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Abstract: We present the development and testing of a web application called the historical validation
tool (HVT) that processes and visualizes observed and simulated historical stream discharge data
from the global GEOGloWS ECMWF streamflow services (GESS), performs seasonally adjusted bias
correction, computes goodness-of-fit metrics, and performs forward bias correction on subsequent
forecasts. The HVT corrects GESS output at a local scale using a technique that identifies and corrects
model bias using observed hydrological data that are accessed using web services. HVT evaluates
the performance of the GESS historic simulation data and provides more accurate historic simulation
and bias-corrected forecast data. The HVT also allows users of the GEOGloWS historical streamflow
data to use local observed data to both validate and improve the accuracy of local streamflow predic-
tions. We developed the HVT using Tethys Platform, an open-source web application development
framework. HVT presents data visualization using web mapping services and data plotting in the
web map interface while functions related to bias correction, metrics reporting, and data generation
for statistical analysis are computed by the back end. We present five case studies using the HVT in
Australia, Brazil, Colombia, the Dominican Republic, and Peru. In these case studies, in addition to
presenting the application, we evaluate the accuracy of the method we implemented in the HVT for
bias correction. These case studies show that the HVT bias correction in Brazil, Colombia, and Peru
results in significant improvement in historic simulation across the countries, while bias correction
only resulted in marginal historic simulation improvements in Australia and the Dominican Republic.
The HVT web application allows users to use local data to adjust global historical simulation and
forecasts and validate the results, making the GESS modeling results more useful at a local scale.

Keywords: GEOGloWS; HydroStats; web services; HydroShare; HydroServer; bias correction;
streamflow forecasting

1. Introduction
1.1. Background and Need

Flooding is one of the most frequent and expensive natural disasters worldwide, both
in terms of loss of human life and property damage. Floods can cause economic loss,
agricultural production disruptions, adverse environmental impact, and the death and
displacement of local populations, resulting in significant financial, environmental and
health impacts [1,2]. Advancements in flood forecasting and the ability to communicate
needed flood information to decision makers have a significant benefit in mitigating these
loses [3,4]. As river flow modeling has advanced in both accuracy and capacity, modeled
flow and flood forecasts are used by managers to make decisions around the world [5].

While most developed countries have accurate local hydrologic monitoring and
hydrologic forecast models available for use by professionals, forecast models may not exist
in all areas of these developed countries or in large regions of developing countries [4]. The
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European Centre for Medium-Range Weather Forecasts (ECMWF) developed The European
Flood Alert System (EFAS), which provides probabilistic flood forecasting information for
3 to 10 days in advance for every stream throughout Europe [6,7]. Similarly, in the United
States (US), the National Oceanic and Atmospheric Administration (NOAA) designed
the National Water Model (NWM), which provides deterministic forecasts for 18 hours in
advance and probabilistic flood forecasts for 8.5 to 30 days in advance for every stream in
the entire US [8,9]. Similarly, other developed countries (including Japan, China, and New
Zealand) have developed or are developing their own national forecasts systems [10–13].

While some developing countries do have systems for hydrologic monitoring and
forecasting [14], their hydrologic services are often ineffective or only functional in limited
regions. This can be due to a number of issues, including a lack of financial resources,
challenges in maintaining the needed technological infrastructure, difficulties in attract-
ing, training, and retaining a qualified workforce, no perceived benefit to the provider
for making their observations available, issues related to water rights, policy related to
transnational river basins, poorly gauged river basins, failure to adopt a single interna-
tional standard for data and metadata sharing, and limited or poor connections with local
users [15,16].

1.2. Global Streamflow Modeling and Prediction

A global streamflow prediction system would help address these issues in both
developing and developed countries and generally improve services worldwide. This
kind of system could provide forecasts in areas without local models or gauging stations
and would provide managers with more accurate information that could help reduce
vulnerabilities [4].

The Global Flood Awareness System (GloFAS) provides a global streamflow prediction
system. It is based on the ECMWF ensemble meteorological forecasting system, which
uses 51 members with a spatial resolution of 18 km for the first 10 days (days 1–10), and
36 km for the next 5 days (days 11–15). GloFAS converts these meteorological forecast data
to surface runoff using the hydrology tiled ECMWF scheme for surface exchanges over
land (HTESSEL) model [17]. After this conversion, the ensemble forecast is resampled to
a grid with a spatial resolution of 0.1◦ (~10 km); then, the surface runoff is routed using
the LISFLOOD routing model [14,18]. GloFAS also uses the ERA-5 reanalysis precipitation
data to back-compute forecasts to validate the predictions. For forecast validation, they
use the ERA-5 reanalysis precipitation data that have been bias corrected by the Global
Precipitation Climatology Project (GPCP). As with the original forecast, they used the
HTESSEL model to compute runoff based on the ERA-5 precipitation data. After that,
they routed the calculated runoff using LISFLOOD. Next, they used the generated historic
simulation results to determine flood return periods for stream reaches. The return period
allows the system to put the current forecasts in context. For example, this allows the
system to better communicate flood warnings, which can be triggered when the forecast
exceeds a selected return period threshold [14,19].

The GloFAS grid cell resolution 0.1◦ (~10 km) is too coarse for determining local
impacts for watersheds smaller than 10,000 km2. These smaller watersheds require a
high-resolution hydrologic model to generate more detailed forecasts capable of producing
actionable information [3,20]. The GEOGloWS ECMWF streamflow services (GESS) is a
global streamflow prediction system that uses the same HTESSEL gridded surface runoff
results. GESS then resamples the results, performing an area-weighted grid-to-vector
downscaling for the runoff computation. GESS computes a cumulative runoff volume
at each time step as an incremental contribution for each sub-basin. GESS then uses the
routing application for parallel computation of discharge (RAPID) model to route these
inputs through the stream network [3,20,21]. In this way, GESS provides a 40-year historic
simulation based on ERA-5 reanalysis precipitation, a 15-day 51-member ensemble forecast,
and a 10-day high-resolution forecast. GESS uses the historic simulation to define the
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return periods and uses these return periods as thresholds for flood alerts. The system
generates a flood alert if the selected return periods are exceeded by the short-term forecast.

1.3. Global Modeling Challenges

Souffront et al. [22] identified the following challenges that must be overcome for
global models to be useful at a local scale:

• Big data management, having solid infrastructure where the model can be automati-
cally computed, stored and retrieved;

• Communication, using web apps services, standards for producing and sharing hy-
drological data;

• Adoption in different places through the use of hydrologic modeling as a service
(HMaaS) web applications and representational state transfer (REST) application
programming interfaces (API’s); and

• Validation and verification of results so that confidence in using the model output can
be established.

GloFAS and GESS mitigate some of these challenges but, unfortunately, the calibration
and validation of GloFAS and GESS has not been fully developed, largely due to the
challenge of gathering and processing the local data required for this task.

1.4. Global Model Calibraton and Validation

The GloFAS modeling system has been calibrated at a global scale [23], but this calibra-
tion was only performed at a limited number of locations, generally in developed countries
where observation data are more readily available. GloFAS is uncalibrated for many large
watersheds in developing countries because of the lack of streamflow observation data.
In one effort to address this lack of calibration, the GESS historic simulation results were
compared to observed data from 20 different locations in Nepal and Colombia [22]. While
a comparison was made to understand the ability of the model to capture both timing and
magnitude, the results were not used to improve the model output even though notable
biases were found.

The GESS model includes a REST API to provide direct access to all of the global
forecast data generated by the system. The API includes methods to programmatically
retrieve historic simulation data and forecast data. These data can be used for validation
and bias correction [22,24].

Decision-makers are rightfully concerned about the accuracy and uncertainty of hy-
drologic model predictions. Results, as with any model, do not need to be perfect, but
they do need to be reliable and accurate enough to give decision-makers the confidence
to use them. Traditionally, models are tested and calibrated for specific locations. This
poses a challenge for large-scale forecast systems, where the ability to perform validation
over large domains is limited by both data and resources. Developers typically evaluate
model accuracy by comparing simulation results to observed data in local areas where they
have both data and experience; that is to say, locations where they have knowledge of the
hydrologic behaviors specific to that area. In general, developed countries have a better
cyberinfrastructure, facilitating access to the relevant hydrological observations (particu-
larly temperature, precipitation, and river discharge) that are key to validating hydrologic
models. Conversely, in developing countries, there is less access to hydrological data,
making validation more challenging. Furthermore, data sharing policy and culture often
prohibit the kind of access and distribution necessary for widespread validation efforts.

Recent advances and developments in open software and cloud computing/storage
solutions have lowered barriers for storing, sharing, and communicating hydrological and
spatial data [25]. Many of these water data management software packages and tools are
free, are open source, and use distributed computing resources, reducing local requirements.
For example, HydroServer Lite is a light-weight database and a data management web-
based application for large scale data sharing [26,27] that uses the WaterML data encoding
standard [28,29]; HydroShare is an online, collaborative, open source system developed
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for the open sharing of hydrologic data and models [30]; and GeoServer is an open-source
server that allows users to share, process, and edit geospatial data [31]. All of these packages
can be used separately, and when used together, they provide distributed access to spatial
data, hydrological information, and tools. The HydroStats or Hydrotest open-source tools
exist to support model validation [32–34].

Global model results often show biases at local scales or specific locations. While
timing and other general parameters of a flood event may be correct, the actual magnitude
of the event may be consistently higher or lower than the actual flows. These biased
predictions impede their use at a local scale because the bias can significantly affect the
computed likelihood of a simulated flood event and, if incorrect, can cause managers to
lose confidence in model forecasts for making decisions about a flood event.

To address these issues, the bias correction of model results is an important prerequisite
for local use. There are several bias correction methods reported in the literature. Here,
we extend a method proposed by Farmer et al. [35] based on the flow duration curve to
correct the bias in simulated streamflow. This approach to bias correction can be used on a
monthly and/or seasonally based increment in order to account for temporal variations
in bias. We decided to implement this method because it is a general method that can be
automated in a web application.

1.5. Bias Correction

In this paper, we present the HVT web application, which accesses both observed
hydrological data and global hydrological services. HVT uses web services to obtain
observed hydrological data and uses the GESS REST API to obtain the global streamflow
forecasts and historical simulated data. HVT uses both visual analysis and error metrics
computed using the HydroStats package [33,34] to evaluate the accuracy of the GESS
historic simulation. Additionally, we applied a bias correction method based on the work
of Farmer et al. [35] to correct the historic simulation results. We evaluated the bias-
corrected historical simulation using the HydroStats package [33,34]. Finally, we extended
the bias-correction method to obtain a bias-corrected short-term forecast.

Additionally, we address the challenges described by Souffront et al. [22] that must be
overcome to make global models useful at a local scale. We address these challenges by
using the HVT web application and its web services, sharing hydrological data, adopting
the HMaaS approach to provide data and services to web apps, and obtaining validation in
selected locations where observed data are available.

We organized the remainder of this paper as follows: Section 2 presents the data
and methods we used for the HVT development and testing; Section 3 presents the HVT
software implementation and the results of the five experimental case studies; and Section 4
provides a brief discussion of the methods and results in the context of the goal of improving
water management for decision makers in different regions around the world.

2. Data and Methods
2.1. Overview

This section describes the requirements of information, the temporal and spatial data,
the spatial data pre-processing, the web application design, and the bias correction method
used in the HVT web application.

2.2. Requirements

HVT requires spatial data that represent stream networks and gauging stations. It
requires a connection to the observed data to characterize changes over time for streamflow.
We implemented HVT using a web development framework (called Tethys Platform)
designed to support hydrological data [36] that has been used to develop many water
resources web apps similar to HVT [37]. Tethys Platform provides a framework to deal
with both spatial and temporal data and is designed for hydrological applications. As with
most hydrological computational methods, a significant part of the effort is preparing and
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preprocessing the data, then transforming the data into the correct formats and inputs
for computational analysis and communication functionality. We implemented the data
ingestion and pre-processing functions as an integral part of HVT to make it easier and
more efficient to perform validation of global forecast results using historic data.

For testing purposes, we customized HVT for five specific regions: Brazil, Colombia,
Peru, the Dominican Republic, and Australia. We present those results as case studies of its
effectiveness in using web applications to facilitate use of global hydrological data by local
end-users. Each of the five case studies has unique features that test and highlight different
aspects of the web application. These areas have different climates: dry (Australia), wet
(Colombia and Brazil), dry and wet (Peru), and small island (the Dominican Republic).
However, the main reason for selecting these case study locations was the availability of
web resources for observed hydrological data. We used Australia and Brazil to provide
an example of countries that have their own web service for requesting hydrological
data. Colombia, Peru, and the Dominican Republic were used to show the ability of
the HydroShare and HydroServer Lite open-source resources to create web services for
observed data in developing countries.

While we customized HVT for each region, the computational methods and data
pre- and post-processing tools are the same in each case—the customization for each
region consisted primarily of changing the sources and types of spatial and temporal data
available for that region. We selected data sources that could be used to implement and
demonstrate bias correction and results validation.

2.3. Data

We used two different geographical information system (GIS) shapefiles to load the
spatial data required for the HVT. One shapefile is from the GESS system of watersheds
and streams and contains each river reach where forecasts are computed. The second
shapefile contains the locations that have observed streamflow in the country, watershed,
or region of interest. Each of these shapefiles is specific to the HVT region under study.

To perform bias correction, HVT requires historically observed streamflow data at a
daily time step. For our case studies, we obtained these data largely from web services
operated by the regional or country hydrological organizations. Data for Colombia, Peru,
and the Dominican Republic used HydroShare or HydroServer, where historical streamflow
that were made available were stored for retrieval in the HVT. The Australian and Brazilian
governments offer hydrological data web services that were used in the Australia and
Brazil case studies.

For the Colombia and Peru regions, we created HydroShare resources that provide
daily historical observed streamflow for 412 gauging stations in Colombia and 303 gauging
stations in Peru. The Colombian Institute of Hydrology, Meteorology and Environmen-
tal Studies (IDEAM) and the Peruvian National Meteorology and Hydrology Service
(SENAMHI) provided the data that we stored in the HydroShare server.

For the Dominican Republic region, we established a HydroServer that contains
daily historical observed streamflow data for 82 gauging stations using data provided by
the Dominican National Institute for Water Resources Development (INDHRI). For the
Australia case study, we used data provided by the Australian Bureau of Meteorology,
and for the Brazil case study, we used data provided by the Brazilian National Water
Agency. In this case, we did not establish a separate web service, as the Australian Bureau
of Meteorology and the Brazilian National Water Agency both provide a web interface that
has access to daily historical observed streamflow data at 122 and 1008 gauging stations,
respectively. We used the GESS REST API to access the simulated streamflow data from
the GEOGloWS model. These data included simulated historic streamflow and short-term
forecasts for the entirety of the regions of our case studies.

To develop and customize the HVT application, we used Tethys Platform, which
provides a web framework to support distributed hydrological data and web mapping
processes. Tethys Platform is an open source software stack based on a number of standard
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web development frameworks and web-based GIS programs [38]. It lowers the barrier for
developing water resource web applications by integrating various development frame-
works into a platform designed to support the spatial and computational capabilities
requirements for water resources [39]. As a result, Tethys Platform helps users build web
applications that visualize and interact with water resources data [36,37].

2.4. Spatial Data Pre-processing

The GESS provides historical streamflow simulations and short-term forecasts for the
13 regions in the world shown in Figure 1. To build a customized HVT for each of the five
regions in our case studies, we first required the shapefiles that defined the streams in the
regions of interest we had selected where GEOGloWS has computed global forecasts.

Figure 1. GEOGloWS Global Streamflow Prediction Tool World Regions.

We obtained the shapefiles with the streams for the regions of interest from a public
data resource in HydroShare [40]. We clipped the shapefile representing the streams to
the country, watershed, or region of interest we had selected, as the GEOGloWS regional
shapefiles covered significantly larger areas. Once clipped, we published the clipped
shapefile to a GeoServer (Figure 2).

Next, we assigned each point in the gauging stations shapefile to its corresponding
reach ID from the GESS model. This is a critical step in order to ensure that computed
forecasts and observed data represent runoff from the same watershed. We assigned the
gauging stations to their associated reach ID using a GIS spatial join operation. To perform
this operation, we needed to be aware of the following issues:

• The location of the gauging stations is often not exact or does not match the river reach
segments in the shapefile. Therefore, the locations should be visually examined and
adjusted to match the right reach ID and location.

• The areas of the simulated basins are not the same as the area that corresponds to the
basin defined by a gauging station point.

To address the first issue for our case studies, we discarded the stations that could
not be adequately connected to a reach ID. This resulted in us retaining 412 of 656 original
stations in Colombia, 303 of 400 stations in Peru, 82 of 84 stations in the Dominican Republic,
122 of 177 stations in Australia, and 1008 of 1019 stations in Brazil. After eliminating the
gauging stations that could not be connected, we published the shapefile containing the
gauging station locations to the same GeoServer in which we published the clipped stream
network regions. The HVT application accesses this GeoServer to provide visualization
of both the stream reaches with computed forecasts and the locations of gauging stations
with observed data, all clipped to the boundary of the case study regions. The second issue
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was addressed using the bias correction described in Section 2.6, since the bias correction
method takes into account not only the differences in the streamflow volume of the GESS
model but also the differences in the area caused by the location of the gauging station.

Figure 2. Preprocessing of the streams and gauging stations for their use. The left side of the figure
shows the data sources for the stream reaches and associated computed forecasts (top) and the
gauging stations and associated observed data (bottom). The circled data represents the clipping of
the data sources to the region of interest. These clipped data are then uploaded to the GeoServer,
which provides access to the combined data.

Figure 2 shows an overview of this process. The top branch of the process diagram in
Figure 2 shows the steps required for obtaining the stream reach segments with computed
forecasts, while the bottom branch shows the steps for obtaining the gauging station
locations. The right side of the figure shows how the GeoServer combined these two data
sources into an integrated data set that we used to perform bias correction and model
validation for each of our five regions.

2.5. Web Applicaation Design

The HVT application design consists of five main components that perform the
following functions:

1. retrieve data from mapping services for the stations and stream network in a region
and present these data using a JavaScript map interface;

2. retrieve, process, and visualize the simulated data (i.e., historical simulation and
forecast) from the GEOGloWS or GESS servers;

3. perform bias corrections on the historic simulation data using observed data;
4. construct a bias-corrected forecast using the observed data and the historic simulated

data; and
5. compute and present comparisons and error metric reports of the historical simulation

with and without the bias correction.

HVT presents visualization and data plotting using JavaScript functions. These visu-
alizations include the retrieval of the gauges and clipped regions from the GeoServer via
Web Map Service (WMS) and a presentation of the results using the HVT map interface.
HVT uses these data to generate various plots and maps of different data such as observed,
simulated, and bias-corrected streamflow to show both the data and present results visu-
ally for validation. HVT performs all the required back-end computations using Python
functions and libraries. These back-end tasks include data retrieval and the processing of
the hydrographs, the computing of analytical comparisons, bias correction, the generation
of error metrics reports, and the construction of the corrected and updated forecasts.
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The HVT map interface development was minimal compared to that of the back-end
because the Tethys Platform gives the user an interface template that provides much of
the framework for the interface. This meant that the HVT map interface development
only required retrieval of the WMS and data plotting. The first part of the design required
retrieval of the WMS in order to obtain the ID of the station and stream reach ID. Those
ID’s were later used to retrieve the observed, historic simulated, corrected simulated, and
forecast streamflow. The second part involved plotting the observed, simulated, and bias
corrected data using the Plotly graphing library [41].

The HVT back-end includes functions for the processing and analysis of the observed,
simulated, and bias-corrected data. These functions include analytical hydrograph compar-
isons, error metric calculations, and forward forecast adjustments for each station where
observed data exist.

We created three different HVT functions to acquire the data and compute the hydro-
graphs for the simulated, observed, and bias-corrected data. The first function uses the
GESS REST API to retrieve the simulated data for the specific reach ID. The second function
retrieves the observed data from the station associated with a reach ID. We modified this
function for each regional app to use the appropriate service for retrieving observed data.
For the countries that do not have their own service for providing observed hydrological
data, we imported the data into resources that would provide standardized access. For
the Dominican Republic we used the HydroServer Lite tool [42], while for Colombia and
Peru we created HydroShare resources. The last function performs the bias correction of
the simulated data using the observed data for the selected station following a variation of
the method proposed by Farmer et al. [35]. HVT has a function that uses the data created
by these functions (the simulated, observed and bias-corrected data) to plot the data with
Plotly [41].

HVT computes an analytical comparison of the observed, simulated, and bias-corrected
data using the HydroStats Python Package [34]. The HVT uses the following statistical
visual analysis from the HydroStats python package: daily seasonality, monthly seasonality,
and a scatter plot of predicted versus observed data in normal and log scales. We created a
function in the back-end portion of HVT that uses the HydroStats package for each one
of these statistical analyses to generate plots for the HVT web map interface. The daily
and monthly average streamflow plots show how the bias-corrected streamflow captures
the seasonality of the observed streamflow. The scatterplots show the distribution of the
observed data compared to that of the simulated data. The scatter plot clearly shows the
difference in alignment between the corrected data and the original simulated historical
data with the observed data. HVT performs a volume analysis that computes a time series
of the cumulative volume for the three different types of data and presents a plot and a
table comparing the total volume for observed, simulated, and corrected flow.

HVT uses the HydroStats Python package [34] to create the error metrics report for
the simulated and bias-corrected data. HydroStats contains tools used for calculating error
metrics on observed and simulated time series and performs computations for forecast
validation. The HydroStats package contains over 70 error metrics, with many specific
to the field of hydrology. Application developers and users can select which metrics to
activate. HydroStats provides the ability to present the selected metrics in a table, with
two columns showing the difference in the error metrics for the historical simulated and
historical bias-corrected data compared to the observed data, each selected error metric
represented in a row. For the customized HVT applications used in our case studies,
we chose a set of error metrics to build the error metric report. When customizing the
HVT application, developers can choose to add additional metrics to the report from the
HydroStats list. By default, the HVT application presents the following error metrics:
mean error (ME) [43], root mean square error (RMSE) [32], normalized root mean squared
error (NRMSE) [44], mean absolute percentage error (MAPE) [45], Nash–Sutcliffe model
efficiency coefficient (NSE) [46], Kling–Gupta model efficiency coefficient (KGE) (2009),
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the modified KGE (2012) [47,48], Pearson correlation coefficient [49], Spearman’s rank
correlation coefficient [50], and the coefficient of determination [51].

HVT uses two functions to construct the GESS and bias-corrected forecasts. The first
function uses the GESS REST API to retrieve the forecast data for the specific reach ID
associated with a station. The forecast displays the return periods values estimated from
the GESS historic simulation if the forecast exceeds the 2-year return period threshold.
The second function retrieves the bias-corrected forecast of the GESS forecast. It is bias-
corrected using the observed data, the historic simulated data, and the method adopted
from Farmer et al. [35]. Similarly, the bias corrected forecast displays the return periods
values estimated from the bias corrected GESS historic simulation if the bias corrected
forecast exceeds the 2-year return period threshold. Additionally, if the country, region,
or watershed of interest provides a service with real-time observed data, an additional
function to show the recently observed data can be included, allowing the users compare
the magnitude of the forecast and the bias-corrected forecast with observed data.

2.6. Bias Correction

The bias correction methodology we applied is based on the work of Farmer et al. [35].
Figure 3 shows the bias correction methodology we developed and applied. For every month
in an observed and historic simulated time series, we calculate the flow duration curve. After
that, in a single month, we can estimate the non-exceedance probability of every simulated
value. Therefore, we can estimate the observed streamflow value that corresponds to that
non-exceedance probability. Finally, we convert the simulated value by replacing it with the
equivalent observed streamflow to the same non-exceedance probability.

Figure 3. The bias correction methodology we developed for the GESS historic simulation, based on Farmer et al. [35].
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Figure 4 shows how we extended the bias correction methodology applied for the
historic simulation to the short-term forecast with the return period thresholds recalculated
with the bias corrected historic simulation.

Figure 4. Plots showing data corrected using the correction methodology we developed for the GESS forecast.

3. Results

In this section, we present results for both software implementation and case study
hydrological results. We distribute our HVT implementation as an open source, web-
based application that can be accessed freely from anywhere on the Internet to compute
and retrieve bias-corrected forecasts. HVT needs to be customized for different regions
to be able to access local observed data sources, or users can upload their own data to a
HydroShare server if other services are not available. We provide the freely available source
code to this web application on GitHub [52–56] where it can be downloaded, modified,
and used by others.

We present the results of our experimental test cases in Australia, Brazil, Colombia,
the Dominican Republic, and Peru. This presentation includes key error metrics displayed
throughout the different stations across each of these study areas that show the improve-
ment provided by the bias correction. Error metric results across each of the study areas
before and after bias correction can be considered as calibration results, and the forecast
result metrics evaluation can be considered a validation process. Unfortunately, the results
of the bias correction methodology applied in the forecast were not evaluated. This paper
is the first presentation of our implementation of the bias correction method, which is
different from a calibration method because the model parameters are not being modified;
instead, we modify the model results. We are currently further characterizing and testing
this method and plan a future discussion of our bias correction method. The focus of
this paper is the design, development, and testing of a web application framework that
implements our bias correction method through the use of a web application and various
services to facilitate the examination of a global streamflow system. The bias correction
uses local data to correct these global simulation results so that they can be used more
reliably to make decisions at local scale.

3.1. Software Implementation Results

The HVT web application provides users with access to:

1. Data and plots for the observed, simulated, and bias-corrected historic streamflow data;
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2. Visual analysis of daily seasonality, monthly seasonality, and scatter plots in normal
and log scale;

3. Computations and plots of volume analysis;
4. Statistical error metrics validation for observed versus simulated and observed versus

bias-corrected simulated data to evaluate the improvement from bias corrections; and
5. Access to and visualizations of both the GESS hydrologic forecast and the bias-

corrected forecast that can be used by local hydrological managers.

HVT performs all these functions so that users are not required to access or modify the
original GESS model. HVT users do not need to interact with the GESS model’s developers
to request changes, as HVT can perform validation and bias corrections for a local site or
region using only local observed data.

The main page of the HVT web app (presented in Figure 5) shows the streams and
stations for the country, watershed, or region of interest. Figure 5 shows the main page
for the HVT customized for Brazil. The user interface for the Australia and the Dominican
Republic HVT apps are very similar, just with a different region displayed.

Figure 5. Main page for the historical validation tool app for Brazil.

On the main page, a user can select a gauge station and a pop-up with information
about the selected station will appear with the following four tabs: hydrographs (Figure 6),
the statistical visual analysis (Figure 7), the statistical metrics report (Figure 8), and the
streamflow forecast (Figure 9). We will describe each of these tabs in detail below.
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Figure 6. Hydrographs tab for the Condorcerro Station in the Historical Validation Tool App for Peru.

3.1.1. User Interface: Hydrographs

The first tab in the popup window is “Hydrographs.” Figure 6 shows this tab, which
presents three hydrographs for the observed, simulated, and bias-corrected historical data.
Figure 6 shows data from the Condorcerro Station in the Santa River in Peru. These
plots show the improvement between the GESS historic simulated data (red) hydrograph
and the bias-corrected data hydrograph (green). The improvement is easily noted, while
it is difficult to distinguish between the observed (blue) and corrected simulated data
(green). However, it is easy to distinguish between the observed (blue) or corrected
(green), and simulated data (red). A user can toggle each hydrograph on and off for better
understanding and confidence in the results. Users can also download the data for each one
of the hydrographs if they require the data for additional analysis or use outside of HVT.

3.1.2. User Interface: Visual Analysis

The second tab in the popup window is “Visual Analysis.” Figure 7 shows this tab
with the daily seasonality, monthly seasonality, scatter plots, volume analysis plot and
volume analysis table for the Pinalito Station in the Dominican Republic. For example,
the cumulative volume plot and table (bottom graph and table in the figure), shows that
the corrected volume (400 Mm3) is closer to the observed volume (316.7 Mm3), than the
simulated volume (1,985 Mm3) before the bias correction.
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Figure 7. Visual analysis for the Pinalto station in the historical validation tool app for the
Dominican Republic.
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Figure 8. Metrics report for the Roper River at Red Rocks (G9030250) station for the HVT App for Australia.

3.1.3. User Interface: Metrics Report

The third tab in the popup window is “Metrics Report.” Figure 8 shows the metric
report of the Roper River at Red Rock station in Australia. The metrics report has a list
of pre-determined metrics, but users can add additional metrics from those available in
the HydroStats Package. This is done through a selection menu. The interface provides
error metrics that can quantify the comparison and evaluation of improvement between
the bias-corrected historical simulation and the original historical simulation according to
the various error metrics. In the case shown in Figure 8, we can see that most of the metrics
demonstrate an improvement after the bias correction (except for the MAPE metric). Since
there are values of observed streamflow of 0.0 m3/s, the MAPE computation results in an
infinite value.

3.1.4. User Interface: Forecast Visualization

The fourth tab in the popup window shows “Forecast Visualization.” Figure 9 shows
the forecast for the Puerto Berrio station in the Magdalena River in Colombia. The tab
displays the original forecast and bias-corrected forecast in the top and bottom plots,
respectively. The top plot displays the original forecast before the bias correction, the return
periods thresholds calculated from the historic simulation, and, for this station, the plot uses
the real-time observed and sensor data from the Colombian hydrology and meteorology
institute (IDEAM). The bottom forecast plot displays the biased corrected forecast, with
return periods thresholds calculated from the bias corrected historic simulation, the real
time observed, and the sensor data. For this station, the plots show how the bias correction
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appropriately adjusts the magnitude difference between the simulated and observed data.
Both the original and corrected forecasts are downloadable.

Figure 9. Forecast for the Puerto Berrio automatic station in the historical validation tool app for Colombia.

3.2. Experimental Case Study Results

We developed case studies of five country-wide analyses in Australia, Brazil, Colom-
bia, the Dominican Republic, and Peru using the HVT. Each of these experimental cases use
versions of the HVT web application customized to show the region of interest and access
the observed data for that region. The main difference in the customizable applications is
the source for the historic observed streamflow data and the real time observed streamflow
data for each region. These sources are quite different, specifically:

• The Australia HVT application retrieved data using the web interface to the Bureau
of Meteorology to access the daily streamflow data for the 122 gauging stations. For
some of the stations, these data include real-time observed streamflow. HVT accesses
these real-time data and uses them in the Forecast tab.

• The Brazil HVT application uses the open data portal of the National Water Agency to
access the daily streamflow data for the 1008 gauging stations.

• The Colombia HVT application uses comma-separated-value (CSV) files for the ob-
served data at each of the 412 stations. These data were provided by the Colombian
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Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). To cus-
tomize HVT, we grouped and added the observed streamflow CSV files for the 412
gauging stations in a HydroShare resource. The Colombia HVT application also uses
the IDEAM Flood Early Warning System (FEWS) web service to retrieve the real time
observed and sensor streamflow data that we added to the app in the Forecast section.

• The Dominican Republic HVT application uses an existing HydroServer to retrieve the
observed data for each of the 84 gauging stations. The Dominican National Hydrologic
service (INDRHI) provided the data on the HydroServer.

• The Peru HVT application uses CSV files for the observed data at each of the 303
stations. These data were provided by the Peruvian National Meteorology and Hy-
drology Service (SENAMHI). To customize HVT, we grouped and added the CSV files
with the observed streamflow for the 303 gauging stations in a HydroShare resource.

While a full comparison of the bias correction method is not within the scope of this
paper, here we present some common error metrics used in hydrology to compare how
the bias correction method improved the historical simulation in the case studies. To
evaluate the performance of the bias correction, we present the Kling–Gupta efficiency 2012
(KGE-2012) [48]. The KGE-2012 is a goodness-of-fit measure that provides a diagnostically
interesting decomposition based on the NSE error metric.

For all five case studies, we can see an improvement in the bias-corrected historical
simulation as measured by the KGE-2012 metric. These results are encouraging and suggest
that this bias correction implemented in the HVT can be used to locally improve forecasts
where historical observations are available.

Figure 10 shows a map of the KGE-2012 error metric computed for the original
historical simulation and the observed data for Australia, Brazil, Colombia, the Dominican
Republic, and Peru.

Figure 10. KGE-2012 error metric computed for the difference between the original historical simula-
tion and the observed data for Australia, Brazil, Colombia, the Dominican Republic, and Peru.

Figure 11 shows a map of the KGE-2012 error metric computed for the bias corrected
historical simulation and the observed data for Australia, Brazil, Colombia, the Dominican
Republic, and Peru. The KGE-2012 error metric showed some improvement between the
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original historical simulation and bias-corrected historical simulation in the five study
cases (however, this improvement was shown at different levels).

Figure 11. KGE-2012 error metric between the bias-corrected historical simulation and the observed
data for Australia, Brazil, Colombia, the Dominican Republic, and Peru.

The KGE-2012 error metric values for Australia show some improvement, especially
in the western coast of Australia. The KGE-2012 error metric values become positive
(signifying a lower error) after bias correction for most of the sites. However, some stations
in the east coast of Australia did not show improvement, but rather the opposite. We think
that this is due to an important number of big flow events that were not considered by
the model or were represented with a time offset, causing the bias correction method to
correct the magnitude of the streamflow peak, but not the time when the event occurred,
introducing a penalty to the KGE-2012.

The KGE-2012 error metric value for the Dominican Republic showed significant
improvement between the original historical simulation and the bias-corrected historical
simulation. The KGE-2012 error metrics values after the bias correction become positive
for most sites throughout the country. However, some stations in the country did not show
improvement. Nearly all the stations without improvement were located in small rivers
close to the coast, and the lack of improvement is similar to the situation explained for the
stations in Australia case study.

The KGE-2012 error metric values for Brazil, Colombia, and Peru showed the most
improvement from all the study cases. The bias-corrected historical simulation showed the
largest improvement, especially in the Amazon region, while in the Andes region in Peru
and Colombia and the east coast in Brazil, the improvement was not as apparent. Overall,
most of the stations in Brazil, Colombia, and Peru showed significant improvement after
we performed the bias correction.

4. Conclusions and Future Work

The combination of using hydrological modeling as a service, the availability of
hydrological observation data as a web service, and statistical packages is essential to
providing skillful and reliable global hydrological models for local use. With the HVT app,
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we offer a customizable web app that allows users access to observed streamflow data and
simulated data from the GESS and other global models. The HVT bias correction method
allows users to correct these global simulated data at the local scale. The use of HydroServer
and HydroShare in sharing hydrological data improves the ability to automate a larger
scale regional or national implementation. The HVT application can be adapted to different
countries, hydrologic models, validation and bias correction methods, and sources of data.
Users could also implement custom approaches for dealing with calibrated values, bias
correction and other options.

An important capability that HVT provides is communication of the improvement
in the simulated historical and forecasted streamflow using the bias correction. HVT
presents an analysis of the historic simulation and bias corrected historical simulation
data compared to observed data using reports and visualizations. These graphs and error
metrics give users the confidence required to use global modeling results for local decisions.
The HVT web app allows the use of local data to adjust forecasts. This makes global
modeling results useful for their purposes at a local scale, without requiring them to adjust
or calibrate the formulation of the original model. Since HVT is a web application, this
also means that the application can be hosted remotely and does not require local users to
obtain or maintain an expensive infrastructure.

Based on the results from the five case studies analyzed in this paper (Australia, Brazil,
Colombia, the Dominican Republic, and Peru), we demonstrate that our streamflow bias
correction method provided an effective way to use the results of a global model on a
local scale. Bias correction generally improves the historic streamflow simulations. These
results are encouraging and suggest that our bias correction method can be useful to locally
improve forecasts. It provides local corrections that are an important element of local
planning and decision making. Unfortunately, the HVT application can only provide
bias-corrected values from the GESS in the places where observed information is available.
Bias correction is provided only in the river reaches associated with a station. In addition,
the bias correction method tends to not provide accurately results for big flow events that
are not considered by the model or that have been considered with a time offset, as shown
in the Australia and the Dominican Republic case studies.

We intend that future HVT releases to create warning points when the bias-corrected
forecast exceeds the threshold defined by the return periods calculated using the bias-
corrected historic simulation. Additionally, we will implement the HVT customization in
more countries around the world and evaluate the improvement of the bias correction and
what it provides for the historical simulation results. We plan to evaluate the performance
of the GESS forecast before and after the bias correction in countries where recent observed
streamflow data are available.

One of the main disadvantages of HVT is the inability to provide bias corrected data
for ungauged basins. Therefore, it is important to develop methods to extrapolate the bias
correction to ungauged basins through regionalization in order to take advantage of the
ability of the GESS to retrieve hydrological modeling results in every stream in the world.
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