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Abstract: The objective of this paper is to use autoregressive, integrated, and moving average
(ARIMA) and transfer function ARIMA (TFARIMA) models to analyze the behavior of the main water
quality parameters in the initial components of a drinking water supply system (DWSS) of a megacity
(Bogota, Colombia). The DWSS considered in this study consisted of the following components:
a river, a reservoir, and a drinking water treatment plant (WTP). Water quality information was
collected daily and over a period of 8 years. A comparative analysis was made between the com-
ponents of the DWSS based on the structure of the ARIMA and TFARIMA models developed.
The results show that the best water quality indicators are the following: turbidity > color > total iron.
Increasing the time window of the ARIMA analysis (daily/weekly/monthly) suggests an increase
in the magnitude of the AR term for each DWSS component (WTP > river > reservoir). This trend
suggests that the turbidity behavior in the WTP is more influenced by past observations compared to
the turbidity behavior in the river and reservoir, respectively. Smoothing of the data series (moving
average) as the time window of the ARIMA analysis increases leads to a greater sensitivity of the
model for outlier detection. TFARIMA models suggest that there is no significant influence of past
river turbidity events on turbidity in the reservoir, and of reservoir turbidity on turbidity at the WTP
outlet. Turbidity outlier events between the river and reservoir occur mainly in a single observation
(additive outliers), and between the reservoir and WTP also have a permanent effect over time (level
shift outliers). The AR term of the models is useful for studying the transfer of effects between DWSS
components, and the MA term is useful for studying the influence of external factors on water quality
in each DWSS component.

Keywords: ARIMA model; ARIMA transfer function model; drinking water supply system; forecast;
time series analysis; water quality

1. Introduction

Water resources are fundamental for life and the development of human activities in
megacities [1]. The sustainable management of water resources and drinking water supply
systems (DWSSs) is important to meet the economic, social, environmental, and public
health demands of urban communities under rapidly growing conditions [2,3]. In recent
decades, water scarcity due to climate variability and change and the deterioration of water
quality due to the rapid growth of megacities have become some of the main problems of
DWSSs [4,5]. Protection and control of water sources is necessary to comply water quality
guidelines and reduce drinking water treatment costs [6]. Poor characterization of water
quality results in a significant variability of the parameters involved during the operation
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of DWSSs. In effect, this makes it difficult to manage DWSSs [7]. Water quality for human
consumption is one of the most important determinants of public health in developing
countries [8]. Despite the significant progress that has been made, the influence of natural
and anthropogenic factors continue to affect DWSSs, creating significant challenges during
their operation in urban areas [9]. Natural environmental factors such as water quantity and
quality influence public health. Dynamic interplay of natural and anthropogenic factors
can negatively influence DWSSs, leading to the emergence of infectious (biological agents)
or noninfectious (chemical or physical agents) diseases [10]. This scenario is probably
intensified by the particular social and economic conditions of developing countries.

The Latin American megacity where the DWSS under study is located (Bogota, Colom-
bia) is undergoing massive urban expansion processes [11]. Urban expansion shows strong
pressures on the territory due to the construction of rural housing and the development of
tourism, industrial, agro-industrial, and agricultural projects (e.g., potato crops, pig farms,
and cattle ranching) [12]. This scenario generates a high water demand and consequently
a high wastewater discharge into the water supply sources [13]. In the sanitation and
discharge management plans of the basins, deficiencies are reported in the wastewater
treatment generated by the different residential and industrial sectors settled in these
areas [14]. There are also difficulties on the part of environmental institutions to implement
effective control and surveillance mechanisms to monitor compliance with local water
quality guidelines [15]. Moreover, adverse effects on the quality and quantity of water
supply sources associated with the El Niño–Southern Oscillation (ENSO) climate variability
phenomenon have been reported. On the one hand, there is an increase in water turbidity
in water supply sources due to sediment entrainment from increased rainfall and runoff.
On the other hand, there is a decrease in the water flow in the supply sources during
periods of decreased rainfall [16]. Another influential factor for the DWSS under study
is the destruction of vegetation cover in the upper part of the basin, thus disturbing the
hydrological cycle and reducing water availability [17].

Anthropic and natural factors influence the operation of DWSSs. This influence
generates an increase in the consumption of reagents and hinders the operation of the
drinking water treatment plants (WTPs) [18]. Under this scenario, there is an increase in
the operating costs of the DWSS in order to comply with water quality guidelines [10].
The organizations in charge of the DWSS operation have visualized new management tools
for the monitoring and control of water quality. Autoregressive, integrated, and moving
average (ARIMA) models are then presented as a suitable analysis tool for decision making
related to the management of DWSSs in developing countries [19]. Multivariate statistical
analysis methods (e.g., cluster and principal component analysis) in combination with
ARIMA models may provide a comprehensive view to study water quality parameters
in each of the main components of a DWSS (water source, reservoir, and WTP) [20].
In addition, the use of ARIMA transfer function (TFARIMA) models is useful in this type
of analysis in DWSSs. ARIMA transfer function models are used to model the relationship
between two time series [21]. These models are built from an ARIMA model applied to
both series and use the transfer function to describe how changes in one series directly
affected the other. This approach is useful in situations where there is a known or theoretical
relationship between the two series and the aim is to model and understand this relationship
for forecasting or analytical purposes (effect of one DWSS component on another) [22].

Time series analysis of water quality parameters using ARIMA models can provide ac-
curate short-term forecasts from a significant amount of information [23].
ARIMA modeling is the combination of three processes: autoregressive (time series mem-
ory), differencing (time series trend), and moving average (time series variability) [24].
In time series analysis, ARIMA models are flexible and widely used in the water quality
context. For example, [25] adequately modeled the water quality of a river (Johor River)
in Malaysia using ARIMA models. These researchers studied the possible relationship
between river water quality parameters (pH, color, and turbidity) and hydrological vari-
ables of the catchment (rainfall and river flow). The authors of [26] reported that by using
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ARIMA models improved the accuracy of water quality prediction (total phosphorus and
total nitrogen) in a reservoir by 97.5%. The authors of [27] used ARIMA models to study
the daily performance of a DWSS. These researchers used turbidity (ARIMA: 3, 1, 0) and
pH (ARIMA: 1, 1, 1) as indicator parameters of WTP performance from the use of ARIMA
models. In addition, [28] reported the need to use ARIMA models in combination with
multivariate analysis to study in more detail the information of water quality (electrical
conductivity, temperature, dissolved oxygen, ammonium, nitrates, pH, and total phospho-
rus) of the Pinios River (Greece). These researchers were able to visualize decision-making
strategies for river pollution control. Multivariate statistical analyses were also used in
the analysis of physicochemical water quality information and these techniques were an
effective tool for their evaluation [29]. For example, [30] used hierarchical cluster anal-
ysis to detect the best water quality indicator parameters in three WTPs in Iraq. Of the
32 parameters analyzed, they detected the following as water quality indicators: Turbidity,
electrical conductivity, total alkalinity, total alkalinity, total hardness, total coliforms, and
fecal coliforms. The authors of [31] used principal component analysis (PCA) and cluster
analysis (CA) to assess the water quality (Ph, electrical conductivity, total dissolved solids,
hardness, salinity, and alkalinity) of Bannu district (Pakistan). The authors of [32] also
used multivariate techniques (PCA and CA) to analyze water quality (alkalinity, calcium,
chloride, pH, conductivity, hardness, nitrate, and sulfate) in DWSSs of 164 municipalities
in Italy.

The main objective of this paper is to use ARIMA and TFARIMA models to analyze the
temporal behavior of the main water quality parameters in the initial components of a DWSS
in a Latin American megacity (Bogota, Colombia). The components of the DWSS considered
in this study are the following: a natural source of water (Teusacá River), a reservoir (San
Rafael), and a WTP (Francisco Wiesner). In the context of the management of DWSSs, this
study is relevant for the following practical aspects: (1) the applicability of ARIMA and
TFARIMA models to study the performance of DWSSs; (2) the combined use of ARIMA and
TFARIMA models, and multivariate statistical methods as an integral decision-making tool for
the management of these DWSSs; and (3) to study the occurrence of atypical events (outliers)
and their transfer over time on the different components of a DWSS.

2. Materials and Methods
2.1. Research Site

The research site corresponded to the northern DWSS of the megacity of Bogota, Colom-
bia (4◦41′23′′ N—73◦59′44′′ W). The DWSS considered in this study consisted of the Teusacá
river, San Rafael reservoir, and Francisco Wiesner treatment plant (Figure 1). The climate
around the DWSS was characterized as equatorial mountain (Csbi) or tropical mountain
climate, with moderate rainfall and drought. This is according to the Köppen-Geiger climate
classification [33]. On average, on an annual basis, the temperature was 12.4 ◦C (daily oscil-
lation between 8–17 ◦C) and rainfall was 1520 mm. Due to the influence of the Intertropical
Convergence Zone (ITCZ), the annual rainfall regime was bimodal. That is, two seasons of
increased rainfall (April–May and October–November) and two seasons of decreased rainfall
(January–February and July–August) were evident. The average elevation of the study sites
was between 2776–2813 masl.
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Figure 1. Components of the DWSS under study (river, reservoir, and WTP).

The mean flow from multiperiod (1 January 2008–31 December 2015) of the Teusacá
river was 2.55 m3/s. This river flow record corresponded to the entry point into the San
Rafael reservoir (Figure 1; water intake, river). On average, the water volume contributed
by the river corresponded to 5% of the total water volume of the reservoir (75 million
m3). The remaining 95% of the water volume was provided by a transfer from the Chuza
reservoir, which was located 33.7 km away. The water intake at the reservoir was located
1.05 km from the river discharge. Francisco Wiesner’s treatment plant was a direct filtration
plant. In other words, the water was treated without the conventional flocculation and
sedimentation processes. The water to be treated was received directly from the San Rafael
reservoir from a pumping station made up of four units, each of which had a capacity of
5 m3/s. The maximum treatment capacity of the WTP was 14 m3/s. Subsequently, the
water treated was sent to a disinfection tank (mixed oxidant solution) and contact chamber,
which had a volume of 50,000 m3. Lastly, the water was piped to the megacity through a
distribution network. The average water quality characteristics of the different components
of the DWSS are shown in Table 1.

Table 1. Water quality parameters in the different components of the DWSS under study.

Parameter
Station

Teusacá River San Rafael Reservoir WTP

Turbidity (NTU) 44.8 3.83 0.67
Color (CU) 77.4 18.3 3.70

Conductivity (uS/cm) 205 46.3 42.9
pH 7.06 7.06 6.69

Total alkalinity (mg/L CaCO3) 14.4 15.4 12.2
Chlorides (mg/L Cl−) 57.1 5.38 4.24
Total iron (mg/L Fe+3) 1.85 0.41 0.06
Nitrites (mg/L NO2) 3.88 0.28 0.01

Nitrates (mg/L NO3) * 0.75 0.26 0.11
Total hardness (mg/L CaCO3) * 12.6 17.2 18.9
Dissolved oxygen (mg/L O2) * 7.12 6.79 N.A.

Sulfates (mg/L SO4) * 0.48 1.17 5.50
Total coliforms (CFU/100 mL) 66,602 2485 0.00

E. Coli (CFU/100 mL) 19,353 53.6 0.00
Note: sample size per variable = 2922 data (daily information), * = sampled on average once per week, and N.A. =
not applicable.
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2.2. Data Collection

Three monitoring stations were established for the DWSS: (1) Teusacá river, (2) San
Rafael reservoir, and (3) WTP outlet (Figure 1). The water quality parameters considered at
each monitoring station were as follows: turbidity, color, conductivity, pH, total alkalinity,
chlorides, total iron, nitrites, total coliforms, and E. coli. Water quality information was
collected daily and over a period of 8 years. Namely, the sample size for each variable
considered was 2922 data. The following water quality parameters were not considered in
the time series analysis because they were sampled on average once a week: nitrates, total
hardness, dissolved oxygen, and sulfates (Table 1). The collection of water samples at each
of the monitoring stations followed the guidelines established by the Standard Methods
for the Examination of Water and Wastewater [34]. Water samples from the reservoir were
taken at the outlet of the water delivery pipe, inside an incoming hydraulic structure at the
WTP. The water came from a pumping station located 42.5 m deep in the reservoir. Water
samples were collected in 2 L plastic bottles (n = 3), which were previously cleaned and
sterilized. The bottles were washed and rinsed several times with water from the sampling
point before filling. Samples were taken while the water was flowing at a constant rate.
Disposable gloves were also used during sampling. The bottles were filled without leaving
air bubbles and closed immediately. Lastly, the bottles were labeled and transported (5 ◦C)
for laboratory analysis [34]. In general terms, the sample collection procedure in the river
and at the outlet of the WTP was like that described above. At the latter sampling point
there was a valve for taking water samples.

2.3. Data Analysis

Laboratory analysis for each of the water quality parameters considered was performed
using the following methods: turbidity (Standard Method 2130), color (Standard Method
2120), conductivity (Standard Method 2510), pH (Standard Method 4500), total alkalinity
(Standard Method 2320), chlorides (Standard Method 4500), total iron (Standard Method 3500),
nitrites (Standard Method 4500), total coliforms (Standard Method 9222), and E. coli (Standard
Method 9223) [34]. All daily time series of water quality parameters were checked for the
occurrence of missing data (Table 2). The normal ratio method was used to fill in the missing
data [35]. A Kolmogorov–Smirnov test was also applied to evaluate the non-normality of
the time series under study (p-value > 0.050) [36]. A principal component analysis (PCA)
was also applied to reduce the dimensionality of the set of variables considered. The steps
considered during PCA were the following [37]: data standardization, covariance matrix
calculation, eigenvector and eigenvalue calculation, principal component selection (95% of
total variability), and data transformation. Subsequently, Spearman’s correlation coefficient
(rs) [38] was used to study the association between water quality parameters at each of the
monitoring stations. PCA and Spearman’s coefficient were used to detect possible water
quality indicator parameters [39] in the DWSS under study. Namely, it was assumed as a
hypothesis that the water quality parameters that showed the best significant correlations
were those that could be suggested as water quality indicators.

ARIMA and TFARIMA models were developed for each of the parameters identified as
possible indicators of water quality in the DWSS. The software used was IBM-SPSS Statistics
V.20.0 [40]. The time scales considered for the development of the ARIMA and TFARIMA
models were the following: daily, weekly, and monthly. Weekly and monthly time scales
were generated from daily information and using 7-day and 30-day moving averages, respec-
tively [41]. This was to use time series with a significant amount of data (n = 2922) and to try
to develop ARIMA and TFARIMA models with a better statistical fit. During the development
of ARIMA and TFARIMA models, the orders p, d, and q were identified using the Expert
Modeler tool of the IBM-SPSS Statistics V.20.0 software [40]. This tool followed the stages
established by Box–Jenkins for the development of ARIMA and TFARIMA models: identifi-
cation, parameter estimation (calibration), and verification (validation) [23]. Only additive
outliers (occurring in a single observation) were considered for the development of univariate
ARIMA models [40]. For the development of TFARIMA models [21], level shift outliers (has a
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permanent effect) were also considered in order to be able to develop a statistically adequate
model. This is in case it was not possible to develop a TFARIMA model with additive outliers
only. In the validation of the ARIMA and TFARIMA models, the following statistics were
considered: determination coefficient (R2, goodness-of-fit), mean absolute percentage error
(MAPE, forecast accuracy), normalized Bayesian information criterion (BIC), and the signifi-
cance of the Ljung–Box statistic (p-value > 0.050) [42]. Given two ARIMA models, the model
with the lower value in the normalized BIC was selected definitively. A lower normalized BIC
implied a smaller number of explanatory variables and a better fit of the ARIMA model [43].
The appropriateness of the modeling was assessed by the Ljung–Box statistic. This statistic
tests the null hypothesis of no remaining significant autocorrelation in the residuals of the
model and provides an indication of whether the model is appropriately specified. A p-value
greater than 0.05 indicates that the model is properly specified to describe the correlation
information in time series [44].

Table 2. Missing data percentage for each of the water quality parameters according to the monitoring
stations considered.

Parameter

Station

Teusacá River San Rafael Reservoir Teusacá River

Missing Data (%) Missing Data (%) Missing Data (%)

Turbidity 0.14 0.17 0.17
Color 0.55 0.17 0.21

Conductivity 0.21 0.24 0.10
pH 0.21 0.24 0.24

Total alkalinity 0.24 0.31 0.17
Chlorides 4.14 3.15 2.94
Total iron 11.9 12.3 9.55
Nitrites 0.68 2.50 4.07

Total coliforms 13.3 13.4 10.9
E. coli 13.7 14.2 10.9

Note: sample size per variable = 2922 data.

A comparative analysis was made between the components of the DWSS (river, reservoir,
and WTP) based on the structure of the ARIMA and TFARIMA models developed. That is,
the memory (term ‘p’), trend (term ‘d’), and variability (term ‘q’) reported by the ARIMA mod-
els [23], and the numerator, trend, and denominator reported by the TFARIMA models [21]
of the time series of that parameter identified as a water quality indicator were analyzed.
Lastly, the influence of the rainfall regime on the occurrence of atypical water quality episodes
(outliers) in the different components of the water supply system was analyzed.

3. Results and Discussion
3.1. Water Quality Indicators

The PCA results identified three, four, and three principal components for the water
quality parameters at the three monitoring stations of the river, reservoir, and WTP, respec-
tively (Figure 2). These principal components explained 57.3%, 53.2%, and 56.4% of the
total variability of the data, respectively. The results suggested that this explained variance
close to 55% could be related to the stochastic nature and occurrence of outliers in the time
series considered [37]. At all three monitoring stations, the association of turbidity, color,
and iron in the same principal component was observed. The findings suggested that in
order of importance the best water quality indicator in the different DWSS components
were the following: turbidity > color > total iron. Thus, we consider turbidity as the
main water quality indicator in the three monitoring stations of the DWSS under study.
These findings were consistent with those reported by [45] in a pilot plant that treated water
from the city of São Paulo (Brazil). Moreover, turbidity was frequently used as a water qual-
ity criterion in water sources and treatment processes [46]. In this study, the best observed
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association of turbidity with the other water quality parameters at the monitoring stations
was with color (rs > 0.826, Table 3). The authors of [47] reported similar results between
these two water quality parameters. There are studies that reported other parameters as
possible indicators of water quality in water supply systems. For example, under certain
conditions, pH was reported as an indicator parameter of water quality [48]. Although pH
was an important indicator of water quality in many cases, there are situations where it
may not be sufficient or did not provide a complete representation of water quality due
to interferences in the measurement (e.g., presence of organic substances, minerals, or
detergents) [49].

Table 3. Spearman’s correlation coefficients between the main water quality parameters (river,
reservoir, and WTP).

Turbidity Color Conductivity Total
Alkalinity Chlorides Total Iron

River

Turbidity 1.000

Color 0.929 * 1.000

Conductivity −0.777 * −0.741 * 1.000

Total alkalinity −0.770 * −0.741 * 0.834 * 1.000

Chlorides −0.720 * −0.693 * 0.804 * 0.773 * 1.000

Total iron 0.698 * 0.693 * −0.553 * −0.522 * −0.509 * 1.000

Reservoir

Turbidity 1.000

Color 0.827 * 1.000

Conductivity −0.028 −0.065 1.000

Total alkalinity −0.036 0.006 0.302 * 1.000

Chlorides −0.053 −0.110 0.455 * −0.146 1.000

Total iron 0.588 * 0.670 * −0.022 0.041 −0.015 1.000

WTP

Turbidity 1.000

Color 0.523 * 1.000

Conductivity −0.072 −0.006 1.000

Total alkalinity −0.039 0.116 0.257 * 1.000

Chlorides −0.166 −0.023 0.740 * −0.184 1.000

Total iron 0.290 * 0.281 * −0.054 −0.044 −0.021 1.000

Note: * = significant correlations, p-value < 0.010.
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3.2. ARIMA Models

ARIMA models were developed for the water quality indicator parameter (turbidity) in
the three components of the DWSS under study (river, reservoir, and WTP). In this study, no
model exhibited stationarity. In relation to the river, the results showed an ARIMA model (0,1,6)
under a daily time scale. The ARIMA model developed included additive outliers (n = 34,
Table 4). The results suggested that river turbidity, at the reservoir inlet, was not influenced
by preceding daily observations (AR = 0 days). ARIMA modeling also hinted at a decreasing
trend (I = 1 day, average = −5.36 UNT/year) and variability (MA = 6 days) of turbidity in
the river during the study period. This variability in daily turbidity possibly supported the
need to consider these additive outliers (unexpected value for a single observation) to develop
an adequate ARIMA model (R2 = 0.760). Otherwise, the model would have had a worse fit
(R2 = 0.206). These outliers, mainly high turbidity in the river (>118 UNT), were possibly
associated with periods of increased magnitude and frequency of rainfall at the study site
(Figure 3). An analysis with Spearman’s correlation coefficient showed a very weak significant
correlation (rs = 0.108, p-value < 0.050) between observed daily turbidity in the river and daily
rainfall at the study site. The authors of [50] also hinted at this trend of increasing turbidity in
rivers during rainy periods. Indeed, turbidity in the river comparatively tended to decrease
during dry weather periods.
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Table 4. Univariate ARIMA models for turbidity at the different monitoring stations (river, reservoir,
and WTP).

Time
Scale

ARIMA
Model (p,d,q) Transformation/ Outliers R2 MAPE (%) BIC Ljung-Box Q

(18) | GL p-Value (Q)

River

Daily
(0,1,10) Natural logarithm 0.206 83.308 9.599 19.339 | 14 0.152

(4,1,2) Natural logarithm 0.208 83.065 9.610 11.113 | 12 0.519

(0,1,6) * Natural logarithm/34 0.760 64.471 8.324 21.252 | 14 0.095

Weekly
(0,1,8) Natural logarithm 0.868 14.704 6.110 36.743 | 15 0.001

(1,1,7) * Square root 0.901 16.904 5.838 18.029 | 10 0.054

(1,1,7) Natural logarithm/47 0.872 13.280 6.226 9.053 | 13 0.769

Monthly
(1,1,1) Natural logarithm 0.974 3.988 3.554 11.602 | 16 0.771

(2,1,1) Natural logarithm 0.974 3.970 3.561 6.533 | 15 0.969

(2,1,2) * Natural logarithm/68 0.990 3.448 2.825 18.283 | 14 0.194

Reservoir

Daily
(0,1,5) Natural logarithm 0.640 38.448 3.729 17.477 | 15 0.291

(1,1,5) Natural logarithm 0.640 38.428 3.739 12.177 | 12 0.432

(0,1,5) * Natural logarithm/36 0.889 31.833 1.712 17.200 | 15 0.307

Weekly
(0,1,7) Natural logarithm 0.289 6.923 0.208 26.497 | 11 0.005

(1,1,7) Square root 0.902 7.264 0.002 16.946 | 10 0.076

(0,1,9) * Natural logarithm/36 0.921 6.039 −0.092 14.759 | 9 0.098

Monthly
(0,2,1) Natural logarithm 0.975 2.520 −2.275 23.547 | 17 0.132

(1,2,1) Natural logarithm 0.975 2.490 −2.275 2.995 | 16 0.143

(1,1,1) * Natural logarithm/74 0.996 1.706 −3.919 25.781 | 16 0.057

WTP

Daily
(0,1,11) Natural logarithm 0.150 20.696 2.748 31.458 | 14 0.005

(1,0,7) Square root 0.236 35.029 2.506 8.053 | 10 0.624

(1,1,9) * No transformation/13 0.988 18.517 −1.629 15.251 | 8 0.054

Weekly
(0,1,7) Natural logarithm 0.822 4.118 −0.450 199.126 | 13 0.000

(0,1,10) Square root 0.929 6.053 −1.351 13.687 | 8 0.090

(3,1,8) * Natural logarithm/26 0.982 3.129 −2.683 12.769 | 12 0.386

Monthly
(0,1,6) Natural logarithm 0.969 1.329 −3.394 9.263 | 17 0.932

(1,1,6) Natural logarithm 0.969 1.312 −3.387 0.503 | 11 1.000

(2,1,14) * Natural logarithm/34 0.998 0.960 −6.185 1.914 | 2 0.384

Note: * = selected ARIMA models.
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Figure 3. Observed and predicted (ARIMA) values of turbidity in the different DWSS components
(river, reservoir, and WTP), and observed daily rainfall. Daily, weekly, and monthly time scales
(selected period: 1–180, out of 2922 observations).

Daily, the findings showed an ARIMA model (0,1,5) for turbidity in the reservoir
(R2 = 0.889). This model considered 36 additive outliers (Table 4). The model devel-
oped suggested that turbidity within the reservoir was not influenced by preceding daily
observations (AR = 0 days). This trend was possibly associated with the large dilution
capacity of the reservoir from the significant water volume stored (average = 75 million
m3). The authors of [51] also reported the turbidity buffering capacity of reservoirs due
to large volumes of stored water. Daily modeling also suggested a decreasing trend
(I = 1 day, average = −0.070 UNT/year) and variability (MA = 5 days) of turbidity inside
the reservoir during the study period. This daily variability of turbidity possibly sup-
ported the need to consider these additive outliers to develop an adequate ARIMA model.
Otherwise, the model fit would have been worse (R2 = 0.640). These outliers, mainly high
turbidity (>37.6 UNT), were comparatively associated with periods of increased rainfall
(magnitude and frequency, Figure 3). During dry periods turbidity tended to decrease
comparatively in the reservoir.

In relation to daily turbidity at the WTP outlet, the results showed an ARIMA model
(1,1,9). This model included 13 additive outliers (R2 = 0.988, Table 4). The results suggested
that daily turbidity at the WTP outlet was influenced by the immediately preceding obser-
vation (AR = 1 day). Namely, the turbidity at the WTP outlet was probably influenced by
the water treatment operations performed on the immediately preceding day. The authors
of [52] also reported that water quality in WTPs was significantly influenced by treatment
activities performed on previous days. ARIMA analysis suggested a decreasing trend
(I = 1 day, average = −0.13 UNT/year) and variability (MA = 9) in turbidity at the WTP
outlet during the study period. This variability in turbidity possibly supported the need to
consider these outliers in the development of the ARIMA model. Otherwise, the model
would have had a worse fit (R2 = 0.236). These outliers, mainly high turbidity (>4.50 UNT),
were possibly associated with the turbidity of the raw water, which came from the reservoir.
Comparatively, these additive outliers of high turbidity coincided with rainy periods at
the study site (Figure 3). The authors of [53] also reported this trend of increased water
turbidity due to a decline in raw water quality at the WTP intakes.

On a weekly basis, the results showed an ARIMA model (1,1,7) for turbidity in the river
(R2 = 0.901). This model did not include additive outliers (Table 4). The model suggested
that weekly river turbidity was influenced by what occurred in the immediately preceding
week (AR = 1). That is, the effects of river turbidity were possibly only significant during
this time window. The weekly ARIMA model also suggested a decreasing trend (I = 1
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week, average = −5.36 UNT/year) and variability (MA = 7) of turbidity in the river during
the study period. Because the weekly turbidity time series was preprocessed with a 7-day
moving average, then the effective variability of turbidity in the river corresponded to two
weeks. This preprocessing of the turbidity time series (smoothing) possibly also influenced
the non-detection of outliers by the developed weekly ARIMA model, as compared to the
ARIMA model obtained under a daily time scale. In addition, the findings showed in the
reservoir a weekly ARIMA model (0,1,9) for turbidity. This model considered 36 additive
outliers. The model suggested that turbidity within the reservoir was not influenced by
preceding weekly observations (AR = 0). This trend was possibly related to the large
buffering capacity of the reservoir to absorb the pollutant load [54]. The weekly model
also suggested a decreasing trend (I = 1, average = −0.070 UNT/year) and variability
(MA = 9) of turbidity in the reservoir. This weekly variability of turbidity possibly sup-
ported the need to consider these additive outliers (n = 36) to obtain an adequate ARIMA
model. These high turbidity outliers (>7.70 UNT) were comparatively related to the occur-
rence of rainy periods at the study site (Figure 3).

In relation to weekly turbidity at the WTP outlet, the findings showed an ARIMA
model (3,1,8). This model included 26 additive outliers (R2 = 0.982, Table 4). The results
suggested that turbidity at the WTP outlet was influenced by what occurred during the
three immediately preceding observations (AR = 3). Because the weekly turbidity time
series was preprocessed (7-day moving average), the effective time window for the AR
term corresponded to 1.43 weeks. ARIMA analysis also suggested a decreasing trend
(I = 1, average = −0.13 UNT/year) and variability (MA = 8) in turbidity at the WTP outlet.
This variability possibly made it necessary to consider additive outliers in the development
of the weekly ARIMA model. Comparatively, these additive outliers of high turbidity
(>2.16 UNT) occurred during rainy periods at the study site, possibly causing outliers
of high turbidity to also be observed at the reservoir (>7.70 UNT). During dry weather
periods, turbidity tended to decrease at the WTP outlet (Figure 3).

On a monthly basis, the findings showed an ARIMA model (2,1,2) for turbidity in the
river (R2 = 0.990). The selected model included 68 additive outliers (Table 4). The results
suggested that monthly in-stream turbidity was influenced by what occurred during the
two immediately preceding observations (AR = 2). Because the monthly turbidity time
series was preprocessed (30-day moving average), then the effective time window for the
AR term corresponded to 1.07 months. The model also hinted at a decreasing trend (I = 1,
average = −5.36 UNT/year) and low variability (MA = 2) in river turbidity. Though, this
variability possibly made it necessary to consider outliers in the development of the monthly
ARIMA model. For example, this model also detected additive outliers of high (199 UNT)
and low turbidity (3.84 UNT) during periods of rainy and dry weather at the study site,
respectively. In addition, the results showed a monthly ARIMA model (1,1,1) for turbidity
at the reservoir. The model included 74 additive outliers. The findings suggested that
turbidity in the reservoir was influenced by what occurred in the immediately preceding
monthly observation (AR = 1). The ARIMA model also suggested a slight decreasing trend
(I = 1, average = −0.070 UNT/year) and low variability (MA = 1) monthly in reservoir
turbidity. This model also detected additive outliers of high (12.7 UNT) and low turbidity
(0.83 UNT) during periods of rainy and dry weather at the study site, respectively.

In relation to monthly turbidity at the WTP outlet, the results showed an ARIMA model
(2,1,14). This model included 34 additive outliers (R2 = 0.998, Table 4). The results suggested
that turbidity at the WTP outlet was influenced by what occurred during the two immediately
preceding observations (AR = 2). The effective time sale for this influence was then 1.07 months.
The model also suggested a decreasing trend (I = 1, average = 0.13 UNT/year) and high
variability (MA = 14) in turbidity at the WTP outlet. This variability in turbidity possibly
supported the need to consider outliers in the development of the ARIMA model. For example,
this model detected additive outliers of high (1.35 UNT) and low turbidity (0.25 UNT) during
periods of rainy and dry weather at the study site, respectively. In effect, this underran the range
of monthly variation in turbidity at the WTP outlet.
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3.3. ARIMA and TFARIMA Comparative Analysis

Daily, the results showed ARIMA models (0,1,6) and (0,1,5) for turbidity in the river
and reservoir, respectively (Table 4). It was observed that the models in these two DWSS
components were similar with respect to the AR term. The models did not hint at the influ-
ence of past events on the behavior of river and reservoir turbidity (AR = 0). This trend was
possibly associated with the non-occurrence of significant daily events influencing future
river and reservoir turbidity behavior (e.g., runoff and downpours). This trend did not also
suggest a significant influence of river discharge on the turbidity behavior in the reservoir.
The latter was probably associated with the large dilution capacity (buffering of pollutant
loads) of the reservoir from the significant volume of stored water. The authors of [55]
also reported the turbidity buffering capacity of reservoirs due to significant volumes of
stored water. In addition, the results showed a daily TFARIMA model (0,1,5) for reservoir
turbidity (dependent variable) from the influence of river turbidity (independent variable)
(R2 = 0.902). This model showed that there was no influence of past river turbidity events
on reservoir turbidity (numerator/delay = 0, Table 5). Namely, the findings suggested
that turbidity in the reservoir responded instantaneously to the behavior of turbidity in
the river (Figure 4). In the context of this study, this trend would not be entirely logical
because the river contributed only 5% of the water volume stored in the reservoir. The re-
maining 95% of the water volume was provided by a transfer from the Chuza reservoir.
This instantaneous trend was possibly related to the prevailing climatic conditions at the
study site. In other words, the climatic conditions (rainfall regime) at the study site were
possibly more dominant (instantaneous effect) on river and reservoir turbidity behavior
compared to the dominance of river turbidity on reservoir turbidity behavior [56,57].
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Figure 4. Observed and predicted values (TFARIMA) of turbidity in the different DWSS components
(river versus reservoir and reservoir versus WTP). Daily, weekly, and monthly time scales (selected
period: 1–180, out of 2922 observations).
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Table 5. TFARIMA models of turbidity between the different DWSS components (river versus
reservoir and reservoir versus WTP).

Time
Scale

ARIMA
Model
(p,d,q)

Transformation R2 MAPE (%) Outliers BIC Ljung-Box
Q (18) | GL p-Value (Q)

River/Reservoir

Daily

(0,1,5) Natural logarithm 0.080 36.636 No 3.725 18.955 | 15 0.216

(0,1,5) * Natural logarithm 0.902 30.306 36 (AD) 1.593 19.071 | 15 0.211

Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1

Weekly

(0,1,7) Natural logarithm 0.889 7.096 No 0.138 26.073 | 11 0.006

(0,1,9) Natural logarithm 0.988 5.308 49 (AD and
LS) −1.948 21.069 | 9 0.012

Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1

Monthly

(1,1,1) Natural logarithm 0.976 2.534 No −2.324 8.043 | 16 0.948

(1,1,13) * Natural logarithm 0.994 2.264 44 (AD) −3.515 17.108 | 15 0.312

Numerator/Delay: 0, Difference: 1, Denominator/Delay: 1

Reservoir/WTP

Daily

(0,1,9) Natural logarithm 0.013 20.580 No 2.750 32.755 | 15 0.005

(0,1,9) * Natural logarithm 0.997 18.353 17 (AD and
LS) −2.883 19.246 | 15 0.203

Numerator/Delay: 0, Difference: 1, Denominator/Delay: N/A

Weekly

(0,1,7) Natural logarithm 0.867 5.510 No −0.772 189.890 |
16 0.000

(0,1,10) None 0.999 4.882 12 (AD and
LS) −6.180 57.717 | 11 0.000

Numerator/Delay: N/A, Difference: N/A, Denominator/Delay: N/A

Monthly

(0,2,18) Natural logarithm 0.995 1.136 No −8.828 44.387 | 14 0.000

(0,2,9) * None 0.998 1.076 20 (AD and
LS) −9.602 18.684 | 14 0.177

Numerator/Delay: 0, Difference: 2, Denominator/Delay: 2

Note: * = selected TFARIMA models, AD = additive outliers, and LS = level shift outliers.

Additionally, the TFARIMA model showed a decreasing trend in the daily turbidity
of the river (difference = 1) to explain the behavior of turbidity in the reservoir. Thus, the
results hinted at a decreasing trend in river and reservoir turbidity during the study period.
The findings also showed that it was necessary to consider 36 additive outliers to develop
an adequate TFARIMA model (R2 = 0.902, Table 5). Otherwise, the model would have had
a worse fit (R2 = 0.080). These additive outliers only occurred during 1.23% of the study
period and corresponded mainly to periods of high turbidity, which was probably related
to an increase in rainfall at the study site (Figure 3). The TFARIMA model also suggested
a short influence of the variability of turbidity in the river on the observed turbidity in
the reservoir (denominator/delay = 1). This is possibly because the river contributed only
5% of the water volume stored in the reservoir. As mentioned, the climatic conditions
(rainfall regime) of the study site were possibly more dominant in the behavior of river and
reservoir turbidity compared to the effects transmitted from the river to the reservoir.

On a weekly basis, the results showed ARIMA models (1,1,7) and (0,1,9) for turbidity
in the river and reservoir, respectively (Table 4). The results suggested a different behavior
in the AR term. Initially, it was hinted that in the river past events had more influence
on turbidity behavior (AR = 1) compared to turbidity behavior in the reservoir (AR = 0).
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Although the difference in the magnitude of the AR term was only one unit. The results
also showed an alternative ARIMA model (1,1,7) for turbidity in the reservoir. Thus, the
findings also suggested that the turbidity behavior in the river and reservoir was influenced
by what happened in the immediately preceding week. This trend was conditioned by
the preprocessing of the weekly time series (7-day moving average). Namely, turbidity
in the river and reservoir was influenced by the daily average behavior observed during
the immediately preceding week. This weekly trend suggested a short-term influence.
In addition, the results showed a TFARIMA model (0,1,9) for reservoir turbidity from river
turbidity (R2 = 0.988). Although the model initially suggested that there was no influence of
river turbidity on reservoir turbidity (numerator/delay = 0, Table 5), this model could not
be considered because it did not meet the significance criterion in the Ljung–Box statistic
(p-value > 0.050). In other words, in this study it was not possible to adequately develop
a TFARIMA model for reservoir turbidity from river turbidity (Figure 4). This could also
suggest the non-existence of an influence of river turbidity on reservoir turbidity under
a weekly time scale. Lastly, by additionally considering level shift outlier, it was also not
possible to develop an adequate TFARIMA model (p-value < 0.050).

On a monthly basis, the results showed ARIMA models (2,1,2) and (1,1,1) for turbidity
in the river and reservoir, respectively (Table 4). The results showed different behavior in
the AR term. Thus, the findings suggested that the turbidity behavior in the river tended
to be more influenced by past events (AR = 2) compared to turbidity in the reservoir
(AR = 1). However, the difference in the magnitude of the AR term was only one unit.
This shorter time window in the reservoir was possibly associated with its higher dilution
capacity compared to the river. The results also showed an alternative ARIMA model
(1,1,1) for turbidity in the river. In general terms, the turbidity of the river and reservoir
were influenced by the daily average behavior observed during the immediately preceding
month. In addition, the results showed a TFARIMA model (1,1,13) for turbidity in the reservoir
from turbidity in the river (R2 = 0.994). This model implied that there was no monthly influence
of past river turbidity events on reservoir turbidity (numerator/delay = 0, Table 5). This trend
was like that observed under a daily time scale. Namely, turbidity in the reservoir was possibly
more conditioned by the climatic regime (rainfall) of the study site than by turbidity contributed
from the river.

Additionally, TFARIMA model showed a decreasing trend in the monthly turbidity
of the river (difference = 1) to explain the behavior of the reservoir turbidity. Thus, the
results suggested a decreasing trend in river and reservoir turbidity throughout the study
period. The findings also showed that it was necessary to consider 44 additive outliers to
develop a more adequate monthly TFARIMA model (R2 = 0.994, Table 5), although without
considering these additive outliers, the alternative TFARIMA model also had an adequate fit
(R2 = 0.976, Table 5). The results hinted that these additive outliers in river turbidity possibly
did not have a significant influence on the monthly behavior of turbidity in the reservoir.
Indeed, preprocessing of the monthly turbidity time series (30-day moving average) led
to a smoothing of the observed turbidity values. These outliers occurred during only
1.51% of the study period (unexpected value for a single observation) and corresponded
mainly to periods of high turbidity, which was probably related to periods of increased
rainfall at the study site. Lastly, TFARIMA model consistently suggested a low monthly
influence of in-stream turbidity variability on reservoir turbidity (denominator/delay = 1).
As mentioned, climatic conditions (rainfall regime) of the study site were possibly the most
dominant in the turbidity behavior in the river and reservoir. Apparently, the influence
of rainfall on monthly river turbidity was greater (AR = 2) compared to the influence of
rainfall on monthly reservoir turbidity (AR = 1).

Daily, the results showed ARIMA models (0,1,5) and (1,1,9) for turbidity in the reservoir
and WTP, respectively (Table 4). Different behavior was observed in the AR term of the
developed models. The results suggested that the turbidity behavior in the WTP was
influenced by what happened the day before (AR = 1). Namely, the treatment operations
conducted at the WTP possibly had a time window of one day. Conversely, the reservoir
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was not influenced by past events (AR = 0), possibly due to its great capacity to dilute
pollutants [51]. Therefore, the findings suggested that the turbidity behavior at the WTP
outlet was more conditioned by the water treatment operations conducted the day before
than by the turbidity behavior in the reservoir (raw water). In addition, the results showed
a daily TFARIMA model (0,1,9) for WTP turbidity (dependent variable) from reservoir
turbidity (independent variable) (R2 = 0.997). The model suggested that there was no
influence of past reservoir turbidity events on turbidity at the WTP outlet (numerator/delay
= 0, Table 5). Due to the large variability of daily turbidity at the WTP, it was not possible
to develop an adequate TFARIMA model without considering outliers (Table 5). It was
necessary to consider both additive and level shift outliers (n = 17) to develop an adequate
model (Figure 4). These outliers, primarily high turbidity at the WTP outlet, occurred only
0.58% of the time during the study period. The findings also showed that the variability of
turbidity in the reservoir had no influence on the variability of turbidity at the WTP outlet
(denominator/delay: N/A). Indeed, this variability in turbidity was possibly conditioned
by the treatment operations conducted inside the WTP [52]. Lastly, TFARIMA model
suggested a decreasing trend in the turbidity of the reservoir and WTP during the study
period (difference = 1).

On a weekly basis, the results showed ARIMA models (0,1,9) and (3,1,8) for turbidity in the
reservoir and WTP, respectively (Table 4). The results showed different behavior in the AR term.
The findings showed that the turbidity behavior at the WTP was influenced by what occurred
during the three immediately preceding observations (AR = 3). Due to the preprocessing of
these time series (7-day moving average), the effective time window was 1.29 weeks. The results
suggested that the treatment operations executed at the WTP were influenced by the daily average
behavior observed during the immediately preceding 1.29 weeks. In contrast, in the reservoir there
was no evidence of the influence of past events on the turbidity behavior (AR = 0). The results
also showed a weekly TFARIMA model (0,1,10) for the WTP turbidity based on the reservoir
turbidity. This model could not be considered because it did not meet the significance criterion
in the Ljung–Box statistic (p-value > 0.050), despite having considered additive and level shift
outliers (Figure 4). In other words, it was not possible to adequately develop a transfer function
model for turbidity at the WTP outlet from the reservoir turbidity. This could also suggest the
non-existence of a weekly influence of reservoir turbidity on turbidity at the WTP outlet. In this
study, the turbidity behavior was possibly more conditioned by the treatment operations inside
the WTP than by the quality of the raw water coming from the reservoir.

On a monthly basis, the results showed ARIMA models (1,1,1) and (2,1,14) for turbidity
in the reservoir and at the WTP outlet, respectively (Table 4). Differences were observed in
the AR term. The findings suggested that the turbidity behavior at the WTP tended to be
more influenced by past events (AR = 2) compared to turbidity at the reservoir (AR = 1).
Possibly, this shorter time window at the reservoir was associated with its greater pollutant
dilution capacity compared to the WTP [51]. The findings also showed that the behavior of
turbidity at the WTP (treatment operations) was influenced by what occurred during the
two immediately preceding observations (AR = 2). Due to the preprocessing of these time
series, the effective time window at the WTP was 1.03 months. At the reservoir, the time
window of past events was then similar, one month (AR = 1). In general terms, the turbidity
of the reservoir and WTP were influenced by the daily average behavior observed during
the immediately preceding month. In addition, the results showed a monthly TFARIMA
model (0,2,9) for WTP turbidity from reservoir turbidity (R2 = 0.998). On this occasion, it
was additionally necessary to consider level shift outliers (they have a permanent effect),
and not exclusively additive outliers (unexpected value for a single observation) to develop
a satisfactory TFARIMA model. These mainly high turbidity outliers only occurred during
0.68% of the study period (Figure 4). This model also suggested that there was no influence
of past turbidity events in the reservoir on turbidity at the WTP outlet (numerator/delay
= 0, Table 5). The TFARIMA model showed a decreasing trend in monthly turbidity
in the reservoir (difference = 2) to explain the behavior of turbidity at the WTP outlet.
Thus, the results suggested a decreasing trend in turbidity at the WTP outlet and in the
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reservoir during the entire study period. Lastly, TFARIMA model suggested a short
monthly influence (1.03 effective months) of the variability of turbidity in the reservoir on
turbidity at the WTP outlet (denominator/delay = 2).

4. Conclusions

The findings of this study on the use of ARIMA models to analyze the temporal
behavior of water quality parameters in the initial components of a DWSS allow us to
visualize the following conclusions.

The best water quality indicator parameters are as follows: turbidity > color > total
iron. Depending on the DWSS component, the order of importance for these indicator
parameters is as follows: river > reservoir > WTP.

Increasing the time window of the ARIMA analysis (daily, weekly, and monthly) sug-
gests an increase in the magnitude of the AR term in the univariate models.
This trend is evident as follows: WTP > river > reservoir. This trend suggests that the
turbidity behavior in the WTP is more influenced by past observations compared to the
turbidity behavior in the river and reservoir, respectively. Indeed, the results hint that the
time window of water quality analysis in DWSSs should be differentiated according to the
component under study.

The DWSS component that shows the greatest variability in turbidity according to the
ARIMA analysis is the WTP, followed by the river and reservoir, respectively. This trend
suggests the influence of the following factors: Water treatment operations performed at the
WTP, observed rainfall regime, and pollutant dilution capacity of the reservoir. In addition,
by increasing the time window of the ARIMA analysis (daily, weekly, and monthly) an
increase in the detection of additive outliers is observed. Thus, the smoothing of the data
series (moving average) as the time window of the ARIMA analysis increases possibly
leads to a greater sensitivity of the model for outlier detection.

TFARIMA models suggest that there is no significant influence of past river turbidity
events on turbidity in the reservoir, and of reservoir turbidity on turbidity at the WTP
outlet. This is for all time scales considered in this study. In addition, a decreasing trend in
turbidity is observed in all DWSS components during the study period.

As the TFARIMA analysis time window increases (daily, weekly, and monthly), the
models tend to have a better fit. Between river and reservoir turbidity, it is possible to
develop models fitted only with additive outliers. Between reservoir and WTP turbidity,
it is necessary to additionally consider level shift outliers. Hence, the results suggest that
turbidity outlier events between the river and reservoir occur mainly in a single observation,
and between the reservoir and WTP also have a permanent effect over time. In effect, this
possibly conditions the water treatment operations inside the WTP.

The findings suggest that the AR term of the models is useful for studying the transfer
of effects between DWSS components, and the MA term is useful for studying the influence
of external factors on water quality in each DWSS component. For example, the latter
term is useful for studying the performance of the WTP. Lastly, this study is relevant to
visualize the usefulness of ARIMA analysis in the operation of DWSSs, for decision making
by research institutes, and agencies monitoring and controlling the water quality supplied
in megacities.
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19. Savun-Hekimoğlu, B.; Erbay, B.; Hekimoğlu, M.; Burak, S. Evaluation of Water Supply Alternatives for Istanbul Using Forecasting
and Multi-Criteria Decision Making Methods. J. Clean. Prod. 2021, 287, 125080. [CrossRef]

20. Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A Review of the Application of Machine Learning in
Water Quality Evaluation. Eco-Environ. Health 2022, 1, 107–116. [CrossRef]

21. Barrientos-Torres, D.; Martinez-Ríos, E.A.; Navarro-Tuch, S.A.; Pablos-Hach, J.L.; Bustamante-Bello, R. Water Flow Modeling and Forecast
in a Water Branch of Mexico City through ARIMA and Transfer Function Models for Anomaly Detection. Water 2023, 15, 2792. [CrossRef]

22. Veerendra, G.T.N.; Kumaravel, B.; Rao, P.K.R.; Dey, S.; Manoj, A.V.P. Forecasting Models for Surface Water Quality Using
Predictive Analytics. Environ. Dev. Sustain. 2023. [CrossRef]

https://doi.org/10.1080/07352166.2023.2174872
https://doi.org/10.1016/S1366-7017(98)00002-6
https://doi.org/10.1002/2014WR016869
https://doi.org/10.3390/w12092347
https://doi.org/10.1080/0376835X.2021.1993794
https://doi.org/10.1021/acs.est.0c03974
https://doi.org/10.1007/s11356-023-26882-w
https://www.ncbi.nlm.nih.gov/pubmed/37060410
https://doi.org/10.1007/s12403-019-00299-8
https://doi.org/10.1016/j.ijheh.2019.113422
https://doi.org/10.1016/j.pce.2021.102987
https://doi.org/10.3390/land10050444
https://doi.org/10.1016/j.geoforum.2019.05.018
https://doi.org/10.1061/JSWBAY.0000846
https://doi.org/10.1016/j.scitotenv.2012.12.022
https://doi.org/10.3390/urbansci7030081
https://doi.org/10.1007/s00382-010-0931-y
https://doi.org/10.1016/j.ancene.2015.09.001
https://doi.org/10.1016/j.jclepro.2016.07.209
https://doi.org/10.1016/j.jclepro.2020.125080
https://doi.org/10.1016/j.eehl.2022.06.001
https://doi.org/10.3390/w15152792
https://doi.org/10.1007/s10668-023-03280-3


Hydrology 2024, 11, 10 18 of 19

23. Ristow, D.C.M.; Henning, E.; Kalbusch, A.; Petersen, C.E. Models for Forecasting Water Demand Using Time Series Analysis:
A Case Study in Southern Brazil. J. Water Sanit. Hyg. Dev. 2021, 11, 231–240. [CrossRef]

24. Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive Models in Environmental Forecasting Time Series: A Theoretical and Application
Review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [CrossRef]

25. Katimon, A.; Shahid, S.; Mohsenipour, M. Modeling Water Quality and Hydrological Variables Using ARIMA: A Case Study of
Johor River, Malaysia. Sustain. Water Resour. Manag. 2018, 4, 991–998. [CrossRef]

26. Wang, J.; Zhang, L.; Zhang, W.; Wang, X. Reliable Model of Reservoir Water Quality Prediction Based on Improved ARIMA
Method. Environ. Eng. Sci. 2019, 36, 1041–1048. [CrossRef]

27. Elevli, S.; Uzgören, N.; Bingöl, D.; Elevli, B. Drinking Water Quality Control: Control Charts for Turbidity and pH. J. Water Sanit.
Hyg. Dev. 2016, 6, 511–518. [CrossRef]

28. Sentas, A.; Psilovikos, A.; Karamoutsou, L.; Charizopoulos, N. Monitoring, Modeling, and Assessment of Water Quality and
Quantity in River Pinios, Using ARIMA Models. Desalination Water Treat. 2018, 133, 336–347. [CrossRef]

29. Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of River Water Quality Using Multivariate Analysis.
Procedia Environ. Sci. 2015, 30, 79–84. [CrossRef]

30. Issa, H.M.; Alrwai, R.A. Long-Term Drinking Water Quality Assessment Using Index and Multivariate Statistical Analysis for
Three Water Treatment Plants of Erbil City, Iraq. UKH J. Sci. Eng. 2018, 2, 39–48. [CrossRef]

31. Arain, M.B.; Ullah, I.; Niaz, A.; Shah, N.; Shah, A.; Hussain, Z.; Tariq, M.; Afridi, H.I.; Baig, J.A.; Kazi, T.G. Evaluation of Water
Quality Parameters in Drinking Water of District Bannu, Pakistan: Multivariate Study. Sustain. Water Qual. Ecol. 2014, 3–4,
114–123. [CrossRef]

32. Maiolo, M.; Pantusa, D. Multivariate Analysis of Water Quality Data for Drinking Water Supply Systems. Water 2021, 13, 1766. [CrossRef]
33. Skandalos, N.; Wang, M.; Kapsalis, V.; D’Agostino, D.; Parker, D.; Bhuvad, S.S.; Udayraj; Peng, J.; Karamanis, D. Building

PV Integration According to Regional Climate Conditions: BIPV Regional Adaptability Extending Köppen-Geiger Climate
Classification against Urban and Climate-Related Temperature Increases. Renew. Sustain. Energy Rev. 2022, 169, 112950. [CrossRef]

34. Baird, R.B.; Eaton, A.D.; Rice, E.W. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Water
Works Association: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5.

35. Burhanuddin, S.N.Z.A.; Deni, S.M.; Ramli, N.M. Imputation of Missing Rainfall Data Using Revised Normal Ratio Method.
Adv. Sci. Lett. 2017, 23, 10981–10985. [CrossRef]

36. de Gois, G.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Sobral, B.S.; de Bodas Terassi, P.M.; Junior, A.H.S.L. Statistical Normality and
Homogeneity of a 71-Year Rainfall Dataset for the State of Rio de Janeiro—Brazil. Theor. Appl. Clim. 2020, 141, 1573–1591. [CrossRef]

37. Ivosev, G.; Burton, L.; Bonner, R. Dimensionality Reduction and Visualization in Principal Component Analysis. Anal. Chem.
2008, 80, 4933–4944. [CrossRef]

38. Amiri, B.J.; Nakane, K. Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of
Japan. Water Resour. Manag. 2009, 23, 931–956. [CrossRef]

39. Beamonte Córdoba, E.; Casino Martínez, A.; Veres Ferrer, E. Water Quality Indicators: Comparison of a Probabilistic Index and a
General Quality Index. The Case of the Confederación Hidrográfica Del Júcar (Spain). Ecol. Indic. 2010, 10, 1049–1054. [CrossRef]

40. Morgan, G.A.; Barrett, K.C.; Leech, N.L.; Gloeckner, G.W. IBM SPSS for Introductory Statistics: Use and Interpretation, 6th ed.;
Routledge: London, UK, 2019; ISBN 978-1-00-000491-5.

41. Dimri, T.; Ahmad, S.; Sharif, M. Time Series Analysis of Climate Variables Using Seasonal ARIMA Approach. J. Earth Syst. Sci.
2020, 129, 149. [CrossRef]

42. Viccione, G.; Guarnaccia, C.; Mancini, S.; Quartieri, J. On the Use of ARIMA Models for Short-Term Water Tank Levels Forecasting.
Water Supply 2019, 20, 787–799. [CrossRef]

43. Mahla, S.K.; Parmar, K.S.; Singh, J.; Dhir, A.; Sandhu, S.S.; Chauhan, B.S. Trend and Time Series Analysis by ARIMA Model to
Predict the Emissions and Performance Characteristics of Biogas Fueled Compression Ignition Engine. Energy Sources Part A
Recovery Util. Environ. Eff. 2023, 45, 4293–4304. [CrossRef]

44. Ljung, G.M.; Box, G.E.P. On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [CrossRef]
45. Cruz, D.; Pimentel, M.; Russo, A.; Cabral, W. Charge Neutralization Mechanism Efficiency in Water with High Color Turbidity

Ratio Using Aluminium Sulfate and Flocculation Index. Water 2020, 12, 572. [CrossRef]
46. Stevenson, M.; Bravo, C. Advanced Turbidity Prediction for Operational Water Supply Planning. Decis. Support Syst. 2019, 119,

72–84. [CrossRef]
47. García-Ávila, F.; Avilés-Añazco, A.; Sánchez-Cordero, E.; Valdiviezo-Gonzáles, L.; Ordoñez, M.D.T. The Challenge of Improving

the Efficiency of Drinking Water Treatment Systems in Rural Areas Facing Changes in the Raw Water Quality. S. Afr. J. Chem. Eng.
2021, 37, 141–149. [CrossRef]

48. Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the Dynamics of the Relationship between Water pH and Other
Water Quality Parameters in Ground and Surface Water Systems. PLoS ONE 2022, 17, e0262117. [CrossRef]

49. Verma, A.K.; Singh, T.N. Prediction of Water Quality from Simple Field Parameters. Environ. Earth Sci. 2013, 69, 821–829. [CrossRef]
50. Girardi, R.; Pinheiro, A.; Garbossa, L.H.P.; Torres, É. Water Quality Change of Rivers during Rainy Events in a Watershed with

Different Land Uses in Southern Brazil. RBRH 2016, 21, 514–524. [CrossRef]
51. Wang, K.; Gelda, R.K.; Mukundan, R.; Steinschneider, S. Inter-Model Comparison of Turbidity-Discharge Rating Curves and the

Implications for Reservoir Operations Management. JAWRA J. Am. Water Resour. Assoc. 2021, 57, 430–448. [CrossRef]

https://doi.org/10.2166/washdev.2021.208
https://doi.org/10.1007/s11356-023-25148-9
https://doi.org/10.1007/s40899-017-0202-8
https://doi.org/10.1089/ees.2018.0279
https://doi.org/10.2166/washdev.2016.016
https://doi.org/10.5004/dwt.2018.23239
https://doi.org/10.1016/j.proenv.2015.10.014
https://doi.org/10.25079/ukhjse.v2n2y2018.pp39-48
https://doi.org/10.1016/j.swaqe.2014.12.005
https://doi.org/10.3390/w13131766
https://doi.org/10.1016/j.rser.2022.112950
https://doi.org/10.1166/asl.2017.10203
https://doi.org/10.1007/s00704-020-03270-9
https://doi.org/10.1021/ac800110w
https://doi.org/10.1007/s11269-008-9307-z
https://doi.org/10.1016/j.ecolind.2010.01.013
https://doi.org/10.1007/s12040-020-01408-x
https://doi.org/10.2166/ws.2019.190
https://doi.org/10.1080/15567036.2019.1670286
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.3390/w12020572
https://doi.org/10.1016/j.dss.2019.02.009
https://doi.org/10.1016/j.sajce.2021.05.010
https://doi.org/10.1371/journal.pone.0262117
https://doi.org/10.1007/s12665-012-1967-6
https://doi.org/10.1590/2318-0331.011615179
https://doi.org/10.1111/1752-1688.12906


Hydrology 2024, 11, 10 19 of 19

52. Besmer, M.D.; Hammes, F. Short-Term Microbial Dynamics in a Drinking Water Plant Treating Groundwater with Occasional
High Microbial Loads. Water Res. 2016, 107, 11–18. [CrossRef] [PubMed]

53. Price, J.I.; Heberling, M.T. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of
Empirical Literature. Ecol. Econ. 2018, 151, 195–209. [CrossRef]

54. Li, D.; Bu, S.; Li, Q.; Chen, S.; Zhen, Z.; Fu, C. Water Environment Capacity Estimation and Pollutant Reduction of Yanghe
Reservoir Basin in Hebei Province, China, via 0-D Water Quality Model. Environ. Earth Sci. 2021, 80, 508. [CrossRef]

55. Grochowska, J. Assessment of Water Buffer Capacity of Two Morphometrically Different, Degraded, Urban Lakes. Water 2020, 12, 1512.
[CrossRef]

56. Huynh, T.T.; Kim, J.; Kim, W.; Hur, J.; Ho, Q.N.; Bi, Q.; Bui, T.V.; Kim, J.J.; Lee, S.D.; Choi, Y.Y.; et al. Dynamics of Suspended Particulate
Matter in an Impounded River Under Dry and Wet Weather Conditions. Water Resour. Res. 2023, 59, e2022WR033629. [CrossRef]

57. Zeb, H.; Yaqub, A.; Ajab, H.; Zeb, I.; Khan, I. Effect of Climate Change and Human Activities on Surface and Ground Water
Quality in Major Cities of Pakistan. Water 2023, 15, 2693. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.watres.2016.10.041
https://www.ncbi.nlm.nih.gov/pubmed/27783929
https://doi.org/10.1016/j.ecolecon.2018.04.014
https://doi.org/10.1007/s12665-021-09801-5
https://doi.org/10.3390/w12051512
https://doi.org/10.1029/2022WR033629
https://doi.org/10.3390/w15152693

	Introduction 
	Materials and Methods 
	Research Site 
	Data Collection 
	Data Analysis 

	Results and Discussion 
	Water Quality Indicators 
	ARIMA Models 
	ARIMA and TFARIMA Comparative Analysis 

	Conclusions 
	References

