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Abstract: The lack and inefficiency of urban drainage systems, as well as extreme precipitation,
can lead to system overloading and, therefore, an urban pluvial flood. The study brings insights
into this phenomenon from the perspective of the statistical relationship between precipitation
and flooding parameters. The paper investigates the possibility of predicting sewer overloading
based on the characteristics of the upcoming rain event using the Storm Water Management Model
(SWMM) and statistical methods. Additionally, it examines the influence of precipitation resolution
on the model sensitivity regarding floods. The study is set in a small urban catchment in Dresden
(Germany) with a separated stormwater sewer system (SWSS). The flood-event-based calibrated
model runs with observed and designed heavy rain events of various sums, durations, and intensities.
Afterward, the analysis focuses on precipitation and model overloading parameters (total flood
volume, maximum flooding time and flow rate, and maximum nodal water depth) with pairwise
correlation and multi-linear regression (MLR). The results indicate that it is possible to define a
certain threshold (or range) for a few precipitation characteristics, which could lead to an urban
flood, and fitting MLR can noticeably improve the predictability of the SWSS overloading parameters.
The study concludes that design and observed rain events should be considered separately and that the
resolution of the precipitation data (1/5/10 min) does not play a significant role in SWSS overloading.

Keywords: urban hydrology; urban pluvial flood; urban drainage; SWSS; extreme precipitation;
SWMM; overload forecast; inundation forecast

1. Introduction

In 2018, more than half of the world’s population lived in urban settlements, and by 2030,
this number is projected to increase by 10%. Moreover, each third person will live in cities with at
least half a million inhabitants [1]. Urbanization causes the disturbance of natural landscapes by the
replacement of the vegetated surfaces with impermeable surfaces, leading to significant hydrologic
changes in cities [2] such as increased surface runoff during heavy precipitation events, generating
urban floods. There are several definitions of this phenomenon, i.e.,:

• Urban floods are events that cause damage in small catchment areas of less than 100 km2 (even
less than 10 km2). They are trigged by small-scale rain events with volumes far above design
rainfall for the concerned hydrological structures [3].

• Urban floods or pluvial flooding in urban areas is the result of high-intensity or prolonged heavy
rainfall leading to overland flow and ponding. They can be produced due to the exceedance or
blockage of sewer and drainage systems, or high water levels in receiving watercourses [4].
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The prevention of flooding caused by unpredictable high-intensity rainfall events in urban areas
due to a lack of adequate drainage systems has become a pressing issue as the risk of flooding
increases due to the combined effect of urbanization and climate change [5]. The hydrological and
hydraulic characteristics of catchments change through human action and climate change. Since both
processes are non-stationary, they increase uncertainties, thus making flood analysis more complicated,
i.e., by necessitating the generation of future scenario projections or the communication of results
to stakeholders.

The overloading of urban drainage systems is usually caused by defective systems or inefficient
initial design, causes damage to public and private buildings, and disrupts public life. There are,
however, many challenges arising in urban flood studies. For instance, there is a problem of the
impossibility of direct measurements and difficulties in the reliable evaluation of urban floods.
Moreover, the heterogeneity of precipitation plays a crucial role as one of the main driving factors, as
it affects and interacts with both the catchment and storm water sewer system (SWSS). These issues
necessitate the use of numerical modeling simulations to elucidate the complexities related to urban
flood management [6].

Stormwater flow can be determined by using rational and hydrograph methods, rainfall–runoff

correlation studies, numerical models, the inlet method, or empirical formulae [6]. There are numerous
hydrological models available today for urban flood management. A review on the state-of-the-art
of “real-time urban flood forecasting and modeling” by analyzing surface, drainage, and coupled
models [7] concludes that even a simple 1D model could be sufficient for a “maximum flood
map/scenario investigation”. However, it might lead to an overestimation of maximum flood extents
and volumes. On the other hand, the computational time of 1D and 1D–2D coupled models could vary
by several orders of magnitude. Considering the trade-off between the adequate representation of
SWSS flooding and system complexity, the Storm Water Management Model (SWMM) [8] was chosen
for this study. The SWMM is a physically based, deterministic 1D model that simulates water inflows,
outflows, and storage within a sub-catchment and sewer system. Besides, as the SWMM is free and
open-source software, it is widely used professionally and academically, while enabling reproducible
results and easy application. Recent studies showed the SWMM to be a practical tool for urban flood
modeling and operational forecasting [9–11]. However, some researchers mention problems with
the model detail [12] and accounting for precipitation heterogeneity [13] among the most significant
weaknesses of the software.

The forecasting of SWSS inundation and its characteristics could be extremely important for
decision-makers. However, the in-depth analysis of this phenomenon is often neglected due to the
usually high computational time when using traditional physically based hydraulic models. Thus,
various simpler data-driven approaches could be sometimes more beneficial and easier to implement
and apply [7,14]. These could include empirical graphical/threshold methods [15,16], logistic and
probabilistic regressions [17,18], and machine learning [19].

To date, a considerable amount of work via case studies and forecasting systems has been done,
with a focus on the quantitative relationship between the characteristics of heavy precipitation and
urban floods in terms of SWSS overloading. Since researchers usually consider only specific single or a
few rain parameters—i.e., return period (RP), intensity, duration, or design rainfall [20–24]—there is a
lack of comprehensive studies of various precipitation characteristics in general and the differentiation
of the influence of observed and designed rainfall on the urban drainage inundation.

Thus, studies in this field could not only be beneficial from a scientific point of view but also
provide innovative recommendations and methods for coping with problems arising in the field of
urban drainage design and construction, forecasting, the prevention of flood risk, and its impacts.

The main objective of the paper is to expand recent studies on urban drainage network flooding
due to pluvial floods by analyzing the statistical relationship between heavy rain events and the
loading of the stormwater sewer system (SWSS) using the Storm Water Management Model (SWMM).
Thus, three main research goals are defined:
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• Detect the potential SWSS overloading based on the precipitation forecast;
• Identify the heavy precipitation characteristics with the highest prediction capacity for SWSS

inundation volume, time, and rate;
• Compare results from pairwise correlation and multi-linear regression (MLR) approaches in

predicting SWSS overloading accurately.

The paper is divided into five parts. The introduction to the general topic is followed by an overview
of the study site and data used (Section 2.1) and model build-up (Section 2.2). The methodology part
presents a model calibration procedure (Section 2.3), explains how the overloading of the drainage
system is implemented in the SWMM (Section 2.4), and describes the statistical methods for the
post-processing of the results (Section 2.5). The results part contains the model set-up and calibration
performance (Section 3.1), the outcome of the model runs with different scenarios (Section 3.2),
the statistical analysis of the results with pairwise correlations (Section 3.3) and MLR (Section 3.4),
and a discussion of the influence of precipitation resolution (Section 3.5). Finally, conclusions are
drawn and outlooks are discussed in Section 4.

2. Data and Methods

This section describes the general methods and tools used to complete the previously listed tasks
as well as a description of the study site and data specification. This includes data collection and
processing, the set-up and calibration of the SWMM, and the statistical analysis of the results.

Figure 1 presents the applied workflow. It starts with the collection and processing of terrain and
land cover data, all possible information on the sewer system, and climate data. Then, the model is
set-up in the SWMM and calibrated using observed time series and design/observed heavy precipitation
events used for the model forcing. Finally, the output data are statistically analyzed with a focus on the
SWSS overloading.
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2.1. Study Area and Required Initial Data

The study site is located in the south-eastern part of Dresden, Germany (51.00277◦, 13.8374◦,
Figure 2) and has a drainage area of 0.12 km2. The land cover shows a typical urban configuration
with approximately 50% of impervious areas: buildings (block living, schools, and grocery stores),
pavements, parking lots, and green (mainly grass) areas. The topography consists of mostly flat slopes
with a general drainage direction to the north-east. In this specific area, a separated urban drainage
system was installed initially, meaning that stormwater and sewage flow in parallel, but separated,
pipes. The SWSS is formed of approximately 2.7 km of pipes, connected by 91 manholes, receiving
water through 69 gully pots and discharges water in the local creek, which then flows out to the Elbe.
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Figure 2. Study area (Pseudo-Mercator projection; OpenStreetMap are used as background [25].

Table 1 presents the required data for the modeling in the SWMM and the used sources.

Table 1. Data requirements and sources.

Data Type Required Information Used Sources

Stormwater
sewer system

Position of each element, dimensions, pipe
slope, structure shape, roughness

GIS of the sewer system of Dresden, discharge
measurements by TU Dresden, correction of manhole/gully

pot positions and connection with field survey

Surface relief and
land cover

Catchment and sub-catchment boundaries
and routing to the drainage system, slopes,

infiltration parameters, and roughness

Digital Terrain Model (DTM); 1 m resolution; from TU
Dresden, Bing, and Google satellite images [25,26]; Storm
Water Management Model (SWMM) documentation [27]

Climate Precipitation, temperature

Deutsche Wetterdienst (DWD) and TU Dresden
meteostations for climate data [28], Koordinierte

Starkniederschlagsregionalisierung und -auswertung
(KOSTRA) des DWD for design precipitation [29]

The specification of an SWSS should include at least a detailed geometry of the pipe system and
connections, such as elevations, lengths, diameters, shapes, the materials of pipe sections, and junctions,
which are usually obtained from construction/monitoring documentation or field surveys. For the
study, SWSS data were produced and provided by the Urban Water Management Department of TU
Dresden; however, a small field survey was additionally conducted to correct the positions of some
manholes and locate all the gully-pots, since they were not presented on the schemes.

Detailed information on the catchment is required to set-up the general boundaries of the SWSS,
delineate sub-catchments, calculate drainage areas and terrain slopes, assign flow pathways to SWSS
inlets, and determine the main catchment parameters (roughness, width, permeability, infiltration,
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depression storages, etc.). These data can be retrieved from satellite images, remote sensing elevation
data or topographic maps, and field surveys, and some parameters can be found in textbooks. For the
present study, a digital terrain model (DTM) of one-meter resolution (produced and provided by the
TU Dresden), OpenLayer QGIS plugin [30] (which incorporates Open Street Maps and satellite images
(Bing and Google)), and results of a small field survey were used.

Climate data include those of precipitation and temperature. While the first are the critical data for
the model forcing, the second are additional ones to estimate daily evaporation (Hargreaves’ method).
The main intention was to simulate heavy rain precipitation events. Therefore, assuming negligible
evapotranspiration fluxes during extreme rain events, other climatic data were not considered.
Precipitation data were obtained from the nearest meteorological stations (Figure 2) from the
database of Deutscher Wetterdienst (DWD, German Meteorological Service) [28]. Furthermore, design
precipitation events with various characteristics were constructed from the KOSTRA-DWD-2010R
(Koordinierte Starkniederschlagsregionalisierung und -auswertung des DWD (coordinated heavy
precipitation regionalization and evaluation)) dataset [29]. Distributed via gridded (resolution of
approximately 67 km2) rasters for the whole of Germany, this dataset consists of pre-calculated design
heavy precipitation via block-rain (rectangular hyetograph). The user can choose specific values of
precipitation sums (in mm) and intensities (l s−1ha−1) depending on different event durations (5 min to
72 h) and RPs (1–100 years).

2.2. Model Build-Up

The initial SWSS data on pipes, manholes, and outlets were checked for apparent errors—i.e.,
misconnections, typos in diameters, and manhole position errors—and all the gully-pots found within
the field survey were added (with an average depth of 1 m) and routed to the associated manholes.
The fixed parameters for inlets and junctions include shape, elevation, and depth; those for pipes
include shape, length, and diameter. Since there is no option in the SWMM to select variable node
diameter, the nodal surface area of 0.44 m2 was established as a weighted mean of the standard
manhole and gully-pot chamber diameters installed in the studied SWSS. The application of a weighted
rather than simple mean is explained by the different numbers of gully-pots (69) and manholes (91);
thus, taking a simple mean value will give a lower value for the effective diameter. It is important
to estimate this parameter with proper justification, since it has a direct effect on the inundation
characteristics because it defines the nodal volume, which acts as a buffer before SWSS overloads.

Afterward, the sub-catchments of the three main presented land classes (streets/pavements, roofs,
and vegetation) were delineated according to the DTM and satellite images and assigned to the
SWSS inlets. The fixed parameters for the sub-catchments included area, mean width, terrain slope,
imperviousness (80–100% for streets/pavements, 100% for roofs, 20% for vegetation), and infiltration
parameters (capillary suction head: 100 mm; saturated conductivity: 10.9 mm h−1; the difference
between porosity and initial moisture content: 10%) for the mean soil type in the area (sandy loam)
used in Green–Ampt method [31]. The area-related characteristics were calculated in QGIS [32]
(“Field calculator” and “Terrain analysis” tools), the permeability was assigned according to satellite
images [25,26], and the field survey, and the soil hydraulic properties were taken from the SWMM
recommendations [33].

The general SWMM parameters (different from defaults) included rainfall/runoff and flow routing
modules, the dynamic wave routing model, a routing step of 1 sec, and a head convergence tolerance
of 1 mm.

The SWSS and catchments (with necessary characteristics and parameters) were prepared with
QGIS 3.4.15 [32]. The final transfer from “shp” files to “inp” (SWMM data format) was done using
inpPINS [34]. An overview of the model is presented in Figure 3.
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2.3. Model Calibration

Two major approaches are commonly used in the calibration of the hydrological
model—continuous and (multi-)event matching. Since the study investigates modeling storm
events and the overloading of the SWSS, a calibration with short heavy rain events instead of
long time-series with dry weather or regular stormwater flow is more likely to provide more accurate
results. This multi-event approach is quite popular in practice for the same kind of studies and used
by various researchers using different hydrological and hydraulic models [35–38]. It was already
successfully applied in the nearby sub-catchment for studies of low impact development practices [39].

Depending on the availability of observation data, the model can be calibrated using various
techniques and with different performance indicators. In general, there are many parameters available
for validation in the SWMM: sub-catchment runoff, node/pipe water depth, pipe/node inlet/outlet
discharge, and node flooding.

Conventionally, urban sewer system models are calibrated using the outlet pipe discharge
(i.e., outfall to a local open channel or inlet to a wastewater treatment plant), hence by hydrograph
comparison. Thus, to evaluate the goodness of the model results, several well-known performance
criteria can be used (Table 2): Nash–Sutcliffe Efficiency [40], Kling–Gupta Efficiency [41], and peak and
volume errors.
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Table 2. Model performance criteria.

Criteria Range Formulae

Nash–Sutcliffe
Efficiency

(NSE)

[−∞, 1]
NSE = 1—corresponds to a
perfect match of modeled
discharge to the observed

data

NSE = 1−
∑T

t=1(Qt
m−Qt

o)
2∑T

t=1(Qt
o−Qo)

2

Q—flow, m—modeled, o—observed, t—timestep
(1)

Kling–Gupta
Efficiency

(KGE)

[−∞, 1]
KGE = 1—a perfect match of

modeled discharge to the
observed data

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2

r is the Pearson correlation coefficient between the
simulated and observed flow, β is the ratio between the
mean simulated and mean observed flow, α is the ratio

between the simulated and observed flow variance

(2)

Peak errors
(maximum

discharge value
and time)

[−∞, +∞]
PE = 0—a perfect match
between modeled and
observed event peak

∆Q =
Qm−Qo

Qo
·100%

∆t = t(Qm) − t(Qo)

(3)
(4)

Event volume
error

[−∞, +∞]
VE = 0—a perfect match
betweem modeled and
observed event volume

∆V = Vm−Vo
Vo
·100% (5)

The calibration procedure could be performed in automatic (by the definition of the cost function
and iterations using preset boundary values for the chosen calibration parameters) or manual (changing
parameters “by hand”) mode. The selected mode depends on the model complexity and the number of
changing parameters. For the particular case-study, manual mode was chosen due to the event-based
calibration and the use of only a few parameters (pipe and surface roughness, contribution areas,
and depression storages).

2.4. Overloading of the Stormwater Sewage System in SWMM

In the present study, an urban flood in an SWSS is considered as a process of drainage system
overloading caused by heavy rain, which leads to the flooding of the surface. In the SWMM,
this phenomenon is modeled as follows. Each non-outfall node is assigned a maximum allowable
pressure head Hmax. It consists of a maximum free water surface elevation (i.e., manhole depth) plus
an optional “surcharge” depth that allows for an additional pressure head (i.e., if a manhole has a solid
cover without openings). Typically, when the new head Hnew at a node is computed by the iterative
solution process, and it exceeds Hmax, it is set equal to Hmax, and the node becomes flooded. Then,
the overflow rate Qovfl is calculated as an average net flow rate (inflow−outflow) of the node over the
current time step [27].

Therefore, the flooding parameters are available in the model summary for each flooding node:
total flooded time, maximum flooding discharge, time of maximum flooding, and total flooding volume.

A critical remark to add is that once flooding occurs, afterward, this flooding volume is then lost
from the system, as the SWMM does not allow overloading water routing.

2.5. Statistical Post-Processing of the Results

Two statistical approaches were used to study the relationship between precipitation and the
SWSS overloading parameters: pairwise correlation and MLR.

The classical Pearson correlation test used as the first approach is a measure of the linear correlation
between two variables.

MLR is a relatively powerful yet simple tool to increase the correlation coefficient of the dependent
variable using non-clear individual relationships with predictors. The general formula for the MLR
function is as follows:

y = a +
i=n∑
i=1

bi·xi (6)



Hydrology 2020, 7, 35 8 of 23

where y is the dependent variable, xi is the predictor, a is the intercept, bi is the slope, and n is the
number of predictors.

This approach was used to find a better relationship between precipitation and the SWSS
overloading parameters. However, to fit the MLR function properly, the data and the obtained
regression should fit the relatively strict statistical assumptions [42] listed in Table 3.

Table 3. Multi-linear model assumption testing.

Assumptions Test

Linear relationship and independent predictors Scatter plot, correlation matrix
Symmetrical (normal) distribution Histogram (Shapiro–Wilk test)

Normality of the residuals Histogram, Shapiro–Wilk test
Non-autocorrelation of the residuals Durbin–Watson test

Homoscedasticity of variance Breusch–Pagan test,
multi-linear regression diagnostic plots

Conventional statistical tests are used to test for the normality of the data (Shapiro–Wilk [43]),
the autocorrelation of residuals (Durbin–Watson [44]), and the homoscedasticity of the variance
(Breusch–Pegan [45]). The general interpretation of the tests comes down to a comparison of the test
statistics’ p-values to a conventional threshold value of 0.05 [46] to decide on the rejection (p < 0.05)
or non-rejection (p > 0.05) of the test null hypothesis. The following null hypotheses denote the
chosen tests (Shapiro–Wilk, Durbin–Watson, and Breusch–Pegan, respectively): a sample comes from a
normally distributed population; there is no autocorrelation (at a lag of 1) in the residuals (prediction
errors) according to a regression analysis; the variance of the errors according to a linear model
is homoscedastic.

Additionally, data transformation methods were used to convert non-normally distributed data
to an approximately normal distribution. The simple reason for this is that in fact, after transformation,
one is able to “recycle” the knowledge about the analysis of the normally distributed data, so that
one can apply standard analysis methods. An outstandingly important class of transformations is
powers and logarithms. The so-called Box-Cox transformation is applied to determine an optimal
transformation for this class [47]. The original formula looks like this:

x′i =


xλi −1

λ·GM(x)λ−1 i f λ , 0

GM(x)· ln(xi) i f λ = 0
(7)

where: GM(x)—the geometric mean of the sample and λ—maximum of the log-likelihood function
(assuming the transformed observations come from a normal distribution with mean µ and standard
deviation σ, the log-likelihood function looks as follows log[L(λ,µ, σ)]). In this study, a simplified
version of Box-Cox transformation was used, with the formula x′i = xλi and λ rounded to closest value
with a 0.5 step (which, however, still remained within the 95% confidence interval).

Statistical analysis was conducted within the R environment [48] using standard and the following
custom libraries: “lmtest” [49] and “MASS” [50].

3. Results and Discussion

3.1. Model Calibration

For the calibration of the model, almost two years (01.2017–10.2018) of irregular discharge
measurements in the outflow to Lockwitzbach creek were available at a 1 min resolution (taken and
provided by the Urban Water Management Department of TU Dresden). For the model forcing,
meteorological input data of the closest station (Lockwitz, 1.6 km from the catchment) with a 5 min
resolution were used. As the goal was to calibrate the model using the event-based principle specifically
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for high-flow conditions, available discharge time series were screened, and five flood events were
extracted. To gain more accurate calibration parameters and because of the already too-small sample
size, the authors decided to sacrifice the normal procedure of splitting data into calibration-validation
sets and instead used all the events for calibration purposes. This trade-off indeed weakens the
reliability calibration procedure and needs to be elaborated in possible future studies when longer
observation time series will be available.

The calibration was performed manually, and the chosen fitting criteria were the following: peak
discharge, time to peak, and total volume. The first two were met by adjusting the roughness of
the conduits (0.0155 m1/3s−1, accounting for the pipe material and conduits’ current conditions) and
catchments (0.016 m1/3s−1 for impervious and 0.03 m1/3s−1 for the pervious terrain). The recommended
range of Manning’s coefficients for steel and plastic pipes (whose mixture forms the studied SWSS) is
0.009–0.19 m1/3s−1 [27,51]. The ranges of the coefficients for the surface roughness were taken from [52]:
0.01–0.023 for impervious (smooth and rough asphalt, tar, and concrete) and 0.017–0.06 m1/3s−1 (smooth
and rough packed soil, gravel, grass, and residential land use). Additionally, catchment depression
storage parameters were used in the calibration: percentage of impervious area with no depression
storage (50%) and depth of depression storage on pervious/impervious area (for vegetation: 5/1 mm;
for streets: 5/2.6 mm; and 1.27 mm for roofs). Various estimations and formulas [33] suggest the
following ranges for depression storage: in general, values of 0.1–11 mm are mentioned; specifically,
with empirical formulas, 0.1–2.8 mm is suggested, and with case study estimations, –1.2 to 2.5 or 5 to
11 mm for impervious or pervious areas are suggested, respectively. Hence, parameters exhibit strong
variation from study to study, and extensive preliminary work to obtain accurate estimates or to fit them
within the exact the ranges of empirical formula outcomes or other researcher’s values is unnecessary.
Moreover, this parameter was stated as being sensible only for low-depth short storms [33]. Fitting the
flood volume could be adjusted by rearranging the catchment boundaries, adding missing or deleting
areas that are clearly not contributing to SWSS runoff. This can be achieved with the help of satellite
images and consideration of the impressions from an on-site survey. In the study case, mainly pervious
areas and roofs were deleted. Figure 4 shows the comparison of the measurements and the calibrated
model output for the five events and the corresponding precipitation, and Table 4 presents the results
for the performance criteria.
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Table 4. Calibration skill-scores and errors.

Event 22 June 2017 10 July 2017 11 July 2017 10 August 2017 18 August 2017

NSE (-) −0.23 0.52 0.53 0.55 0.51
KGE (-) 0.39 0.74 0.74 0.61 0.71

Q peak error (%) 1 14 10 9 −9
Peak time error (min) 4 10 3 3 3

Volume error (%) 31 12 12 29 −8

A relatively high agreement was achieved for four out of five events. The NSE values for these
four events are around 0.5, and the KGE values, around 0.7. Regarding the lower performance of
the event dating 22.06.2017, the issue with the low NSE values could be explained by the general
problem of time shift for all the events in the range of 3–10 min. Several attempts to adjust timing were
conducted, and the only case where the time-shift of the uprising limb was matched related to lowering
the conduit roughness to 0.008–0.009 m1/3s−1. However, firstly, these values do not look realistic for a
relatively old pipe system (besides enormous velocities of 2–4 ms−1), and secondly, they resulted in
the shortening of the flood duration almost twice while sharply increasing the maximum flow rate.
The most probable background of this effect is the travel time of the rain cell, as there is a distance of
1.6 km between the study area and the meteorological station (resulting in propagation velocities of
3–10 ms−1, which are reasonable, i.e., for convective cells [53,54]). Thus, the issue was considered as
non-crucial for the study, since in this case, it will not affect the characteristics of SWSS overloading.
That is why it is important to have a look at the KGE values (whose component decomposition will
give a low correlation value but high bias and variability ratio agreement), which are all higher than
−0.41 (benchmark of mean flow performance [55]).

The higher and positive volume errors (12–31%) gained for four out of the five events are
potentially a bigger problem for the study set-up. However, as can be seen from the graphs, in most
cases, these volumetric errors are the sum-up result of too long tails of modeled hydrographs, while the
observed ones are much shorter. Nevertheless, as the main intention of the study was inundation
research, the main interest lies in the upper part of hydrographs, where a better agreement was
achieved. Generally speaking, these deviations could probably be explained by the different resolutions
of the discharge and precipitation measurements (i.e., for 22.06.2017 and 18.07.2017, three and two clear
peak inflows are observed, respectively, while only one is found in the precipitation measurements).
The relative peak errors are much smaller (−9 ± 14%) and potentially result from the generalization
of the initial model conditions (as the event-based calibration strategy does not normally imply a
warm-up period like in conventional continuous calibration) or simplifications of the surface flow
routing in the SWMM. The apparent overestimations and underestimations of the peak discharge and
total volume are again the probable results of the different resolutions and heterogeneity of the rain
cell, which is a known issue for SWSS modeling [56].

3.2. The Model Runs with Various Heavy Precipitation Scenarios

Data from the three nearest meteorological stations (Figure 1) were screened within the available
time-period of 1998–2018 [28] to extract 35 heavily observed precipitation events, with a precipitation
measurement interval of 1 min (the data from the nearest Lockwitz station are available only with a
5 min resolution and much shorter time period). To get an insight into the sensitivity of the model to
different input data types, KOSTRA-DWD-2010R (see Section 2.1) was used and the following design
rain events were extracted: RPs of 2, 20, and 100 years and durations of 5, 10, 120, and 2880 years.
For each of the rain events, the following characteristics were derived: duration, sum, maximum
intensity (Imax), mean intensity (Imean = sum/duration), form (K1 = maximum intensity/sum), skewness
(K2 = time to peak/duration), and flatness (K3 = maximum intensity/mean intensity). K1, K2, and K3

were added to account for a pluviograph shape: K1 indicates the steepness of the event (values close to
1 indicate a very steep event, as the maximum intensity and sum are equally big), K2 marks whether the
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peak comes at the beginning or the end of the rain event, and K3 describes how pronounced the peak
of the rain is compared to the mean intensity of the event. Table 5 shows a summary of the scenarios,
and a full list is presented in Appendix A. A subset of the observed rain events was made to cover
a relatively wide range of the possible combinations of precipitation characteristics but, in general,
starting from short light rains, which are unable to overload an SWSS (but are necessary to detect the
overloading threshold), continuing with long/short events of moderate intensity, and, finally, finishing
with long/short heavy precipitation with RPs of 20–100 years.

Table 5. Overview of the input precipitation.

Duration
(min)

Sum
(mm)

Imax
(mm/min)

Imean
(mm/min)

K1
(1/min)

K2
(-)

K3
(-)

Observed

min 8 3.14 0.12 0.016 0.002 0.006 0.013
max 4461 180 4.00 1.29 0.30 0.83 0.42

Designed

min 5 7.60 0.023 0.023 0 - -
max 2880 158 4.00 4.00 0.20 - -

A summary of the SWMM simulation results is presented in Table 6, and a full list with all the
model outputs is presented in Appendix B. In case flooding occurred, the maximum flooding time
(among all flooded nodes), discharge at the most pronounced junction, and total flooding volume
in the whole SWSS were reported. If no flooding was observed, the relative node depth at the most
loaded junction is documented (calculated as the ratio between the maximal water depth and total
manhole depth).

Table 6. Overview of the simulation results.

Max Nodal
Overloading Time

(Min)

Max Nodal
Overloading Flow

Rate (L/S)

Total Overloading
Volume for SWSS

(106 L)

Max Relative
Nodal Loading

(No Flooding) (%)

Observed

min 2 1.00 0 0
max 35 171 1.19 89

Designed

min 5 8.81 0.02 0
max 13 185 0.90 93

Figure 5 illustrates an event triggered by a 100-year RP heavy rain with the biggest total flooding
volume at the moment of maximum loading and, consequently, flooding of the system. The flooding
occurs at 58 different nodes (five manholes, 53 gully pots) with varying intensities. Additionally,
almost all of the conduits are filled to their maximum capacity.
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3.3. Detection of “System Overloading” Precipitation Threshold

To find the precipitation threshold for SWSS overloading, a graphical solution is proposed.
Using flooding values obtained from the SWMM simulations (i.e., flooding volume) and parameters
of rain events (i.e., maximum intensity), the upper part of the graph (Figure 6) is defined. With the
intercept of the X- and Y-axis representing the virtual terrain surface of the system (the elevation of the
manhole top), the lower part of the graph defines non-surface-flooding conditions by the maximum
water depth in the node (or relative nodal loading—for better scaling) during a rain event. Hence,
the intercept will give the surface flooding threshold of the SWSS for a specific precipitation parameter.
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Table 7 shows the Pearson’s correlations calculated for all scenarios and excluding design events.
Among all the precipitation parameters tested, a few of them (duration, sum, mean and max intensity,
and K1) depicted significant (p < 0.05) negative and positive correlations with inundation parameters.
In summary, it could be stated that, in general, rain events with a shorter duration, higher maximum
intensity, and total sum will cause higher SWSS flooding time, discharge and total volume, which is
in agreement with the findings of other studies [15,16] (partly, since no studies were found to cover
correlation with all the used precipitation characteristics). An exclusion of KOSTRA design rain leads
to an improvement of the correlation, while block-typed and natural rain events lead to a different
response of the SWSS. Since civil engineers usually use design rainfall for planning drainage systems
and scientists stick to real observation data, there is no right answer as to which data type is better.
However, the authors want to highlight the message that due to the significantly different relationship
between the overloading and precipitation parameters, design and observed rain events should not be
mixed together, to obtain better results.

Table 7. Correlation between precipitation and SWSS-overloading parameters.

SWSS
Overload/Precipitation

Parameters

Duration
(min)

Sum
(mm)

Imax
(mm/min)

Imean
(mm/min)

K1
(1/min)

K2
(-)

K3
(-)

Observed and designed precipitation
Max nodal overloading

time (min) 0.03 0.41 * −0.22 −0.17 −0.46 ** −0.23 −0.06

Max nodal overloading
flow rate (l/s) −0.45 ** −0.29 0.89 *** 0.63 *** 0.56 *** −0.12 0.30

Total overloading
volume for SWSS (106 l) −0.31 −0.07 0.68 *** 0.46 ** 0.16 −0.25 0.28

Observed precipitation only
Max nodal overloading

time (min) 0.11 0.59 *** 0.14 0.06 −0.46 * - -

Max nodal overloading
flow rate (l/s) −0.48 * −0.24 0.93 *** 0.64 *** 0.50 ** - -

Total overloading
volume for SWSS (106 l) −0.33 −0.05 0.67 *** 0.54 ** 0.12 - -

* Statistical significance levels of the correlation tests are marked with following rule: intervals for p-values (0, 0.001,
0.01, 0.05, 0.1, and 1) <=> symbols (“***”, “**”, “*”, “.”, and “ ”).

Picking up the three most promising precipitation parameters (sum, mean, and max intensity),
an attempt to find an SWSS-overloading threshold with a graphical approach was conducted (Figure 7).
The results indicate a not very good relationship, since even if a linear function can be derived for
the upper part of the graph, most often, the points from the bottom (the maximum node loading)
have different relationships or/and are indistinct. Therefore, the possible ranges of the interception
with the 0-ordinate axis representing the starting of SWSS flooding are relatively big. Nevertheless,
for the maximum intensity, it is possible to detect the upper and lower values of the threshold for each
flooding parameter (0.2 and 1 mm/min, respectively) and for the event sum and the mean intensity—at
least at the upper boundary (60–90 mm and 0.6 mm/min, respectively).
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3.4. Prediction of Overloading Parameters with Multi-Linear Regression

To increase the predictability of the flooding occurrence and its parameters in particular, a second
approach was followed. The MLR was fitted to various combinations of the precipitation parameters
to determine whether this method improved the correlation compared to the pairwise approach.
Here, observed and designed rain events were not separated and acted as one dataset. The adjusted
coefficient of determination (squared correlation coefficient corrected by the number of predictors) was
used as an MLR selection performance measure. The following models were tested: one/two with
original data (all predictors and reduced number if the fit was better) and two/three with transformed
data (all predictors, best predictors with which MLR fits all statistical assumptions, and best predictors
without assumption fitting). The reduction of predictors was based on the pairwise correlation analysis
and the significance of a specific predictor’s coefficient in the summary print of MLR.

At first, the data were tested against the MLR assumptions mentioned in Section 2.5. Approximate
linearity could be confirmed with simple scatter plots (i.e., for the exemplary data in Figure 7).
The independency of certain predictors within a certain pool is defined by parameters such as duration,
sum, and intensity (which are the only ones that are strictly independent); however, a pair like
sum and K3 are also valid. The results of the normality test and histograms for the direct model
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output showed a skewness of the data distribution. Thus, a transformation was necessary. Table 8
shows the result of the Shapiro–Wilk test before and after Box-Cox transformation; additionally,
the transformation parameters are depicted. It could be stated that for all the parameters (except
duration), logarithmic and power (square root) transformation worked, and approximate normality
was achieved. Other assumptions (normality and the absence of the autocorrelation of the model
residuals as well as the homoscedasticity of the variance) had already been tested after the model fitting
employing the Shapiro–Wilk, Durbin–Watson, and Breusch–Pagan tests and MLR diagnostic plots.
A summary of the MLR model fit results and list of the used predictors are shown in Table 9, and the
adjusted coefficients of determination and p-values of the applied tests are presented in Appendix C.
While there were no problems with the residual’s autocorrelation and homoscedasticity for any of
the models, non-transformed data exhibited problems with normality. Finally, only the model with
independent predictors and transformed data fitted all the assumptions. Overall, the coefficients
of determination varied from 0.70 to 0.92, with better performance for the maximum overloading
discharge and slightly worse performance for the total overloading volume.

Table 8. Results of the Shapiro–Wilk test (p-value) before and after Box-Cox data transformation.

Parameter
Raw Data Transformed (Box-Cox) Data

p-Value p-Value λ-Value Transformation Type

Duration (min) 0 0.02 −0.1 ln
Sum (mm) 0 0.92 −0 ln

Imax (mm/min) 0.05 0.13 0.5 sqrt
Imean (mm/min) 0 0.26 0 ln

K1 (1/min) 0 0.31 0.4 sqrt
K2 (-) 0.08 0.40 0.5 sqrt
K3 (-) 0.08 0.16 0.6 sqrt

Max nodal overloading time (h) 0 0.21 0 ln
Max nodal overloading flow rate (l/s) 0.13 0.13 0.7 -

Total overloading volume for SWSS (106 l) 0 0.43 0.3 sqrt

Table 9. Results of the Shapiro–Wilk test (p-value) before and after Box-Cox data transformation.

№ Predictors Transformation
Fitting of MLR Assumptions *

1 2 3 4 5

Total overloading volume for SWSS (106 l)

1 All no X X X V V
2 Duration + Imax + K1 + K3 no X X X V V
3 All yes X X X V V
4 Duration + Imax + Imean + K1 yes X V V V V
5 Duration + Sum + Imax yes V V V V V

Max nodal overloading time (h)

1 All no X X X V V
2 Duration + Sum + Imax + Imean + K1+ K2 no X X X V V
3 All yes X V V V V
4 Sum + K3 yes V V V V V

Max nodal overloading flow rate (l/s)

1 All no X X V V V
2 Duration + Imax + K1 + K3 no X X V V V
3 All yes X V V V V
4 Sum + Imax + K2 yes V V V V V

* 1. Linear relationship and independent predictors, 2. Symmetrical (normal) distribution of predictors, 3. Normality
of the model residuals, 4. Non-autocorrelation of the model residuals, 5. Homoscedasticity of model variance.
Red crosses and green ticks denote to fail/fit of the assumptions.

A graphical representation of the performance for all the tested MLRs and all three overloading
parameters is presented with the scatter plots of those modeled versus those predicted with MLR
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values (Figure 8). It can be observed that none of the derived functions delivers a perfect match. In fact,
there is a tendency to detect flooding when it was not found in the SWMM output and, vice versa,
to underestimate the flooding parameters at high ranges. As expected from Table 9, the maximum
nodal flow rate has much better predictability, while for the flooding time, it seems to be very tricky to
achieve good results. Finally, it is clear that the obtained MLR works much better for the observed
rather than for the designed rain events, especially at high ranges.Hydrology 2020, 7, x FOR PEER REVIEW 17 of 26 
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Transforming the coefficient of determination to Pearson’s correlation, one can finally determine
whether MLR outperformed the pairwise correlation. Using only the MLRs that fit all the statistical
assumptions, it can be stated that MLR could considerably improve the prediction of the flooding time
and volume (Table 10) by approximately 20–40%.

Table 10. Comparison of pairwise and multi-linear regression Pearson’s correlation.

SWSS Overloading Parameter

Pairwise Max Correlation MRL Correlation

Observed +
Designed

Precipitation

Observed
Precipitation

Observed +
Designed

Precipitation

Observed
Precipitation

Max nodal overloading time (min) 0.46 0.59 0.85 *
Max nodal overloading flow rate (l/s) 0.89 0.93 0.90 *

Total overloading volume for SWSS (106 l) 0.68 0.67 0.83 0.83

* One value is given for both cases as both MLRs use K2 or K3, which cannot be derived for design rain.
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3.5. Influence of the Precipitation Resolution

To test the sensitivity of the model to overload depending on the input data quality, all the
scenarios with observed precipitation were rerun with the up-scaled resolution of 5 and 10 minutes.
The results indicate that an increase in the precipitation aggregation period yielded a decrease in the
overloading volume and maximum flow rate and an increase in the maximum flooding time (Figure 9).
However, ANOVA tests showed that the changes are significant (p < 0.0.5) only for the maximum flow
rate. Additionally, simulation errors were compared: the surface runoff errors decreased significantly
with an increase in resolution, while the flow routing errors remained almost at the same level. Overall,
this means that even in the absence of highly resolved precipitation measurements, the modeling of
SWSS overloading could give good results. These results agree with other studies, which show that
precipitation aggregations do not lead to the same noticeable degree of changes in SWSS flow [57].
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4. Conclusions and Outlook

The presented study gives novel insights into the behavior of stormwater sewage systems in
the urban areas concerning their overloading due to heavy rain events, using a numerical modeling
approach and statistical post-processing of the results. Using a case study of a small catchment in
Germany, an SWMM model was set up and calibrated. Several scenarios with observed and designed
precipitation events were tested to study the correlation between rain characteristics and overloading
to detect the flooding of the system and predict its parameters. In our opinion, the goals of this
study were reached, and the case study showed that the methods are applicable and most possibly
transferable. The following conclusions can be drawn:

• The prediction of SWSS overloading using rain forecasts with precipitation characteristics and
a proposed graphical approach is, in general, possible. However, the relationship between the
upper (surface flooding) and the lower (nodal flooding) parts is quite fuzzy for some precipitation
parameters. For the studied SWSS, surface flooding most probably will start after rain with around
1/0.6 mm min−1 of maximum/mean intensity and a total event sum of more than 60 mm.

• The total overloading volume and maximum overloading flow rate showed a higher Pearson’s
correlation with the maximum rain intensity (R = 0.67 and R = 0.93, respectively), and for the
maximum flooding time, the total rain event sum worked better (R = 0.59).

• MLR with the precipitation characteristics can significantly improve the predictability of the SWSS
overloading parameters (with an increase in the Pearson’s correlation coefficient up to 50%). This,
however, could require additional data manipulations.

• Observed and designed rain events behave differently in terms of SWSS overloading; thus,
the analysis and results should be treated separately.
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• The use of the coarser precipitation resolution leads to a decrease in the SWSS overloading volume
and maximum flow and increase in the flooding time (relative changes in median values by
approximately 20–30%).

Besides scientific value, the suggested methods can potentially be applied to improve sewer
system design for extreme scenarios or to establish simple early warning systems for SWSS inundation
based on rain forecasts (without comprehensive operational modeling frameworks) and thus provide
a quick response to support preparations for flooding and the mitigation of its consequences.

Finally, the authors would like to highlight possible future steps for extending the presented study
in the field of extreme precipitation and the prediction of SWSS overloading:

• Testing the approach on different catchments, and the extension of the event sample size to obtain
more robust statistics;

• In-depth research into SWMM event-based calibration for heavy precipitation events;
• Validating the approach with observations;
• Incorporating models capable of the surface routing of overloaded water.

Author Contributions: Conceptualization I.V., F.S., J.B., and F.A.J.; resources (data provision) F.A.J.; formal
analysis, methodology, and investigation, I.V., F.S., and J.B.; writing—original draft and visualization, I.V.; review,
F.A.J., F.S., J.B., and P.K.; supervision, F.A.J. All authors have read and agreed to the published version of
the manuscript.

Funding: Open Access Funding by the Publication Fund of the TU Dresden.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Data Availability: The calibrated model, raw data on the SWSS, discharge measurements, DTM, and prepared
heavy precipitation dataset used in the presented study can be provided upon request. The raw climatological
data can be obtained from the DWD server [28]. The rasters with design heavy precipitation can be obtained from
the KOSTRA-DWD-2010R server [29].

Appendix A

Table A1. Observed and designed rain events.

№ Station Duration
(min)

Sum
(mm)

Max
Intensity
10 min

(mm/min)

Max
Intensity

5 min
(mm/min)

Max
Intensity

1 min
(mm/min)

Mean
Intensity
(mm/min)

K1 K2 K3

1 Hosterwitz 91 42 19.50 10.11 3.03 0.47 0.07 0.25 0.15
2 Hosterwitz 141 36 10.05 6.70 1.54 0.26 0.04 0.34 0.17
3 Hosterwitz 4461 115 1.24 0.71 0.18 0.03 0.00 0.09 0.14
4 Hosterwitz 27 20 11.27 10.24 2.85 0.72 0.15 0.22 0.25
5 Hosterwitz 32 19 14.52 11.15 3.94 0.58 0.21 0.72 0.15
6 Strehlen 48 31 11.36 6.99 1.89 0.64 0.06 0.48 0.34
7 Strehlen 314 44 7.06 4.66 1.28 0.14 0.03 0.70 0.11
8 Strehlen 12 14 8.30 5.33 2.82 1.14 0.21 0.83 0.40
9 Strehlen 37 24 13.02 8.46 2.14 0.66 0.09 0.68 0.31

10 Strehlen 47 48 15.80 11.67 2.83 1.03 0.06 0.15 0.36
11 Strehlen 21 16 10.47 5.78 1.90 0.78 0.12 0.52 0.41
12 Strehlen 1998 77 6.10 3.97 1.17 0.04 0.02 0.09 0.03
13 Strehlen 1024 45 3.05 2.05 0.73 0.04 0.02 0.63 0.06
14 Strehlen 28 16 13.05 7.38 2.15 0.57 0.13 0.18 0.27
15 Klotzsche 921 82 12.80 8.40 1.80 0.09 0.02 0.39 0.05
16 Klotzsche 2330 180 7.40 4.30 1.00 0.08 0.01 0.24 0.08
17 Klotzsche 2826 44 5.30 4.00 1.20 0.02 0.03 0.64 0.01
18 Klotzsche 525 50 18.90 10.20 3.10 0.10 0.06 0.01 0.03
19 Klotzsche 42 17 11.00 9.40 2.50 0.41 0.14 0.40 0.17
20 Klotzsche 63 21 10.40 8.60 2.10 0.33 0.10 0.17 0.16
21 Klotzsche 20 26 21.60 11.10 4.00 1.28 0.16 0.30 0.32
22 Klotzsche 137 27 11.91 6.66 1.83 0.19 0.07 0.08 0.11
23 Klotzsche 39 30 12.85 7.99 2.46 0.77 0.08 0.31 0.31
24 Klotzsche 30 25 12.34 10.47 2.74 0.82 0.11 0.30 0.30
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Table A1. Cont.

№ Station Duration
(min)

Sum
(mm)

Max
Intensity
10 min

(mm/min)

Max
Intensity

5 min
(mm/min)

Max
Intensity

1 min
(mm/min)

Mean
Intensity
(mm/min)

K1 K2 K3

25 Klotzsche 267 33 12.01 6.15 1.38 0.13 0.04 0.06 0.09
26 Klotzsche 2674 79 6.92 5.43 1.68 0.03 0.02 0.08 0.02
27 Klotzsche 39 26 15.63 9.45 3.05 0.67 0.12 0.21 0.22
28 Hosterwitz 82 7 4.84 3.12 0.80 0.09 0.11 0.17 0.11
29 Strehlen 204 13 2.17 1.12 0.31 0.07 0.02 0.19 0.21
30 Strehlen 213 23 4.26 2.67 0.66 0.11 0.03 0.51 0.17
31 Hosterwitz 212 8 0.67 0.41 0.12 0.04 0.01 0.55 0.32
32 Hosterwitz 143 16 3.70 1.94 0.43 0.11 0.03 0.45 0.25
33 Hosterwitz 8 3 3.14 2.54 0.94 0.39 0.30 0.38 0.42
34 Strehlen 27 9 4.72 2.83 0.88 0.34 0.10 0.70 0.38
35 Klotzsche 117 13 3.57 2.37 0.84 0.11 0.06 0.64 0.13
36 Kostra RP2 5 8 15.20 7.60 1.52 1.52 0.20 - -
37 Kostra RP20 5 15 30.00 15.00 3.00 3.00 0.20 - -
38 Kostra RP100 5 20 40.40 20.20 4.04 4.04 0.20 - -
39 Kostra RP2 10 11 11.30 5.65 1.13 1.13 0.10 - -
40 Kostra RP20 10 21 20.70 10.35 2.07 2.07 0.10 - -
41 Kostra RP100 10 27 27.30 13.65 2.73 2.73 0.10 - -
42 Kostra RP2 120 26 2.19 1.10 0.22 0.22 0.008 - -
43 Kostra RP20 120 47 3.95 1.98 0.40 0.40 0.008 - -
44 Kostra RP100 120 62 5.18 2.59 0.52 0.52 0.008 - -
45 Kostra RP2 2880 65 0.23 0.11 0.02 0.02 0.0003 - -
46 Kostra RP20 2880 120 0.41 0.21 0.04 0.04 0.0003 - -
47 Kostra RP100 2880 158 0.55 0.27 0.05 0.05 0.0003 - -

Appendix B

Table A2. Results of the model run with 1 min resolution precipitation input.

№ Max Nodal Overloading
Time (min)

Max Nodal Overloading
Flow Rate (l/s)

Total Overloading
Volume for SWSS (106 l)

Max Relative Nodal
Depth (No Flooding) (%)

1 28.80 163.0 0.8590
2 22.80 86.0 0.1900
3 86
4 13.80 89.0 0.2240
5 11.40 158.0 0.2750
6 25.80 83.0 0.2200
7 22.20 30.0 0.0480
8 10.20 104.0 0.1120
9 18.00 104.0 0.2950

10 35.40 138.0 1.1860
11 12.00 76.0 0.0960
12 18.00 21.0 0.0100
13 8
14 9.60 89.0 0.1340
15 30.60 94.0 0.3280
16 32.40 21.0 0.0180
17 9.60 18.0 0.0100
18 18.00 141.0 0.5050
19 10.80 94.0 0.1480
20 10.80 121.0 0.1820
21 13.20 171.0 0.6460
22 18.60 78.0 0.1500
23 25.20 111.0 0.3370
24 15.00 114.0 0.4540
25 16.20 68.0 0.1200
26 13.20 46.0 0.0430
27 18.00 121.0 0.3920
28 1.80 1.0 0.0001
29 84
30 6.00 4.0 0.0010
31 89
32 76
33 88
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Table A2. Cont.

№ Max Nodal Overloading
Time (min)

Max Nodal Overloading
Flow Rate (l/s)

Total Overloading
Volume for SWSS (106 l)

Max Relative Nodal
Depth (No Flooding) (%)

34 4.20 8.0 0.0010
35 0
36 4.80 93.0 0.0220
37 7.80 140.0 0.2970
38 8.40 185.4 0.6350
39 9.00 69.4 0.0430
40 11.40 161.6 0.4280
41 12.60 170.4 0.9000
42 82
43 0
44 8.8 0.0460
45 93
46 91
47 90

Appendix C

Table A3. Results of MLR fitting and assumptions tests.

Model Adjusted R2

Residuals Normality
(Shapiro–Wilk

Normality Test),
p-Value

Variance
Autocorrelation
(Durbin–Watson

Test), p-Value

Variance
Homogeneity

(Breusch–Pagan
Test), p-Value

Total overloading volume for SWSS

non-transformed 1 0.70 0.00010 0.48 0.43
non-transformed 2 0.72 0.00010 0.68 0.41

transformed 1 0.89 0.0300 0.34 0.56
transformed 2 0.91 0.070 0.38 0.51
transformed 3 0.76 0.94 0.22 0.20

Max nodal overloading time

non-transformed 1 0.78 0.007 0.61 0.62
non-transformed 2 0.79 0.01 0.62 0.740

transformed 1 0.89 0.280 0.57 0.94
transformed 2 0.73 0.06 0.07 0.50

Max nodal overloading flow rate

non-transformed 1 0.91 0.470 0.60 0.87
non-transformed 2 0.92 0.41 0.55 0.51

transformed 1 0.92 0.09 0.66 0.53
transformed 2 0.88 0.90 0.45 0.72
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