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Abstract: In the Volta River Basin, flooding has been one of the most damaging natural hazards
during the last few decades. Therefore, flood frequency estimates are important for disaster risk
management. This study aims at improving knowledge of flood frequencies in the Volta River Basin
using regional frequency analysis based on L-moments. Hence, three homogeneous groups have
been identified based on cluster analysis and a homogeneity test. By using L-moment diagrams
and goodness of fit tests, the generalized extreme value and the generalized Pareto distributions are
found suitable to yield accurate flood quantiles in the Volta River Basin. Finally, regression models of
the mean annual flood with the size of the drainage area, mean basin slope and mean annual rainfall
are proposed to enable flood frequency estimation of ungauged sites within the study area.
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1. Introduction

Flood fatalities in Africa have increased dramatically over the past half-century [1]. In order
to mitigate flood risk, efficient flood management is urgently needed. Flood management, and
especially flood risk assessment, requires the estimation of the relation between flood magnitude
and its probability of exceedance. The estimation of design floods for a site has been a common
problem in some regions, and there is always great interest in this estimation process, particularly
for ungauged basins or for sites characterized by a short sample length. For instance, the prediction
of floods in ungauged or poorly-gauged basins is one of the main tasks of the PUB (Prediction in
Ungauged Basins) initiative, which was launched from 2003–2012 by the International Association
of Hydrological Sciences to engage the scientific community towards achieving major advances in
the capacity to make reliable predictions in ungauged basins [2]. Two main methods are often used
to solve the problem of the data scarcity. The first one is called regional flood frequency analysis
(RFFA), which consist of using the spatial coherence of hydrological variables to provide regional
estimates of flood quantiles, which are superior to at-site estimates even in the presence of moderate
heterogeneity [3]. The second approach is the use of paleo flood data to extend the dataset in time.
Although the use of paleo flood data if available increases the length of the time series for a more
accurate estimation of flood quantiles, paleo flood data may contain many errors and may represent
other climate and land use conditions not comparable with the actual situations.
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With regard to RFFA in Africa, few studies were carried out. For instance, a regional flood
frequency analysis based on L-moments is performed in the KwaZulu-Natal province of South
Africa [4]. Kachroo et al. [5] and Mkhandi et al. [6] proposed some methodologies to delineate
homogeneous regions and identify regional distributions for RFFA in Southern Africa. Padi et al. [7]
performed a large-scale analysis of flood data in Africa using probabilistic regional envelope curves
(PRECs). However, it was the first time an index-flood method with L-moments together was applied
in West Africa, particularly in the Volta River Basin (VRB), in order to identify the suitable flood
frequency distributions.

Several approaches, such as the index flood method, the regional shape estimation procedure, the
“region of influence approach”, the hierarchical regions method, the fractional membership procedure,
the Bayesian approach, PRECs and canonical correlation analysis, have been proposed for the purpose
of RFFA. First, the index flood method was suggested by Dalrymple [8]. It assumes that sites within
the same group are characterized by the same frequency distribution apart from a scaling factor called
the index flood. In addition, the index flood method is based on the identification of homogeneous
groups in which a relationship between the dimensionless flood and the return period is estimated.
The homogeneous group is formed by basins, which are assumed to have similarities in meteorological
and/or morphological characteristics. Secondly, the regional shape estimation method was proposed
by Stedinger and Lu [9]. This method computes the location and scale parameters for each site, while
the shape parameter is calculated by taking the average value in a group. Thirdly, the “region of
influence” approach, developed by Burn [10], is based on the identification of a region of influence,
which consists of sites with similar flood generation processes, and a weight must account for each
site in the estimation of the quantiles. Another technique of regionalization is the hierarchical regions
method [11], which defines first large regions wherein the coefficient of skewness is considered constant,
and these regions are further divided into subgroups, wherein the coefficient of variation is supposed
constant, as well. Then, a relationship is defined between the location parameter of the distribution
and the climatic/physiographic characteristics. In the fractional membership method proposed by
Wiltshire [12], the sites are assumed to have a fractional membership in many regions, rather than
belonging to a particular region, and the parameters of the flood distribution can be estimated via
a weighted average of the corresponding estimates for different regions. Bayesian methods have
been applied to include regional information in flood frequency analysis [13–15]. In these methods,
regional information is first used to define a prior distribution, which is further modified based on
observed data at sites to provide a posterior distribution. PRECs were suggested by Castellarin [16] to
estimate design floods at ungauged basins. In this approach, it is assumed that the flood frequency is
homogeneous, and the flood quantiles are normalized by the drainage area (A) of the basin and then
related to A by a double-logarithmic plot. Canonical correlation analysis (CCA) has been used for the
purpose of regional flood frequency estimation [17,18]. CCA is a multivariate statistical method that
permits establishing the interrelations that may exist between two groups of variables by identifying
the linear combinations of the variables of the first group that are the most correlated to some linear
combinations of the variables of the second group [18]. Table 1 summarizes the advantages and
disadvantages of some procedures of RFFA.

In this study, a RFFA has been performed for the VRB, West Africa. This is important because
accurate at-site frequency analysis for the majority of the sites in the VRB is actually a great challenge
due to the lack of flow gauging stations on many rivers and the short length of the available daily
discharge data. More specifically, the paper applied the index flood methods based on L-moments [19].

The main aim of this study is to determine appropriate flood frequency distributions that enable
adequate estimation of design floods in the VRB. Particularly, three research questions relevant
to the development of a flood frequency model are investigated: (i) what are the best probability
distributions of describing annual maximum discharges (AMAX) in the VRB context? (ii) What are the
best multi-regression models that could be used for estimating AMAX, particularly at ungauged sites
in the study area? (iii) What are the characteristics of AMAX in the VRB?
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Table 1. Pros and cons of some regional flood frequency estimation methods. RFFA, flood
frequency analysis.

RFFA Methods Advantages Disadvantages

Index flood method
The multiplication of regional estimate with
at-site statistic reduces the uncertainties
associated with regionalization.

This method is sensitive to the homogeneity
assumption and the formation of regions.

Regional shape estimation method
This method is more effective when
higher-order L-moment ratios are equal at
each site.

The conditions for good performance of this
method are not physically plausible.

Region of influence method The explicit construction of a region is
not necessary. It is difficult to define the appropriate weights.

Hierarchical approach This method uses more information to
estimate the distribution parameters.

This method may produce abrupt changes in
the parameters from one site to another.

Fractional membership approach The explicit construction of a region is
not necessary. It is difficult to define the appropriate weights.

Bayesian method
This model accounts for sources of
uncertainty, and the homogeneity of the
sites is not required.

The prior distributions of parameters are not
precise and do not add more precision to the
estimates [3].

Probability regional envelope curves This method is more effective to estimate
very high flood quantiles.

The logarithmic transformations may introduce
biases in the estimates.

Canonical correlation analysis method
Possibility to predict multiple dependent
variables from multiple
independent variables.

One is constrained to identify linear
relationship, which may not be reasonable.

2. Methodology

In this study, we apply the index flood method based on L-moments, as reported by Hosking and
Wallis [19]. The methods used in the present study are articulated in five steps: (i) screening of the data;
(ii) identification of homogeneous groups; (iii) selection of the regional flood frequency distributions;
(iv) development of regional growth curves; and (v) development of prediction equations for the mean
annual flood.

2.1. Study Area and Data

The present study is carried out in the Volta River Basin (VRB) of West Africa. Its geographic
coordinates range from 5˝30’W–2˝00’E longitude–5˝30’N–14˝30’N latitude. The VRB covers a total
area of about 400,000 km2, and it is drained by four main rivers, namely the Black Volta, White Volta,
Oti and Main Volta rivers (Figure 1). According to Amisigo [20], the mean annual discharge of the
Black Volta River near its source is around 0.4 km3; the mean annual discharge of the White Volta River
is about 0.2 km3 downstream of its source; and the Oti River joins the Main Volta with a flow of about
12.7 km3/year. In addition, the actual study sites are located upstream of the large Volta Lake created
by the Akosombo Dam in Ghana. Twenty three flow gauging stations were selected for this study and
the main criteria used to choose the sites were based on the length of record periods (minimum of
thirteen years) and continuity (no consecutive gaps). Specifically, the AMAX were obtained for the
years 1950–1973 for the White Volta and Black Volta from Moniod et al. [21] and for the years 1959–1990
for the Oti River. The mean annual precipitation values (1956–1974) for the sites of the White and Black
Volta sub-basins were obtained from Moniod et al. [21], while some mean annual precipitation values
(1975–2007) for the Oti River sub-basin were computed based on observed daily rainfall data. Tables 2
and 3 show respectively the inter-site correlation of the AMAX and characteristics of the sub-basins
(sites) used in this study.

2.2. L-Moment

L-moments are improvements over ordinary product moments. They are used to characterize
the shape of a frequency distribution and estimate the parameters of this distribution, especially for a
small size of environmental data [19]. For a detail description of L-moments, the reader is referred to
Hosking [22]. The sample L-moments can be estimated using Equation (1) [22]:
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lr`1 “

r
ÿ

k“0

P˚
r,k bk (1)

P˚
r,k and br are given in Equations (2) and (3), respectively. lr` 1 is the (r + 1)-th L-moment of the sample.

P˚
r,k “ p´1qr´k

˜

r
k

¸˜

r` k
k

¸

(2)

br “ n´1
n
ÿ

j“1

pj´ 1q pj´ 2q . . . . pj´ rq
pn´ 1q pn´ 2q . . . . pn´ rq

xj (3)

where xj, for j = 1, . . . ,n, is the ordered sample and n is the sample size. Moreover, in RFFA based on
L-moments, L-moments ratios of the sample are estimated using Equation (4):

tr “
lr
l2

(4)

where tr is the r-th sample L-moment ratio and lr is the r-th sample L-moment. Specifically, the sample
L-coefficient of variation (L-cv) is t = l2{l1, while the sample L coefficient of skewness (L-skew) is
t3 “ l3{l2, and the sample L-coefficient of kurtosis (L-kur) is t4 “ l4{l2 [22].
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Table 2. Inter-site correlation of annual maximum discharges (AMAX) in the Volta River Basin.

Stations Periods Inter-Site Correlation Squared (R2 )

Nwokuy, Boromo 1955–1973 0.19
Boromo, Lawra 1955–1973 0.06

Lawra, Bui 1954–1973 0.01
Bui, Bamboi 1954–1973 0.01

Yakala, Nangodi 1958–1973 0.10
Nangodi, Nakpanduri 1958–1972 0.37
Nakpanduri, Pwalugu 1958–1972 0.21

Pwalugu, Yagaba 1958–1973 0.00
Yagaba, Nawuni 1958–1973 0.00
Nawuni, Yapei 1953–1967 0.00

Tiele, Porga 1963–1973 0.21
Porga, Mandouri 1963–1979 0.00

Mandouri, Borgou 1960–1979 0.00
Borgou, Mango 1960–1987 0.00

Mandouri, Mango 1959–1979 0.01
Mango, Titira 1962–1987 0.11

Titira, Naboulgou 1962–1987 0.62
Naboulgou, Koumangou 1962–1987 0.00
Koumangou, Lama-Kara 1959–1987 0.03

Lama-Kara, Saboba 1959–1987 0.00
Mango, Saboba 1959–1989 0.00
Saboba, Sabari 1959–1990 0.71

Table 3. Site characteristics used in the RFFA. L-cv, L-coefficient of variation; L-kur, L-coefficient
of kurtosis.

Number Site Name River Area (km2)
Main Slope

(%)
Sample Length

(Year) L-cv L-skew L-kur

1 Nwokuy Black Volta 14,800 0.70 20 0.20 0.06 0.24
2 Boromo Black Volta 35,000 0.40 19 0.15 0.01 0.06
3 Lawra Black Volta 66,820 1.10 23 0.23 0.15 0.10
4 Bui Black Volta 96,000 1.47 20 0.26 0.25 0.30
5 Bamboi Black Volta 134,200 0.11 24 0.25 0.20 0.19
6 Yakala White Volta 31,680 1.19 18 0.22 ´0.03 ´0.04
7 Nangodi Red Volta 11,570 1.41 16 0.25 0.03 0.10
8 Nakpanduri White Volta 1530 1.47 15 0.23 ´0.05 0.04
9 Pwalugu White Volta 63,350 1.09 16 0.22 0.00 0.07
10 Yagaba White Volta 10,600 0.45 16 0.26 ´0.23 0.11
11 Nawuni White Volta 92,950 1.05 21 0.13 ´0.31 0.20
12 Yapei White Volta 102,170 1.11 17 0.19 0.04 0.09
13 Tiele Magou 836 1.56 13 0.17 0.21 0.16
14 Porga Pendjari 22,280 0.33 27 0.28 0.13 0.13
15 Mandouri Oti 29,100 0.80 21 0.21 0.01 ´0.03
16 Borgou Sansargou 2280 0.99 28 0.31 ´0.03 0.06
17 Mango Oti 35,650 0.33 37 0.32 0.23 0.07
18 Titira Keran 3695 0.89 26 0.31 0.06 ´0.04
19 Naboulgou Keran 5470 1.153 26 0.19 0.01 0.06
20 Koumangou Koumangou 6730 0.70 29 0.14 ´0.03 0.19
21 Lama-Kara Kara 1560 2.52 34 0.26 0.06 0.06
22 Saboba Oti 53,090 1.44 32 0.24 0.11 0.01
23 Sabari Oti 58,670 0.49 32 0.28 0.10 0.01

2.3. Data Screening

In order to check for errors in the data, outliers and trends, the discordancy measure pDiq for
a site i as shown in Equation (5) was applied to the AMAX series of the 23 gauge stations in the VRB.
The critical value of Di depends on the number of sites (N). For N ě 15, Di must be less than or equal
to 3.0 for the site to be considered in the RFFA; otherwise, it is deleted from the dataset [19].
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Di “
1
3

N
`

Ui ´U
˘T

”

`

Ui ´U
˘ `

Ui ´U
˘T
ı´1

`

Ui ´U
˘

(5)

where U is the vector of L-moments and N is the number of sites. U is an average of U.

2.4. Identification of Homogeneous Groups

2.4.1. Cluster Analysis

The aim of the cluster analysis is to partition data into clusters in a way that sites belonging to the
same cluster are similar regarding their climatic/physiographic characteristics. In this study, Ward’s
algorithm [23] is used to form clusters with respect to the mean slope and drainage area of the basins,
because this method is able to produce homogeneous clusters that have approximatively the same size.

Ward’s method is a hierarchical clustering that uses the increase in the total within-group sum of
squares as a result of joining groups. The application of the hierarchical clustering was based on the
standardized Euclidean distance (d), which is given by Equation (6) [24]:

d2 pp, qq “
`

xp ´ xq
˘

D´1 `xp ´ xq
˘T (6)

where xp and xq are the coordinate of sites p and q in the physiographic space and D´ 1 is a diagonal
matrix. Since the variables are expressed in different units, each coordinate in the sum of squares
is inverse weighted by the sample variance of that coordinate in order to eliminate the scale effects
between the variables [24]. In addition, the within-group sum of squares (GSS) of a cluster is defined
as the sum of the distance between all objects in the cluster and its center of gravity. It can be expressed
by Equation (7) [24]:

GSSr “

nr
ÿ

i“1

d2 pxri ´ xrq (7)

where nr and xr are respectively the size and the centroid of cluster r.
According to Hosking and Wallis [19], the results from the cluster analysis need not, and usually

should not, be final. Many types of subjective adjustment of groups may be useful to improve the
homogeneity of the clusters. In this study, a few sites were moved from one cluster to another, and one
site was deleted after the cluster analysis in order to improve the homogeneity of the groups.

2.4.2. Homogeneity Test

To identify the homogeneous groups, a homogeneity test was first applied to the Volta River Basin
as a single region and secondly to the clusters. The principle of the homogeneity test is to compare
the observed variations in L-moments ratios for the sites in each region with the ones that would be
expected for a homogeneous region [19]. The variations in L-moments are computed as the standard
deviation of at site L-cv weighted proportionally to the data length at each site. In order to ascertain
what would be the variation in L-moments ratios for a homogeneous region, the four-parameter kappa
distribution is fitted to the regional average L-moment ratios to generate a large number (greater than
or equal to 500) of Monte Carlo simulations. The kappa distribution is chosen because it is a generalized
distribution that produces many distributions as particular cases of the parameter values [19]. The
heterogeneity measure, Hj (j = 1, 2, 3) is given by Equation (8):

Hj “
Vj´µvj

σvj

(8)

where H1 is the heterogeneity measure based on observed V1, which is the weighted standard deviation
of t values, H2 is the heterogeneity measure based on observed V2, which is the weighted standard
deviation of (t/t3) distance, H3 is the heterogeneity measure based on observed V3, which is the
weighted standard deviation of (t3/t4) distance, and µvj and σvj are the mean and standard deviation of
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the simulated values of Vj. According to Hosking and Wallis [19], a group is “acceptably homogeneous”
if Hj ă 1, “possibly heterogeneous” if 1 ď Hj ă2 and “definitely heterogeneous” if Hj ě 2.

2.5. Selection of the Regional Flood Frequency Distribution

The next step after the formation of homogeneous groups is to choose the best distribution for
each homogeneous group. The selection of the distribution that will yield the accurate quantiles was
thus carried out in this work by first applying the L-moment diagram method to the homogeneous
groups. L-moment diagrams are useful for evaluating which distribution(s), among a suite of possible
models, provides a satisfactory approximation to the distribution of a particular hydrologic variable
in a region [25]. In L-moment ratio diagrams, the sample L-skewness versus the sample L-kurtosis
is plotted on a graph with the theoretical L-moment ratios of the candidate distributions. On these
diagrams, a three-parameter distribution is plotted as a line, and the best distribution is the one whose
line is closer to the majority of the sample data. Nevertheless, the graph may not have a good power of
discrimination when many probability distributions are suitable for the sample data in L-moment ratio
diagrams. For this reason, a numerical goodness of fit test, called the Z-statistic, is secondly applied
to choose the best frequency distributions. This numerical test is based on the comparison between
sample L-kurtosis and population L-kurtosis for the selected theoretical distributions. The test statistic,
called ZDist, is defined in Equation (9) as follows:

ZDist “
´

τDist
4 ´ tR

4 ` B4

¯

{σ4 (9)

where Dist refers to a particular distribution, τDist
4 is the L-kurtosis of the selected distribution, tR

4 is
the regional weighted average of sample L-kurtosis and B4 and σ4 are respectively the bias of tR

4 and
the standard deviation of sample L-kurtosis. For each of the groups, a kappa distribution with its
parameters estimated from the fitting of the distribution to the regional average L-moments ratios is
used to simulate a large number of realizations for the same region. The frequency distribution that
has the smallest absolute ZDist is chosen as the best among other possible frequency distributions. At
a confidence level of 90%, the critical value of absolute ZDist is 1.64 [19]. Finally, quantile-quantile
plots were used to compare the estimated quantiles and the observed flood values and to check the
validity of the estimates provided by a fitted theoretical distribution. Five three-parameter theoretical
distributions, namely the generalized logistic distribution (GLO), the generalized extreme value
distribution (GEV), the generalized Pareto distribution (GPA), the generalized normal distribution
(GNO) and the Pearson Type III distribution (PE3), were considered in this study.

2.6. Development of Regional Growth Curves

In an RFFA using the index flood approach, a relationship is established between a flood quantile
of a given return period Q (T), and an index flood (taken as the mean AMAX series, Qm) by introducing
a regional growth curve, qR. This relationship is shown in Equation (10):

Q pTq “ qR ˚Qm (10)

T is the return period. Moreover, qR depends only on the parameters of the frequency distribution and
the return periods. For instance, qR for the GPA distribution is given in Equations (11) and (12), while
Equations (13) and (14) show the expressions of qR for the GEV distribution.

qR “ ε`
α

k

«

1´
ˆ

1
T

˙k
ff

for k ‰ 0 (11)

qR “ ε´ αlog
ˆ

1
T

˙

for k “ 0 (12)
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qR “ ε`
α

k

#

1´
„

´log
ˆ

T´ 1
T

˙k
+

for k ‰ 0 (13)

qR “ ε´ α

"

log
„

´log
ˆ

T´ 1
T

˙*

for k “ 0 (14)

where α, ε and k are, respectively, the scale, location and shape parameters of the distributions.

2.7. Development of Regression Models

In order to estimate the flood quantile for a given return period, the value of the index flood
(Qm) is needed. Because of the dearth of observed discharge data at the ungauged basins, Qm cannot
be calculated. In this case, a regression model between Qm and physiographic or climatic basin
descriptors, such as the drainage area, slope, altitude and mean annual precipitation (depending on
data availability), is often used to estimate the index flood at ungauged sites, because the variation
in flow discharges is related to the variations in physiographic and climatic characteristics of the
basin. Usually, the study area is split into regions that are not necessarily homogeneous [26]. In this
study, regression models were estimated separately for the White and Black Volta basins and the Oti
River Basin.

Furthermore, a stepwise multi-regression with the forward selection method has been used to
choose the best regression models. This method adds one independent variable at a time, which
increases the coefficient of determination (R2) value of the regression. We started with the drainage
area (A) of the basins in the equations. Then, other independent variables, such as mean slope (S),
mean annual precipitation (P) and, elevation, are checked one at a time, and the most significant is
added to the model at each stage. The procedure was terminated when all of the independent variables
not in the equations have no significant effect on R2.

3. Results and Discussion

Figure 2 gives the discordancy measures of the sites. It appears that only Site Number 11 is
discordant with a Di value of 3.36, and it was consequently deleted from the dataset. In addition,
treating first the whole VRB as a single region, the values of the different heterogeneity measures
H1, H2 and H3 obtained were respectively 4.11, 3.02 and 2.77. Therefore, the VRB is “definitely
heterogeneous”, and homogeneous groups need to be formed.Hydrology 2016, 3, 5 10 of 17 
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3.1. Formation of Homogeneous Groups

Figure 3 and Table 4 show the results of the cluster analysis. It can be seen from Table 4 that
Cluster 1 is “acceptably homogeneous”, whereas Clusters 2 and 3 are “definitively heterogeneous”.
Consequently, the clusters were adjusted to obtain the final groups shown in Table 5. It should be
noted that the final groups are all “acceptably homogeneous”.
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Figure 3. Formation of three groups through the cluster analysis.

Table 4. Characteristics of the initial clusters.

Clusters Number of Sites H1 H2 H3 Homogeneity

1 6 0.44 ´0.32 0.39 Homogeneous
2 10 4.48 3.19 2.69 Heterogeneous
3 6 1.65 2.30 3.03 Heterogeneous

Table 5. Homogeneity measure of the final groups.

Groups Number of Sites H1 H2 H3 Homogeneity

A 7 0.12 0.29 0.43 Homogeneous
B 7 ´2.02 0.70 0.98 Homogeneous
C 7 ´0.21 ´1.34 ´0.37 Homogeneous

In addition, the location of the final homogeneous groups is shown in Figure 4. One can notice
that all the sites of Group A are situated in the Oti River Basin, while those of Group B are located in
the White and Black Volta basins. The sites of Group C are scattered in the White Volta, Black Volta
and Oti basins. Similar results were found by Burn and Goel [27], who confirmed that in RFFA, the
catchments of a given homogeneous region may not be geographically contiguous, but similar in terms
of their flood generation processes.
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The choice of the appropriate distribution for each group is based on L-moment ratio diagrams, 
Z-statistic tests and quantile-quantile plots. First, Figure 5 shows the L-moment ratio diagrams for 
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Figure 4. Location of the final homogeneous groups (for the site characteristics; please see Table 3).

3.2. Selection of Appropriate Distributions

The choice of the appropriate distribution for each group is based on L-moment ratio diagrams,
Z-statistic tests and quantile-quantile plots. First, Figure 5 shows the L-moment ratio diagrams for
the homogeneous groups. It may be noted that the maximum of sample sites lies close to the GPA
distribution line for Group A, whereas the sample sites are closer to the GEV and GPA distribution
for both group B and Group C. Secondly, Table 6 summarizes the Z-statistic values of the appropriate
candidate distributions for the homogeneous groups. In this table, it is observed that only the GPA
distribution has the absolute value of the Z-statistic less than 1.64 for Group A and the GEV distribution
has the lowest absolute value of the Z-statistic, which is less than 1.64, for both Group B and Group C.
Hence, the GPA distribution can be considered as the regional distribution for Group A, while the GEV
distribution is acceptable for both Groups B and C. These results are confirmed by the quantile-quantile
plots for which the points lie approximately on the 1:1 line (Figure 6).

Table 6. Z-statistic values of the homogeneous groups.

Distribution Group A Group B Group C

Generalized Pareto distribution 0.55 ´2.57 ´3.57
Generalized extreme value distribution 4.29 0.39 0.15

Pearson Type III distribution 4.20 0.40 0.55
Generalized normal distribution 4.45 0.52 0.56
Generalized logistic distribution 6.67 1.87 2.04
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3.3. Flood Frequency Relationships

3.3.1. Regional Growth Curves

Table 7 and Figure 7 show respectively the quantile functions and the regional growth curves of
the homogeneous groups. Table 7 shows also the fitted parameters to the distributions selected. In
order to estimate the flood quantile for a given return period, Equation (10) is used. For the ungauged
sites where observed discharge data are not available to compute the index flood (Qmq, the values of
Qm are estimated via a multi-regression model.
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Table 7. Quantile functions of the homogeneous groups.

Group Distributions and Their Parameters Quantile Functions

A GPA : ε = 0.25; α = 1.22; k = 0.62 qR = 0.25 + 1.97

#

1´
ˆ

1
T

˙0.62
+

B GEV :ε = 0.82; α = 0.38; k = 0.12;
qR = 0.82 +

3.17

#

1´
„

´ln
ˆ

T´ 1
T

˙0.12
+

C GEV: ε = 0.88; α = 0.30; k = 0.23
qR = 0.88 +

1.30

#

1´
„

´ln
ˆ

T´ 1
T

˙0.23
+
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It can be seen from Figure 7 that the regional flood frequency curves for the different groups in
the Volta Basin are relatively flat. This result confirms the findings of Meigh et al. [28], who showed
that regional curves in West Africa and some regions affected by monsoon are “fairly flat”. Moreover,
Sutcliffe and Farquharson [29], cited in Meigh et al. [28], noted that a feature of many basins with flat
curves is that floods appear to be due to the accumulation of rainfall over a distinct wet season or
monsoon and that the date of the annual maximum flood is relatively constant from year to year. This
means that the peak flow is more likely to be related to the annual total rainfall, which is less variable
than storm rainfall [28].

3.3.2. Regression Models

Table 8 and Figure 8 show respectively the best regression models and the comparison between
estimated quantiles and the observed values of Qm (index flood). In these equations, A, P and S are
respectively the drainage area, the mean annual precipitation and the mean slope of the basins. The
powers associated with the area (0.61 and 0.8) are comparable to the findings of other similar studies,
such as Lim et al. [30] and Noto et al. [31]. These values (0.61 and 0.8) are also reasonable because they
show that the mean specific discharge (Qm{Aq decreases with the area [32].

Table 8. Regression models for the estimation of the index flood at ungauged sites.

Sub-Basins Regression Models R2

Oti River Qm “ 10´7S0.41 A0.61P2.42 0.96
White Volta and Black Volta Qm “ 3ˆ 10´6S0.28 A0.8P1.52 0.91
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In addition, Pandey and Nguyen [33] have shown that the non-linear optimization model is
the best method for estimating the power-form flood regionalization model when compared to
linear regression models. The same authors conclude that in terms of flood quantile prediction and
parameter uncertainty, the non-linear optimization model is the most robust when compared to the
linear regression methods. Consequently, the regression models obtained are suitable to estimate index
floods for regional flood estimation in the Volta River Basin.

4. Conclusions

Flood fatalities in West Africa have increased during the last two decades. Thus, efficient flood
risk management is urgently needed to reduce the vulnerability of the local population. The first
step in any flood management project is to determine the relationship between peak flows and the
associated return periods. However, the estimation of flood values with high recurrence intervals,
such as extreme floods, for a site of interest poses a great challenge in the Volta River Basin due to the
lack of sufficient hydrological information.

We have presented a flood estimation procedure for the Volta River Basin in West Africa using
regional flood frequency analysis methods based on L-moments. This study represents a huge step
forward in the local context towards improvement of design flood estimates. The selection of the
appropriate frequency distributions was based on the identification of homogeneous regions using
both the clustering algorithm and statistical tests, L-moment ratio diagrams, quantile-quantile plots
and a numerical goodness of fit test (Z-statistic). It was found that GPA and GEV distributions are
the most robust flood frequency distributions among five candidate three-parameter distributions. In
addition, the relatively flat shape of the flood frequency curves may suggest that flood in the Volta
River Basin is caused by an accumulation of rainfall over the monsoon (rainy season), rather than by a
storm rainfall. Based on the acceptable results shown in this article, we conclude that the outcomes of
this study can be used to predict flood quantiles and the associated recurrence intervals. In addition,
the design floods can be used as inputs to hydraulic models to produce flood hazard maps for rivers
within the Volta Basin. Finally, due to the evidence of future climate change, further analyses are
needed to understand the effects of climatic variables, such as rainfall, on the variability of L-moments
of annual maximum floods in the study area.
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