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Abstract: We present a scheme aimed at estimating daily spatial snow water equivalent (SWE) maps in
real time and at high spatial resolution from scarce in-situ SWE measurements from Internet of Things
(IoT) devices at actual sensor locations and historical SWE maps. The method consists of finding a
background SWE field, followed by an update step using ensemble optimal interpolation to estimate
the residuals. This novel approach allowed for areas with parsimonious sensors to have accurate
estimates of spatial SWE without explicitly discovering and specifying the spatial-interpolation
features. The scheme is evaluated across the Tuolumne River basin on a 50 m grid using an existing
LiDAR-based product as the historical dataset. Results show a minimum RMSE of 30% at 50 m
resolutions. Compared with the operational SNODAS product, reduction in error is up to 80% with
historical LiDAR-measured snow depth as input data.

Keywords: snow; optimal interpolation; ensemble; spatial estimation; snow water equivalent; near-
real-time

1. Introduction

Estimating the spatial distribution of snow water equivalent (SWE) at a basin scale and in a
timely manner is crucial for efficiently operating downstream water-supply reservoirs and hydropower
networks. This need has become more pressing with a changing climate where past trends no longer
predict the future. For instance rising temperatures and increase in precipitation is causing unexpected
increases in streamflow in the Indian Himalayan Region [1]. On-the-ground sensors across watersheds
in California and across the world lack sufficient coverage to accurately determine spatial snowpack
information or other hydrologic inputs and states [2]. However, with The advent and rapid development
of accessible cyber-physical systems technology, watershed instrumentation is expected to increase.
We find multiple such systems reported in the recent literature [3–5]. Four clusters of state-of-the-art
Wireless Sensor Network based measurement systems recently deployed in the Feather River watershed
better represent the variability of SWE across the landscape and complement spatial estimates from
existing snow pillows [6].

Existing methods for spatial SWE estimation are outlined in Reference [7] and fall into the following
categories: (i) spatial interpolation from in-situ sensors constrained by remote sensing, (ii) SWE reconstruction
using snowmelt models given the point of disappearance of snow determined from remote sensing,
(iii) global SWE remote sensing based on passive microwave, (iv) a snow model assimilated by dense
in-situ sensors or by remote sensing products such as Sentinel-2 [8] or Lansat [9] and (v) emerging
methods such as air-borne Light Detection and Ranging (LiDAR) altimetry. When no SWE estimation
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is possible due to the lack of in-situ sensors or remote sensing, a mass balance physical model, calibrated
by manual snow measurements is used to directly estimate streamflow [10]. Multiple methods described
above can be combined together, for instance in Reference [11] an energy balance model is updated with
both remotely sensed snow cover and extrapolated in-situ snow sensor data.

SWE reconstruction on its own cannot be used in a real-time context because its estimate depends
on a future observation of snow disappearance, typically determined from remote sensing such as
MODIS [12], Landsat, or The state-of-the-art Sentinel-2 [13]. Remote-sensing data from NASA, such
as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and Moderate Resolution Imaging
Spectroradiometer (MODIS) [14], provide coarse estimates of SWE (16 × 16 km) and fractional snow
cover (500× 500 m), respectively, with no information about sub-pixel variability. MODIS fractional snow
cover does not provide information about the amount of snow after the pixel is saturated (i.e., totally
covered with snow); and when it is useful during the melt phase, it is often subject to canopy-induced
error [15]. AMSR-E’s low resolution renders it unusable for estimating the intra-basin distribution of
SWE in complex terrain. On the other hand, in-situ operational sensors provide frequent and accurate
measurements but with low spatial coverage. Air-borne LiDAR scans combined with snow density
values provide SWE estimates at a large spatial scale, but as a stand-alone method are currently expensive
to conduct at a frequent temporal scale.

Many studies have tried to combine different measurements with a physical snow model to benefit from
both the accuracy of the measurements and the temporal resolution and continuity of the model [11,16–19].
Such methods are typically used with dense in-situ measurements, remote sensing or interpolation
from scarce measurements, and require forcing data such as precipitation and temperature.

Regression with augmented explanatory variables from a historical remote-sensing-based SWE
reconstruction model was used in Reference [20] to interpolate in real-time in-situ SWE measurements
across basins in the upper Colorado River basin in the US. Results show that not only did the added
features largely improve physiographically based regression beyond the physiographic conditions
represented by the snow-sensor network, but on average it explained more than twice the variance
of any one of the physiographic variables. Using an accurate historical product for real-time snow
interpolation is thus more desirable than solely interpolating based on physiographic features, especially
when available instrumentation is scarce.

To that end, Reference [21] exploited the inter-annual consistency in mountain snow distribution
shown in References [22–24] mainly due to snow loading, and used the nearest-neighbor technique to
find the nearest historical LIDAR-derived SWE scan that best fits current conditions, and then corrected
the residuals using the Gaussian Process to predict from physiographic features such as elevation,
canopy cover, aspect and slope. Results were promising, however around 30 hypothetically placed
sensors were used, which implies a significant investment in additional operational instrumentation.
Basins with such high instrumentation are very rare in reality, and thus a need arises to achieve similar
performance using fewer sensors, which would enable near-real-time spatial SWE estimation across
wide geographies. Many mountainous regions across the globe such as the Himalaya [10] and the
Andes [25] suffer from a deficiency of measurements and would benefit from such endeavor. Ideally,
if better accuracy is needed, we should aim to supplement existing systems with those that add the
most information.

The work described here aims to combine the spatial information contained in historical products
with realistic scarce in-situ measurements of SWE, in order to generate a near real-time daily SWE spatial
product. Unlike the majority of work described above, the method we propose does not explicitly use
any physiographic features to spatially interpolate SWE. Rather, it uses historical SWE patterns, which
have embedded spatial dependencies. it blends various approaches outlined by Reference [7]. We use
information derived from (ii)–(v), depending on the historical product that is selected, to implement
(i) using methods derived from data assimilation (iv). Section 2 presents the statistical Ensemble
Optimal Interpolation (EnOI) method we use, its mathematical formulation and variations. Variations
in ensemble selection schemes are first investigated (see Supplementary Materials) using simulations
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conducted on the Feather River Basin using a daily 90 m resolution SWE product spanning 30 years and
the entirety of the Sierra Nevada mountain chain. We compare our results to other published methods
using simulations conducted on the Tuolumne River Basin, where bi-weekly 50 m LiDAR-derived
SWE scans have been conducted beginning in 2014. LiDAR-derived SWE maps that should provide
closest representation of the truth are scarce in existence and are only available for few basins. This
study seeks to answer the following questions:

1. to what extent does the proposed method based on the Ensemble Optimal Interpolation (EnOI)
improve estimation of daily spatial SWE compared to existing methods?

2. is it better to use a LiDAR-derived but temporally sparse historical SWE product or a Landsat-
derived daily product in the daily SWE estimate?

3. How does the proposed method compare to SNODAS, a current operational SWE product?

2. Materials and Methods

The main scheme of the study consists of assimilating an a priori field representing the possible
spatial SWE distributions with daily point SWE measurements using the Ensemble Optimal Interpolation
method (EnOI) described in Section 2.1.

2.1. Ensemble Optimal Interpolation (EnOI)

The adopted EnOI method consists of a Bayesian approach to optimally combine background
estimates with measurements. The forward model is not dynamical or physically based, and thus the
method can be thought of as more similar to an Ensemble based Gaussian Process (GP). An Ensemble
approach is used because due to the high resolution of the SWE maps, the dimension of our system
is high, making it impractical to handle the covariance matrices required for this method, which
would have the size of the square of the number of pixels. After estimating the background SWE
map as the mean of the field, a difference between the estimate and the actual observations, often
called residuals, will likely remain. Such residuals are re-evaluated to further improve the estimate by
updating the background field with observations across the spatial extent. We first define ensemble
members Ψi ∈ Rn (i = 1, ..., N), where N is the ensemble size and n is the dimension of the model state.
The ensemble of model states is stored in a matrix A:

A = (Ψ1, Ψ2, ..., ΨN) ∈ RnxN . (1)

In our case, A holds all the N historical maps Ψi of SWE linearized into columns of length n. n is
equal to the product of the map’s rows and columns. The state-space equations can be written as:

xt = Ā + ffl, (2)

where xt is the background forecast map field of day t and is completely defined by the selected prior
ensemble A with mean Ā. ffl accounts for the forecast error, assumed to be a random normal field and
is defined by the covariance of the selected ensemble A. The observed states (or pixels) are retrieved
from the state space using the following equation:

dt = Hxt + fl, (3)

where dt is the observation vector made of a collection of SWE sensor measurements at time t.
H ∈ Rmxn is the measurement operator relating the true model state Ψt to the observations dt and
allowing for zero mean normally distributed measurement errors fl. The Ensemble Kalman Filter
(EnKF) and EnOI were introduced and used by References [26,27] to efficiently assimilate sensor
measurements into non-linear physical models. EnOI is an efficient approximation of the EnKF
method and is extensively used in oceanology [28–30]. The ensemble mean of A can be expressed as
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Ā = A1N where 1N ∈ RNxN is the matrix where each element is equal to 1
N . We define the ensemble

perturbation matrix:
A′ = A− Ā = A(I− 1N). (4)

Given a vector of measurements d ∈ Rm, where m is the number of measurements, D ∈ RmxN

is defined to hold the perturbed measurements and Υ ∈ RmxN to hold the perturbations only with
ensemble mean equal to zero. The measurement-error covariance matrix can then be expressed as:
Pe = ΥΥT

N−1 ∈ Rmxm. Detailed derivation of the Ensemble Kalman Filter analysis equation can be
found in Reference [31] and can be expressed by both the standard equation in terms of the ensemble
covariance matrices:

Aa = A + PeHT(HPeHT + Re)
−1(D−HA) (5)

or using the ensemble of innovation vectors defined as D′ = D−HA

Aa = A + A′A′THT(HA′A′THT + ΥΥT)−1D′, (6)

where Pe = A′A′T
N−1 ∈ Rnxn is the ensemble covariance matrix. At every model time step, the EnKF

integrates N ensemble members in time regardless of the availability of measurements and dynamic
covariance of the time-evolving ensemble is used at the analysis step. On the other hand, the EnOI
only integrates 1 member Ψ ∈ Rn and the analysis is computed in the space spanned by a stationary
ensemble denoted As of model states as shown in the equation:

Ψa = Ψ + ffA′sA′s
THT(ffHA′sA′s

THT + ΥΥT)−1(d−HΨ), (7)

where a α ∈ (0, 1] is a parameter giving different weights for the forecast and measurement-error covariances.
α is used because the variance of a stationary (i.e., not changing in time) ensemble over a long period
usually overestimates the instantaneous variability. In the subsequent experiments, the parameter
α is tuned to minimize the cross-validation error at the sensor locations of the day during the test
year. The EnOI is thus more computationally efficient than the EnKF but at the cost of slightly lower
performance. The forecast model is usually a dynamical model, but in our case, it is simply the mean
of the background field. In addition, the forecast model and observations must be unbiased.

Some have used a Multivariate Optimal Interpolation (MVOI) technique where the covariance
Pe is modeled by explicit functions [29,32]. However, Reference [29] demonstrated that using the
model-based covariances of EnOI has more benefits . The rich data provided by historical snow-cover
products should provide adequate values for the complex spatial correlations and the anisotropic
nature of the snowpack, a task more challenging, if at all possible, to achieve using explicit functions.

Unlike the EnKF, EnOI does not provide an absolute uncertainty estimate for the updated state
because of the method of procuring the prior ensemble distribution and the α scaling parameter;
however the post-analysis ensemble spread of the field does describe the relative uncertainty between
the state pixels. Localization is typically used when the ensemble size is small, to mitigate the effect
of spurious correlations appearing between physically non-correlated states (for instance between
distant pixels). However, in our case, severe localization will have a potentially detrimental effect
since the background estimate’s bias is not negligible. Regions with reduced correlations due to
localization will retain the background mean estimate after analysis, contributing to strong biases in
the result. The appropriate way to deal with this issue is to choose a background estimate with low
bias. Moreover, localization becomes an attractive option when the number of sensors becomes large
enough that their field of influence becomes highly superimposed. This is not our case, where only
scarce measurements are available. Nevertheless, a study of the effect of localization is encouraged as
future work.

Finally, it is interesting to observe the similitude between EnOI and GP; where GP can be thought
of as EnOI with background estimate with mean equal to zero and where the α and localization
characteristic length in EnOI are indirectly estimated using optimization methods in GP. Moreover GP
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supports kernels that could substantially change the state-space covariance structure compared to a
simple historical sample covariance used EnOI.

2.2. Prior-Ensemble Sampling

Before evaluating the performance of the proposed method, we evaluated three different schemes
to generate the prior-ensemble estimate that describes our prior state as well as the error covariance of
that state. Results of this method selection are shown in the supplementary material. The reader who
is interested in the main results rather than the details of this evaluation may want to skip Section 2.2.

In the first scheme, the ensemble consists of all the available historical maps of SWE (except for
the test water year). The historical maps of SWE used consist of the 90 m Landsat-derived reanalysis
product in Reference [9] and further described in Section 2.4. We refer to this scheme in supplementary
by the label menoi. This ensemble is static and does not change throughout the daily simulation.

The use of a static ensemble to represent the error covariance is probably sub-optimal. The covariance
structure likely changes in time, especially between the accumulation and ablation phases of the snowpack.
In the second scheme, the ensemble consists of the collection of historical SWE maps occurring at the
same day of each of the other water years. We name this scheme menoic. The Ensemble mean in this
scenario consists of the well-known climatologic-mean estimate. The ensemble thus changes every day.

In the third scheme, the ensemble consists of the collection of yearly nearest-neighbor maps
to the measured SWE from the historical record. We name this scheme menoi_ynn. This approach
should reduce the bias in the prior when sensor locations used in the nearest-neighbor procedure are
non-biased estimates of the spatial SWE. Note that in all three schemes we employ only data-driven
covariances. The menoic and menoi_ynn schemes use a dynamic ensemble that changes daily, while the
menoi scheme uses the same static ensemble for all the days of the water year.

The three different methods outlined above are compared with each other over the Feather River
basin where eight existing snow-pillow sensors are currently operational. Summary statistics are in
Table S1 and Figure S1, with annual evaluations in Figures S2–S12.

2.3. Experimental Setup

We used Tuolumne basin as test basin for our central study, as a biweekly LiDAR-derived SWE
product is readily available for use as reference for true spatial SWE. The ensemble is sampled as all
the available historical maps of SWE (except for the test water year). The historical maps of SWE used
consist of the 90 m Landsat-derived reanalysis product in Reference [9] and the 50 m LiDAR-based
product in Reference [33] for the schemes menoi_Pr and menoi_Li respectively and are found in the
summary Table 1.

The sensor locations used in the experiments are those of existing snow pillows. The snow-pillow
network is maintained by the California Department of Water Resources (DWR). These remote in-situ
sensors “directly” measure SWE through the weight of snow and transmit the measurements to an
online database. They are typically sparsely scattered throughout the basin, as shown in Figure 1.
Measurements from other systems such as the WSNs can be incorporated into the estimation process
by simply appending rows to the measurement operator matrix H in Equation (3) that maps the new
measurement value appended to vector d to the state (or pixel number) in the background vector x.
The uncertainties of the background forecast field is calculated as the sample covariance of the ensemble
selected, whose mean is the forecast map. In Situ measurements are assumed to be near-perfect during
the simulation run and their uncertainties are modelled as white noise with negligible standard deviation.
Therefore, at each update step, the total uncertainty of the prior SWE map will decrease. When using
actual sensor measurements from the field, it is desirable to model and include their uncertainty, taking
into consideration the different sources of error: intrinsic sensor imperfections, environmental noise,
measurement error, and interpolation error from in-situ to the area of the grid cell. One way to model
measurement uncertainty is to use the standard deviation of burst measurements.
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Table 1. Methods summary.

Acronym Description Historical
Product Used Features Used Covariance Sampling Applied on

schn Regression b LiDAR-derived c

elevation,
north-west barrier,
south-west barrier,
distance-to-ocean,
latitude,
historical product

N/A Tuolumne

menoi_Li EnOI LiDAR-derived None all historical samples Tuolumne
menoi_Pr EnOI Landsat-derived a None all historical samples Tuolumne

SNODAS
SWE from
NASA product N/A N/A N/A Tuolumne

marg Landsat-derived N/A N/A N/A Tuolumne
a described in Reference [9]. b described in Reference [33]. c described in Reference [20].

Both the menoi_Li and menoi_Pr are then compared with the feature-selective multivariate
regression (a potentially real-time method) schn [20] and the non-real-time Landsat-derived method
marg [9] obtained from the recent literature, as well as with the operational method SNODAS [34] at
the Tuolumne River basin using the LiDAR-derived spatial data product in Reference [33] as reference.

Figure 1. Tuolumne River basin sensor locations overlaid on a 90 m resolution Digital Elevation Model.
Elevation is in meters above sea level. The legend values correspond to the centers of each bin. Inset
map shows location of the Tuolumne basin within California.

2.4. Dense Historical Samples

In the menoi_Pr scheme, we use a newly developed state-of-the-art snow water equivalent (SWE)
Bayesian reanalysis dataset based on the assimilation of remotely sensed fractional snow-covered
area data over the Landsat 5–8 record [9,35] to select the ensemble from (representing covariances)
This product was also used for all the supplementary material experiments on the Feather river.
The reanalysis datasets ranges from 1985 to 2015. The product’s spatial and temporal resolutions are
90 m and daily, respectively. It is reported that a comparison with in-situ data showed a mean and
root-mean-squared errors (RMSE) less than 3 and 13 cm, respectively [9].
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The product covers the entirety of the Sierra Nevada range. The choice of a widely available
product allows for convenient experiment replication on all the watersheds in the Sierra Nevada.
We should note that using Sentinel-2 with a 5 days of revisit time for snow cover data instead of,
or in addition to Landsat (which has 16 days) would provide a more-accurate dataset of daily SWE,
and should be considered for future work [36].

For the EnOI update step, using the entire historical product as ensemble in method menoi_Pr,
yields an ensemble size on the order of 10,000. Such a size can be prohibitive to store in memory using
ordinary Desktop computers. We thus reduce it to 100 using the method outlined in Reference [31]—
first, the Singular Value Decomposition (SVD) of the ensemble perturbations A′ is computed. We then
retain only the first N singular values of the decomposition and regenerate a 100-member ensemble
to represent the covariance. This eigenvalue-based dimensionality reduction retains the directions of
dominant variances.

2.5. Scarce Historical Samples

Given the scarcity of available LiDAR scans, the LiDAR-derived historical [33] product yields few
ensemble members that are used in the menoi_Li scheme. An ensemble size of only approximately 20
was used. LiDAR provides rich spatial information, 3 m resolution measured snow depth and 50 m
resolution modeled SWE, and is considered a highly accurate spatial product. NASA’s Jet Propulsion
Lab in partnership with the California DWR developed and applied an imaging spectrometer and
scanning LiDAR system, termed the Airborne Snow Observatory, which measures snow depth at
unprecedented basin-wide scale and spatial resolution of 3 m and produces spatial SWE maps at 50 m
resolution spanning the Tuolumne and Merced river basins by coupling measured snow depth with
the iSNOBAL snow model [33].

Four sensor measurements at existing snow-pillow locations, shown overlaid on the elevation
map in Figure 1, were simulated by extracting their values from the withheld LiDAR test year. Unlike
the Landsat-based product, where the modeled daily SWE maps exist for each day of the test water
year, LiDAR-derived SWE maps were available biweekly for parts of 2014 - 2017, and thus we estimated
the SWE only for those days. The results can demonstrate the potential limit of the method in terms of
number of historical scenes available. Results of this experiment can reveal both the reconstruction skill
of the proposed methods using both a dense and scarse historical product, and The SWE accuracy of
the result compared to LiDAR. We should note, however, that a modeling error is inevitably introduced
when raw LiDAR snow-depth measurements were converted to SWE, as described in Reference [33].

The real-time product proposed in References [20,37] uses a method that selects the most-informative
independent variables out of a collection of up to 16 to interpolate SWE measured by a collection of
sensors at sparse locations using the multivariate regression. Those independent variables include:
elevation, north-western barrier, south-western barrier, distance to ocean, latitude and closest SWE map
from the historical product. The referenced research uses a reconstruction product as historical product,
while we will use the LiDAR-derived product instead for the Tuolumne and call the product schn.

The product termed marg cannot be generated in realtime, as it depends on future satellite
observations; nevertheless we also simulate it to compare with LiDAR at Tuolumne.

Finally, after downscaling the SWE maps obtained from using the menoi_Li and menoi_Pr methods,
we compare them to SNODAS.

Note that for all of the experiments, each test water year is excluded from the ensemble selection
process and is subsequently used as the “truth”.

The different experiments underline the flexibility in dealing with different products and
spatio-temporal scales (both 90 m, 50 m and 1 km resolution daily to bi-weekly) and evaluate whether
such method is appropriate and ready to implement operationally.
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2.6. Datasets Summary

The following datasets and source codes are used in the experiment:

• Landsat-derived historical product (90 m SWE):
https://ucla.app.box.com/v/SWE-REANALYSIS/folder/17206944857

• Lidar-derived historical product (50 m SWE):
https://aso.jpl.nasa.gov/

• SNODAS (1 km SWE):
https://nsidc.org/data/G02158

• Sensor locations from CDEC:
https://cdec.water.ca.gov/

• EnOI analysis algorithm:
https://enkf.nersc.no/Code/Analysis/

3. Results

In Figure 2, menoi_Li extracts the ensemble from the sparse LiDAR-derived product (up to 21
scans) while the menoi_Pr extracts the ensemble from the Landsat-derived product (total of >3000
scenes per pixel). The RMSE plots show that on average the menoi methods both outperform the
feature-selective multivariate-regression method schn.

Figure 2. Tuolumne basin comparison with existing products. Dashed and solid lines represent products
and simulations at 50 m and 1 km spatial resolution.

https://ucla.app.box.com/v/SWE-REANALYSIS/folder/17206944857
https://aso.jpl.nasa.gov/
https://nsidc.org/data/G02158
https://cdec.water.ca.gov/
https://enkf.nersc.no/Code/Analysis/
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For the 2016 average water year, menoi_Li shows an approximately 25%, 30% and 50% lower
SWE RMSE compared to marg, menoi_Pr and schn, respectively during the peak snow season (on days
1 April 2016, 7 April 2016, 16 April 2016 and 26 April 2016) in Figure 3). In the midst of the snowmelt
season of the wet water year 2017, both menoi_Li and menoi_Pr show a 50% lower RMSE compared to
schn. menoi_Li has a higher RMSE during the early melt season of the dry periods but lower during
the later melt season of 2015. menoi_Pr shows a lower RMSE than the marg method during the early
melt season of the dry year 2014, but not during the end of its snow season; and unlike menoi_Li,
consistently had higher RMSE during 2016 compared to marg. On average, both menoi methods
have substantially lower RMSE (up to 80% and 70% during dry and wet years respectively) than the
operational SNODAS product.

Figure 3. Comparison of Tuolumne basin’s 1-km resolution spatial distribution of snow water equivalent
(SWE) from menoi_Pr and SNODAS for the dry and wet water years 2014 and 2017 respectively.
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The heat maps in Figure 3 show a consistent improvement in error distribution in terms of mean
and standard deviation for menoi_Pr compared to SNODAS. The spatial patterns for menoi_Pr are also
better matching with the ”truth” map (LiDAR), although not always better than SNODAS in terms of
the amount of SWE for every pixel. SNODAS seems to be generally over-estimating SWE across the
basin especially during the dry year 2014. On The other hand, menoi_Pr tends to underestimate SWE
(with exception of day 7 April 2016).

4. Discussion

The key contribution of this work is that we present a method that can be used to generate real-time
high-quality SWE maps (90 m and 50 m resolution) using a small number of representative SWE
sensors (e.g., Tuolumne only 4 stations were used), which is not possible with traditional regression
techniques that necessitate a higher number of sensor stations to adequately fit pre-selected features
and observations to models. For instance, the method based on NN and Gaussian Process Regression
(GPR) described in Reference [21] is a state-of-the-art method that aims to achieve a similar goal as that
described here, however finding the GPR parameters for a good performance requires approximately
10 times the number of SWE sensors than are currently available. The work presented here is an
attempt to break those constraints, while safeguarding the quality of the result.

Comparing the results obtained on Tuolumne basin with a similar elevation region such as
the mountainous reaches of central Chile and Argentina in Reference [11], we see potentially better
performance during the peak season. Noting that the other study was conducted at 500 m resolution on
a region 100 times the size of Tuolumne and using 3 times the number of sensors as well as forcing data,
energy balance model and remotely sensed fractional snow-covered area, their overall reported peak
SWE RMSE is 274 mm. Our results indicate that for both average year 2016 and wet year 2017, the peak
SWE spatial RMSE (aggregating every grid on the map) of menoi_Pr is below 250 mm and that of
menoi_Li even below 100 mm for 2016 when using LiDAR historical data. While our approach could
be applied at a larger scale, there is also benefit to making predictions at the scale of water-resources
decision making, which for the Sierra Nevada is the watershed-scale.

Feature-based methods such as Reference [21], among many others, might better adapt to changing
feature conditions. Our proposed method is vulnerable to changes in spatial correlations of snow.
For example, wildfires can change the landscape and the snowfall and snowmelt dynamics. This could
be easily accounted for in feature-based methods by updating the vegetation feature. On The other hand,
the method presented here would require historical spatial maps of SWE with the new reduced canopy.
Nevertheless, most features currently used are stationary, for example, elevation, aspect, northness.
A warming climate will change relative snow patterns with elevation [25,38,39]. For example, an earlier
recession in the snow line. In Reference [25], trends with significant increase in the snowline and
changes in the persistence of snow in some areas were detected. This could result in a change in
inter-pixel correlation especially at low elevations. As weather events become more extreme, new and
unseen changes in snow patterns could challenge the accuracy of the spatial correlations extracted
from historical SWE maps, however this can be compensated by (i) increasing the number of in-situ
snow sensors measuring real-time data, (ii) improving the ensemble-selection method and (iii) fusing
near-real-time remotely sensed fractional-snow-cover data. For instance, the ensemble can be sampled
using a sliding window approach of most recent N scenes. As those new climatic changes become a
trend, their effect become more pronounced on the spatial correlations being used. Another approach
can consist of constructing the ensemble representing the co-variance from a truncated set of yearly
nearest-neighbor snow maps that could outperform the static method of selecting all maps and that
of selecting a climatologic sample. This in part reflects the inter-yearly similarities in snow patterns
depending on the timing of precipitation and ablation patterns. For instance, rain-on-snow events
tend to dramatically change SWE spatial patterns and hence it is best to only include historical scenes
that share such events in the ensemble.
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The second contribution is the novel and purely data-driven ability to interpolate in-situ SWE
observations without the explicit use of physiographic features or satellite observations, but by
statistical means through the historical ensemble that incorporates effects of features unknown to the
researcher or potentially challenging to measure. For instance, snow loading necessitates wind data
that, unlike elevation, are rarely if at all available at the needed resolution or spatial extent. Other
features such as differing geographical orientation of mountain ranges also influence snow distribution
and can be challenging to model.

4.1. Alternative Selections of Prior Ensemble

As shown in Table S1, on average the menoi ensemble selection scheme slightly outperforms the
other two (menoic and menoic_ynn) in terms of reducing the 32-year median MAE (from 22 to 20%)
and RMSE (from 39 to 35%). menoic_ynn performed best in terms of median bias (7 compared to 9
and 13%). This superior performance of menoi could be explained by the use of more scenes in the
ensemble selection process compared to the other two methods (100 vs. 31). This results in a finer
spatial covariance structure. The plots show that the menoi, having a stationary ensemble, resulted in
the smoothest RMSE series, while the menoi_ynn exhibits occasional jumps due to the changes in the
nearest-neighbor-matched maps.

A synergistic combination of methods could lead to an even superior outcome since no method
is consistently better than the other. In some periods, menoic had better performance, whereas in
other periods menoi_ynn was better. The disadvantages of menoi_ynn is that NN scenes for a given
day could be selected from historical days that are outside the snow season of that day; for instance,
a best-matching scene during a summer melt period could be a scene from the winter accumulation
period of a different year. It is desirable to limit the yearly NN search window to a few months from
the current simulation/estimation day to address this potential disadvantage, and benefit from a more
appropriate climatic covariance structure.

Moreover, it could be attractive to prune or replace scenes (NN of years with low matching
score) from the ensemble with the objective of reducing the background ensemble bias as much as
possible without too adversely affecting the covariance structure or the ensemble size (to avoid spurious
correlations). The menoic’s main disadvantage is that snow-season timings are not inter-yearly constant
on the daily scale. Dry years often have a shorter snow season than wet years, and The dates of onset
and disappearance of snow vary. Therefore it constitutes a more-biased background field in non-average
scenarios. Note that our current estimation method is stateless. it would be interesting to add a state
to the simulation, where the evolution of the state (SWE) and not the state itself is estimated based on
menoi_ynn with the ensemble sampling strategy, considering accumulation and ablation periods and
amount of snowfall.

It is evident in Table S1 that errors as low as 22% (RMSE of 2009) and 13% (MAE of 2009) and 0
biases can be achieved. Those well-performing scenarios typically occur when the biases of the estimates
are low. The methods do not perform well during dry years and at the end of the snow-melt seasons.
This is where real-time remote-sensing information becomes crucial for accuracy, especially when the
majority of sensors are reporting zero SWE because they are not located at high-elevation where snow
persists. Given the scarcity of the sensor network used, this could explain the high errors reported
during such situations, shown by the U shaped error curves of Figures S2–S12. This error pattern is
also found in most of the literature employing interpolation methods [37]. However, we should note
that near-real-time satellite information on snow cover from MODIS, Landsat and Sentinel-2 is needed
to significantly improve the snow-melt season error as demonstrated in Reference [40]. This concern
could also be addressed by strategically adding sensors. Another possible reason is that during dry years,
snow distribution is more dependent on less-stationary variables such as wind direction, temperature
fluctuations and storm occurrence compared to wet seasons where stationary-variables such as elevation
and topography have the dominant influence on snow distribution. This implies that real-time satellite
based information are mostly beneficial during dry years.
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4.2. LiDAR vs. Satellite-Derived Products

Comparison with the 50 m biweekly LiDAR-derived products showed that, on average, the LiDAR-
derived menoi_Li outperformed other methods during the peak snow-season. During those periods it
is better to use LiDAR for ensemble selection in the menoi_Li method instead of the Landsat-derived
product menoi_Pr. This is mostly evident during water-year 2016, where it even outperformed the
Landsat-derived product from Reference [9]. Note that the latter product cannot be generated in real
time since it uses Landsat information from later in the snowmelt season for the reanalysis. However
the statistical advantage of sampling from an extensive historical product could be highlighted during
the few days where menoi_Pr outperformed menoi_Li even during the peak snow season of the wet
year 2017. Moreover, menoi_Pr’s RMSE is less volatile compared to menoi_Li, probably due to the larger
number of ensembles used.

The Landsat-derived menoi_Pr outperformed the selective-regression method [20] during the
majority of the peak snow periods across all simulation years (Figure 2). It only outperformed the
non-real-time Landsat-product during the dry 2014 water year but not the 2016 wet water year
(Figure 2). Given that the product used in menoi_Pr is Landsat-derived, it explains why it would have
better performance during dry seasons since Landsat snowcover does not report SWE information but
snowcover and thus is mostly useful during the patchy snow cover of dry/melt seasons.

On average, both menoi_Li and menoi_Pr greatly outperformed SNODAS (07-04-2014 exception
that warrants further investigation), with improvements up to 64% and 55% respectively on 02-05-2017,
with menoi_Li outperforming menoi_Pr in peak-snow periods (Figure 2).

Moreover, the menoi_Li method resulted in water-year 2016 RMSE errors (ex: 14–15 cm from
01-04-2016 to 26-04-2016) similar to those obtained in Reference [21] from the interpolation of SWE across
the same region, but using 22 measurements with GPR instead of four with menoi_Li. This comparison
implies that the added information from the historical LiDAR product was able to mitigate the
information loss of reducing the sensors from 22 to 4, and further reinforces prior findings that SWE
exhibits strong inter-annual spatial patterns.

The plots comparing RMSEs with SNODAS (Figure 2) show significant error differences that
highlight the importance of the airborne and ground measurement systems in estimating spatial SWE.

In summary, results imply that the proposed method could have a beneficial impact in the spatial
interpolation of SWE whenever accurate historical data that are either LiDAR- or remote sensing-derived
are available and only a few continuous ground measurements are available (Figure 3). However
sensors installed at higher elevations are crucial for dry and end of melt seasons. We assume that
LiDAR-derived SWE maps are closer to ground truth than the energy-balance reconstruction methods.
However this is yet to be evaluated. Furthermore, it is not known how this method would compare
with the feature-based regression methods when dense sensor measurements are available. More work
is needed for such cases to generalize the conclusion from those findings.

An additional benefit of the presented method is that the information held in the covariance of the
historical ensemble can be used to strategically place sensors. The near-optimal algorithm consists of
sequentially finding the sensor location that maximizes the reduction in total basin ensemble variance
during the EnOI update step explained in Section 2. The algorithm is only near optimal because the
sensor locations are found sequentially and thus we do not go through all the placement combinations
to find the one that maximizes the variance reduction. The latter would be intractable, especially at
high resolutions. With every new sensor location found, the remaining ensemble variance decreases
until it reaches a saturation point. This is demonstrated in the left plots of Figures S14 and S16 for
Feather and Tuolumne basins respectively where near-optimal sensor locations shown in Figures S13
and S15 respectively were selected. Sensor placement is validated by the observed saturated decrease
in 1985 to 2016 mean of April 1st simulated SWE spatial RMSE as more sensors are added, shown in
the right plots of Figures S14 and S16.
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5. Conclusions

We have thus presented and evaluated a purely data-driven scheme that proved to be beneficial
for real-time estimation of high-resolution spatial SWE across mountain basins having a small number
of on-the-ground measurement points.

The scheme performed better during average and wet water years and not as well during dry
years and late melt season where snow disappeared from the few sensor locations and spatial snow
patterns probably depends on less stationary processes. This problem will only become more acute
in a warming climate. To tackle this disadvantage, also observed in existing real-time methods such
as SNODAS, we recommend strategically placing additional sensors. Another approach successfully
used in the literature is to use real-time snow cover information from remote sensing.

Such findings validate previous studies where historical SWE maps were found to provide important
information for estimating SWE in real time. We find that past spatial patterns of SWE are still the best
predictors of future or current ones. However, the challenge is to identify those past patterns most
informative of the current conditions, as many possibilities exist. As climatic conditions are changing and
extreme-weather conditions are occurring more frequently, strategically placed ground measurements
systems that minimize such uncertainty are the best tools to fill this gap.

It is best to use, on average, EnOI with a covariance represented by a large sample of LiDAR-derived
product for SWE interpolation. Historical LiDAR data seem to capture most accurately the SWE of regions
with deep snow where satellite observations cannot. As LiDAR scans are presently limited in coverage,
more scans are needed. Alternatively, deriving the covariance from the synergistic combination of
historical reconstruction products with remote-sensing-derived products (such as Landsat and Sentinel-2)
could approach the LiDAR performance.

Finally, though such a method relies on a historical dataset, it provides an alternative to a dense and
extensive measurement system that cover large portions of the watershed and potentially complex modeling
using physiographic features. Only a few sensor clusters at key locations and with a representative estimate
of their surrounding resolution were needed. it thus provides a convenient and scalable data-driven
approach to spatially interpolate SWE sensors’ measurements that could be very useful for high-mountain
or glacio- hydrology such as the Arctics, Sierra Nevada, Himalaya, and Andes regions. For regions where no
historical SWE maps are available, one must first use readily available historical remotely sensed fractional
snow cover to generate a reconstruction record of SWE maps. Related future work of interest would be to
formulate a method to identify such sensor placements with maximum information gain adapted for large
dimensions and find the number of sensors needed to achieve a pre-specified error tolerance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5338/7/3/46/s1,
Figure S1: Peak snow-season error statistics for each ensemble-selection method for water years from 1985 to 2016,
Table S1: Peak snow-season error statistics for each ensemble-selection method for water years from a 1985 to
2016, Figure S2: Feather River menoi RMSE as percentage of the daily spatial mean SWE with different Ensemble
selection for water-years 1985, 1986 and 1987, Figure S3: Feather River menoi RMSE as percentage of the daily
spatial mean SWE with different Ensemble selection for water-years 1988, 1989 and 1990, Figure S4: Feather River
menoi RMSE as percentage of the daily spatial mean SWE with different Ensemble selection for water-years 1991,
1992 and 1993, Figure S5: Feather River menoi RMSE as percentage of the daily spatial mean SWE with different
Ensemble selection for water-years 1994, 1995 and 1996, Figure S6: Feather River menoi RMSE as percentage
of the daily spatial mean SWE with different Ensemble selection for water-years 1997, 1998 and 1999, Figure
S7: Feather River menoi RMSE as percentage of the daily spatial mean SWE with different Ensemble selection
for water-years 2000, 2001 and 2002, Figure S8: Feather River menoi RMSE as percentage of the daily spatial
mean SWE with different Ensemble selection for water-years 2003, 2004 and 2005, Figure S9: Feather River menoi
RMSE as percentage of the daily spatial mean SWE with different Ensemble selection for water-years 2006, 2007
and 2008, Figure S10: Feather River menoi RMSE as percentage of the daily spatial mean SWE with different
Ensemble selection for water-years 2009, 2010 and 2011, Figure S11: Feather River menoi RMSE as percentage of
the daily spatial mean SWE with different Ensemble selection for water-years 2012, 2013 and 2014, Figure S12:
Feather River menoi RMSE as percentage of the daily spatial mean SWE with different Ensemble selection for
water-years 2015 and 2016, Figure S13: Near-optimal sensor placement of 23 (black and green) and additional
15 (red) complementing the existing 8 sensors at Feather basin, overlaid on the normalized ensemble variance
map of the Landsat-derived product, Figure S14: Reduction in normalized basin-wide ensemble variance (left)
and in the 1985 to 2016 mean of April 1st SWE spatial RMSE (right) given the near optimal sensor placement of
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the 23 and complimentary 15 (to the existing 8) sensors at Feather basin shown in Figure S13. The red horizontal
line is the 1985 to 2016 mean SWE. The envelops represent the stanrdard deviations across 1985 to 2016 of both
mean and errors, Figure S15: Near-optimal sensor placement of 19 (black and green) and additional 15 (red)
complementing the existing 4 sensors at Tuolumne basin, overlaid on the normalized ensemble variance map of
the Landsat-derived product, Figure S16: Reduction in normalized basin-wide ensemble variance (left) and in the
1985 to 2016 mean of April 1st SWE spatial RMSE (right) given the near optimal sensor placement of the 19 and
complimentary 15 (to the 4 existing) sensors at Tuolumne basin. The red horizontal line is the 1985 to 2016 mean
SWE. The envelops represent the stanrdard deviations across 1985 to 2016 of both mean and errors.
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