting water levels
during flood events (e.g., [7,28–31]) as well as in predicting breach outflow hydrographs at
a single location (e.g., [15,16]).

This study focuses on the prediction of the outflow hydrographs of potential dike
breaches requiring the need of neural networks that are capable of predicting a time-
varying output based on an input time series. For this reason, nonlinear autoregressive
with external input (NARX) neural networks are developed for each dike section that
breached during at least one of the hydraulic simulations performed to create the training
data. A NARX is a recurrent dynamic neural network with feedback connections suitable
for time series prediction [8,32]. NARX networks have widely been applied in the field of
hydrology ranging from predicting groundwater levels [32] to floods within urban drainage
systems [33] and rainfall-triggered flood forecasting in urban and rural areas [8,34]. This
study uses NARX neural networks to predict outflow hydrographs of multiple potential
dike breach locations for the first time. A hydraulic model with computational times in the
order of 10 h for a single simulation is used to create the training data, limiting the data set
that can be created and consequently used to train the NARX networks. A NARX predicts
a time series y(t) based on d past values of y(t) and an input time series x(t) according to
the following equation:

y(t) = f (x(t − 1), . . . , x(t − d); y(t − 1), . . . , y(t − d)) (1)

In this study, y(t) represents the predicted dike breach outflow hydrograph, x(t) the
upstream discharge wave, and d the number of past time steps. The upstream discharge
waves and the outflow hydrographs, both having a time step of one hour, are normalized
since it has been proved that the accuracy of NARX predictions increases if trained on
normalized data sets since neural networks tend to favor inputs that can have larger
values [6]. The data sets are normalized to a [−1,1] interval [33].

A NARX network is set up for each dike breach location that failed during the hy-
draulic modeling simulations. It was decided to set a NARX network up for each dike
breach location separately instead of a single network for the entire system to reduce the
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complexity of the neural network structure and the training time required. Furthermore,
this approach is justified by the fact that the NARX network should be able to predict the
spatial relations already present in the hydraulic model used to create the training data. A
dike breach leads to a reduction in downstream water levels. Consequently, dike failure
probabilities in downstream branches decreases. The question of whether the trained neu-
ral networks are capable of reproducing this highly nonlinear system behavior is addressed
in Section 5.3.

The NARX networks are developed using the MATLAB Deep Learning Toolbox 14.1.
A feed-forward network is developed, meaning that the information in the neurons flows
in one direction: from an input layer through a hidden layer with a number of neurons
to an output layer [6,29]. The hyperbolic tangent sigmoid activation function is used to
compute an output based on the weighted sum of all inputs. A sigmoid activation function
is generally applied in the literature since it is capable of introducing nonlinear behavior to
the network [30,35].

During the training procedure, the number of neurons present in the hidden layer
and the delays d must be specified by the modeler. Both parameters are case-specific
since they depend on the complexity of the system [36] as well as on the training data
availability [5]. Most commonly, a trial-and-error procedure is applied to determine the
appropriate number of neurons and delays [8,28,37]. The same approach is applied in this
study. It was found that the NARX networks produce the most reliable results for two
neurons in the hidden layer and two time step delays (Figure 5).

A general problem with response surface surrogate models is overfitting [29,31], which
means that the surrogate model fits the noise existing in the training data rather than the
underlying function [5]. Two well-established approaches exist to avoid overfitting during
the training procedure of neural networks: early stopping using the Levenberg–Marquardt
(LM) algorithm and Bayesian regularization [5,6]. Both approaches are implemented in the
MATLAB Deep Learning Toolbox. The two approaches were tested, and it was found that
the LM algorithm resulted in a slightly more accurate NARX setup (i.e., a slightly higher
Nash–Sutcliffe coefficient). Furthermore, the LM algorithm is commonly applied to train
NARX neural networks (e.g., [32–34]), as it is considered as a fast and efficient training
function [38]. During the training procedure, the training data set is randomly divided
into three sets: training (60%), validation (20%), and testing (20%). The training data set is
used to train the NARX network, the validation data set is used to test whether increasing
the data set during the training phase results in a more accurate NARX network, and the
testing data set represents an independent data set used to validate the NARX network
performance after being trained.

The NARX networks are trained according to an open-loop [32], i.e., a single step, form
resulting in more efficient training compared to a closed-loop form in which predictions are
iterated over many time steps. The maximum number of epochs was set to 1000. The mean
squared error (MSE) was used as a loss function such that the error in estimations of the
maximum outflow discharge is more heavily weighted than the errors in smaller values.
Since training a neural network multiple times will always result in a slighty different
network structure as a result of different starting conditions, 10 NARX networks were
trained for each breach location. Even though the differences in the overall performance of
the various trained networks were small, the NARX networks with the highest accuracy are
presented in Section 5. The accuracy of the NARX networks is evaluated using the Nash–
Sutcliffe model efficiency coefficient (NSE), which can be computed with the following
equation [39]:

NSE = 1 − ∑N
n=1(Q

n
m − Qn

o )
2

∑N
n=1(Qn

o − Qo)2
(2)

where Qm is the outflow discharge predicted by the NARX network (m3/s), Qo is the target
outflow discharge simulated by the hydraulic model (m3/s), and Qo is the average of the
target outflow discharge (m3/s). N represents the total number of simulations included
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in the calculation and n the index. A NSE value equal to 1 corresponds with a perfect fit
between the NARX network predictions and the hydraulic model output, whereas a value
below 0 indicates that the mean outflow discharge simulated by the hydraulic model is a
better predictor [40].

Figure 5. Setup of the trained NARX networks with the upstream discharge wave and predicted
outflow hydrographs as input, considering two time delays, and two neurons in the hidden layer.

5. Results

It was found that only two out of the 28 potential dike breach locations failed due to
the 80 flood events considered, namely the most upstream potential dike breach location
located just downstream of the upstream boundary condition of the hydraulic model,
and the most upstream potential dike breach location along the IJssel river (green dots in
Figure 2). These two breach locations are referred to as, respectively, “the most upstream
dike breach location” and “the IJssel river dike breach location” from now on. Only for
these two locations a NARX network is set up to test whether such a neural network
is capable of correctly predicting the shape and total volume of a dike breach outflow
hydrograph. First, the hydraulic modeling results are presented in Section 5.1 to gain
insights in the system behavior during flood events. This insight is required to identify the
main difficulties within the system that should be captured by the NARX networks. The
accuracy of the developed NARX networks is described in Sections 5.2–5.4.

5.1. Hydraulic Modeling Results

During all simulations, the breach location along the IJssel river (Figure 2) overtopped
and thus breached first. The most upstream dike breach location (Figure 2) only failed if
the peak of the upstream discharge wave was larger than approximately 17,100 m3/s. The
shape of the outflow hydrograph at this location was not influenced by the dike breach
along the IJssel river since the distance between the two locations was sufficiently large
that backwater effects were vanished. However, the most upstream dike breach does
significantly affect the shape of the outflow hydrograph of the dike breach at the IJssel river
(Figure 6). This can be explained by the fact that the most upstream dike breach changes
the shape of the discharge wave in the river system. The originally smooth discharge
wave now has a sudden drop due to the outflow through the breach (Figure 6). This
altered discharge shape consequently changes the shape of the outflow hydrograph at the
IJssel river.
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Figure 6. (a) The upstream instream discharge waves used as boundary condition of the hydraulic model and as input of
the NARX networks (solid lines) and corresponding altered instream discharge wave if a dike breach occurs at the most
upstream breach location just downstream of the dike breach (dashed line). (b) Corresponding outflow hydrographs at the
IJssel dike breach location (i) if no dike breach occurs at the most upstream dike breach location and (ii) if a dike breach
occurs at the most upstream dike breach location. For the locations of the most upstream and IJssel river dike breach
locations, please see Figure 2.

The NARX networks at both dike breach locations are set up with the upstream
discharge wave as input parameter. Therefore, special attention must be paid to the
accuracy of the NARX network of the IJssel breach location for upstream discharges with a
peak value lower and higher than 17,100 m3/s resulting in a smooth and highly altered
outflow hydrograph, respectively.

5.2. Validation of the NARX Neural Networks

The hydraulic model cannot be used as an early flood forecasting tool because of
the long computational time of a single simulation in the order of 10 h on a standard PC.
However, the NARX networks were trained in less than 5 s. After training, it was possible
to compute the outflow hydrographs of 80 potential flood events in 0.07 s. Even though
creating the training data with the hydraulic model is a huge time investment, equal to
approximately 800 h in this study, the NARX networks have great potential to be used for
flood forecasting purposes when trained.

During the training, validation, and testing procedures, different upstream discharge
shapes were used. It was found that the NARX networks were able to respond to varying
upstream discharge shapes accurately, even for the ones highly deviating from the ones
present in the training data set. For the most upstream dike breach location and the dike
breach location along the IJssel river, an NSE of 0.93 and 0.96 was found, respectively.
Figure 7 shows the regression lines of the two dike breach locations; the predictions of the
hydraulic model and the NARX networks are presented for each time step. It shows that
the NARX predictions closely resemble the hydraulic model output since almost all data
points are present at the linear 1:1 line. However, some differences are present:

• If no dike breach has occurred yet (hydraulic model output is equal to 0), the NARX
network predicts a small negative or positive discharge. This can be seen by the
vertical data points clustered around T = 0 in Figure 7).

• The NARX networks predict the peak of the outflow hydrograph one time step later
compared to the hydraulic model. This explains the horizontal data points clustered
around Y = 0 in Figure 7).
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• The maximum outflow discharges seem to be underpredicted by the NARX net-
works, especially for the most upstream breach location. This can be seen by the data
points representing with discharges larger than 6000 m3/s deviating from the 1:1 line
(Figure 7a).

Figure 7. Regression lines for the two potential dike breach locations where the blue line represents the 1:1 linear fit and the
Y = T line the fitted linear line based on the training data produced with the hydraulic model (T) and NARX predictions (Y).

These three findings are discussed in more detail in the next section, in which we will
focus on the shapes of the predicted outflow hydrographs. The implications of these devia-
tions on the total outflow volume, important for flood extent predictions, are discussed
in Section 5.4. To do so, the results of three upstream discharge waves are presented: one
with a peak value lower than 17,100 m3/s such that the upstream dike breach location does
not breach and two discharge waves with a peak value larger than 17,100 m3/s, both with
a different discharge wave shape (Figure 8).

Figure 8. (a–c) The three upstream discharge waves used to verify the suitability of the NARX networks to predict outflow
hydrographs of potential dike breaches.
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5.3. Prediction of the Outflow Hydrograph Shapes
5.3.1. The Most Upstream Dike Breach Location

From the hydraulic modeling results (Section 5.1), it was found that dike breaches
only occur at the most upstream dike breach location if the peak value of the upstream
discharge wave is larger than 17,100 m3/s. However, the NARX models are sensitive to
any change in the input parameter. Even a small change in the upstream discharge results
in a different response of the NARX network. Consequently, the NARX network always
produces a nonzero discharge prediction (Figure 9a). This finding explains the data points
clustered around the T = 0 location in Figure 7. However, the predicted discharges are
irrelevant for flood forecasting purposes since they are extremely low.

For upstream discharges with a peak value larger than 17,100 m3/s, the predicted
outflow hydrograph of the NARX network closely resembles those of the hydraulic model
output (Figure 9b,c). The timing of the maximum discharge outflow is predicted quite
accurately. The exact timing of the peak was shifted one time step, meaning that the peak
occurs one hour later in the NARX predictions compared to the hydraulic model output.
This explains the data points clustered around Y = 0 in Figure 7. If a more accurate timing
of the peak outflow is required, this can easily be solved by decreasing the time step of
the input and output data used to train the ANN to, for example, 1 min. Furthermore, the
shape of the outflow hydrograph in the falling stage is correctly predicted by the NARX
network (Figure 9).

Even though the shape of the outflow hydrographs are predicted accurately, the peak
value is underpredicted with −27.9% on average for the most upstream breach location.
Multiple loss functions were considered during the training procedure of the networks.
However, all showed a similar, or even worse, pattern. A well-known problem with neural
networks in general is that they are prone to systematic underprediction of flood series for
extreme flood events. This underprediction can be reduced by, for example, postprocessing
the NARX predictions by applying an unscented Kalman filter [34].

Figure 9. (a–c) Multiple outflow hydrographs at the most upstream dike breach location predicted by the hydraulic model
and the NARX network as a result of the upstream discharge waves presented in Figure 8.

5.3.2. The IJssel River Dike Breach Location

Figure 10 shows multiple outflow hydrographs at the IJssel river dike breach location
as predicted by the NARX network and the hydraulic model. It was found that the NARX
network is capable of predicting the shape of the outflow hydrographs accurately. This
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also applies when the peak of the upstream discharge wave is larger than 17,100 m3/s.
For these cases, the most upstream dike section breached as well influencing the shape
of the discharge wave traveling in downstream direction through the river system and,
consequently, the outflow hydrograph at the IJssel river (Section 5.1). This shows that the
NARX network is capable of correctly identifying the system behavior. As a result, the
NARX network is able to establish a relation between the upstream discharge wave and
outflow hydrographs, even if the shape of this discharge wave changes in the river system
due to other dike breaches. This finding shows the capabilities of using neural networks as
an early flood forecasting system in a bifurcating river system where the dynamics due to
multiple dike breaches are highly complex.

Furthermore, we found similar deviations in the predicted outflow hydrograph shapes
at the IJssel river as was found for the most upstream dike breach location, namely predic-
tion of small outflow discharges before the dike has failed and a shift of one time step in the
timing of the peak value. However, the underprediction of the peak outflow discharge was
less severe for the IJssel river breach location compared to the upstream breach location.
For the IJssel river breach location, the peaks were underpredicted with 3.5% on average.
This is mainly the result of the altered outflow hydrograph if the upstream breach location
fails. For these situations, no extreme peak is present in the outflow hydrograph of the
IJssel river (Figure 10b,c). However, if the upstream dike breach location does not fail, an
extreme peak with a duration of one time step is present, again resulting in underprediction
of this peak value of at maximum 21.2% (Figure 10a).

Figure 10. (a–c) Multiple outflow hydrographs at the IJssel river dike breach location predicted by the hydraulic model and
the NARX network as a result of the upstream discharge waves presented in Figure 8.

5.4. Prediction of the Outflow Hydrograph Volumes

For proper flood evacuation plans, not only the timing of a dike breach is important,
but the total flood volume that may flow into the hinterland is also important since
this largely determines the flood extent in the hinterland. Section 5.3 showed that the
NARX networks underpredicted the peak outflow discharge, especially for the upstream
breach location. However, since this peak discharge only occurred for a short moment in
time just after the dike breached, this underprediction has almost no effect on the total
outflow flood volume (Figures 11 and 12). On average, the NARX networks predict a total
flood volume which is around 1.67% and 1.32% lower compared to the hydraulic model
predictions for the most upstream and IJssel river breach location, respectively. Besides
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the total flood volume, the cumulative flood volume over time is also predicted accurately
(Figures 11 and 12).

Furthermore, Section 5.3 showed that the NARX networks always computes an out-
flow discharge, even if the dike has not failed yet. Even though the computed outflow
discharges are low, it still results in a cumulative outflow volume in the order of 2 × 107 m3

(Figure 11a). This incorrect predicted outflow volume can be confused with a dike breach if
these networks are used by decision-makers in case of crisis situations. Therefore, it is rec-
ommended to postprocess the neural network predictions by including a threshold. Only
if the outflow discharge exceeds this specific threshold, the specific dike section should be
identified as a dike failure and corresponding outflow volume should be computed.

Figure 11. (a–c) The cumulative outflow volume over time for the upstream breach location predicted by the hydraulic
model and the NARX network as a result of the upstream discharge waves presented in Figure 8.

Figure 12. (a–c) The cumulative outflow volume over time for the IJssel river breach location predicted by the hydraulic
model and the NARX network as a result of the upstream discharge waves presented in Figure 8.
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6. Discussion

This study showed the potential of NARX networks to be used to predict multiple
outflow hydrographs of potential dike breaches in a bifurcating river system. This approach
has the potential to be extended to a real-time flood forecasting system that is also capable
of predicting inundation extents to set up evacuation plans. In reality, a flood event and
corresponding consequences are highly uncertain and probabilistic of nature. However,
assumptions were made in the current approach to reduce the complexity of the system.
These assumptions are addressed in more detail below.

6.1. Critical Water Levels

Dikes can fail due to various mechanisms (e.g., overtopping, piping, macrostability),
making the critical water level highly uncertain. In this study, it was assumed that the
various potential dike breach locations could only fail due to the failure mechanism over-
topping. For this failure mechanism, the critical water levels were assumed to be equal
to the dike crest levels and, subsequently, the neural networks were able to accurately
predict the dike breach locations. However, this critical water level is highly uncertain.
Furthermore, for other failure mechanisms such as piping and macrostability, the critical
water level can be substantially lower than currently considered. For future research, we
aim to extend the current deterministic approach by including critical water levels in a
probabilistic manner (e.g., [2,21,41,42]). Using such a probabilistic approach increases the
complexity of the system significantly. Now, only two out of the 28 potential dike breach
locations failed. Furthermore, the IJssel river dike breach location always failed earlier than
the most upstream dike breach location since constant critical water levels were assumed.
More dike sections may breach and the order in which the various dike sections fail may
change by including multiple failure mechanisms randomly. This increase in the system
complexity may require additional feedback layers in the NARX network setups. An option
could be to update the water levels in the various river branches due to potential dike
breaches during the NARX predictions. As a consequence, the interaction between critical
water levels, dike breaches, and upstream and downstream water levels can be considered.
How such a NARX network should be set up in detail is recommended for future research.

Furthermore, the critical water levels may change over time. Dike reinforcements are
expected at the locations currently identified as potential dike breaches during flood events.
If flood probability reduction measures are taken (e.g., dike reinforcements, floodplain
widening, construction of a side channel), the NARX networks should be retrained. NARX
networks, and data-driven models in general, do not have any physical interpretation.
Instead, they are based on the input–output relations of a physically-based model. There-
fore, new training data must be created with an updated hydraulic model representing the
correct river schematization.

6.2. Infinitely High Dikes

In this study, water could only leave the river system if a dike breached. Overflow
was not included in the analysis, assuming infinitely high dikes to reduce the complexity
of the system. The considered dike breach locations did not always have the lowest crest
level in a specific dike section. Therefore, in reality, overflow may have already happened
at surrounding dike sections before a specific dike section failed. However, it is expected
that the neural networks are also able to accurately predict outflow hydrographs in case
overflow is included since the NARX neural networks have been shown to be able to
include the spatial relations present in the system in terms of a changing discharge wave in
downstream direction.

6.3. Toward an Early Flood Forecasting System

The NARX neural networks developed in this study only predicted outflow hydro-
graphs. Inundation extents in the hinterland were not predicted, whereas a fast and
accurate overview of the inundated areas helps to set up proper evacuation schemes. With
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the predicted outflow hydrographs, it was possible to compute the total flood volume
entering the hinterland. These flood volumes should be transferred to inundation ex-
tents. Determination of how this can be efficiently performed using neural networks is
recommended as an objective of future work.

7. Conclusions

During extreme flood events, dikes may fail, causing inundations in the hinterland
and, consequently, flood damage. Early flood warning systems can help to mitigate the
consequences of large flood events. In this study, NARX neural networks were developed
for the potential dike breach locations in the Dutch Rhine river system. These NARX
networks were able to predict if a specific dike section will fail and corresponding outflow
hydrographs accurately. The timing of these dike failures was accurately predicted. Even
though the maximum outflow discharges were slightly underpredicted, which is a common
phenomena of neural networks under extreme conditions, the total outflow volumes only
deviated with 1.67% and 1.31%, on average, for the two breach locations. These outflow
volumes have the potential to be used to predict inundation extents in the hinterland,
which is recommended to be included in the neural network setups for future research.
Furthermore, various failure mechanisms should be included in future work to enable even
more realistic prediction of the dike breach locations. By doing so, NARX neural networks
have great potential to be used within the early flood warning system in the future.
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