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Abstract: Given that the primary cause of flooding in Ontario, Canada, is attributed to spring floods,
it is crucial to incorporate temperature as an input variable in flood prediction models with machine
learning algorithms. This inclusion enables a comprehensive understanding of the intricate dynam-
ics involved, particularly the impact of heatwaves on snowmelt, allowing for more accurate flood
prediction. This paper presents a novel machine learning approach called the Adaptive Structure of
the Group Method of Data Handling (ASGMDH) for predicting daily river flow rates, incorporating
measured discharge from the previous day as a historical record summarizing watershed characteris-
tics, along with real-time data on air temperature and precipitation. To propose a comprehensive
machine learning model, four different scenarios with various input combinations were examined.
The simplest model with three parameters (maximum temperature, precipitation, historical daily river
flow discharge) achieves high accuracy, with an R2 value of 0.985 during training and 0.992 during
testing, demonstrating its reliability and potential for practical application. The developed ASGMDH
model demonstrates high accuracy for the study area, with a significant number of samples having
a relative error of less than 15%. The final ASGMDH-based model has only a second-order polynomial
(AICc = 19,648.71), while it is seven for the classical GMDH-based model (AICc = 19,701.56). The
sensitivity analysis reveals that maximum temperature significantly impacts the prediction of daily
river flow discharge.

Keywords: Adaptive Structure of the Group Method of Data Handling (ASGMDH); flood management;
flow rate; modeling; practical model; river; sensitivity analysis; water resources management;
risk management

1. Introduction
1.1. Importance of Daily Discharge Forecasting

The analysis of daily discharge holds significant importance in the field of hydrology
and water resource management due to its numerous practical applications. Daily dis-
charge data provides crucial insights into the temporal variations in river flow, enabling
effective management of water resources [1–3]. The availability of accurate and reliable
daily discharge data is crucial for various applications, including flood forecasting, water
allocation, irrigation planning, and hydropower generation. Flood forecasting models
heavily rely on daily discharge data to assess and predict potential flood events, aiding in
disaster management and mitigation strategies [4–7]. Water allocation decisions aimed at
optimizing water resource distribution among different users depend on accurate daily
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discharge data [8–10]. Moreover, daily discharge data plays a critical role in irrigation plan-
ning, ensuring efficient water use in agricultural practices [11]. Additionally, hydropower
generation, a key renewable energy source, relies on accurate daily discharge data to op-
timize power generation and ensure the sustainability of water resources [10]. Beyond
water resource management, daily discharge data contributes to ecological studies and
environmental assessments. It influences the health and functioning of aquatic ecosystems,
affecting aquatic biodiversity and species composition [12,13]. Overall, the availability
of reliable and accurate daily discharge data is paramount for effective water resource
management, decision-making processes, and maintaining the ecological integrity of river
systems [14].

1.2. Review of Existing Approaches

The existing approaches for estimating river flow discharge can be generally classified
into two main groups: (1) Traditional physical hydrologic/hydraulic models, (2) machine
learning models. Physical models for flood calculation take into account various factors
such as topography, land use, rainfall data, river network characteristics, and hydraulic
properties of the channels and floodplains [15,16]. They simulate water flow behavior
in river systems and predict flood extents, water levels, and flow velocities [17,18]. By
simulating the interactions between rainfall, runoff, and river systems, numerical models
can provide valuable insights into flood dynamics and help in understanding the potential
impacts of flooding. HEC-RAS (Hydrologic Engineering Center’s River Analysis Sys-
tem) [19,20], MIKE 11 [21,22], SWAT (Soil and Water Assessment Tool) [23] and are three
widely used numerical models in the field of flood prediction. These models offer advanced
capabilities, such as providing detailed spatial information on flood inundation, simulating
hydraulic behavior, and assisting in flood risk assessment and emergency planning [24,25].
However, they do have some limitations. Numerical models require high-resolution input
data and substantial computational resources to run effectively [26]. The calibration and
validation process can be time-consuming, as it involves fine-tuning the model to match
observed data. Additionally, these models heavily rely on accurate topographic [25–27]
and bathymetric data, which can pose challenges in areas where such data is limited
or unavailable.

Bruno et al. [19] utilized HEC-RAS and HEC-HMS to examine linked modeling in
a small urban waterway. They employed detailed data to simulate flood events in this
urban channel. The models were calibrated using historical data spanning 2015 to 2018.
The input variables included flow sensors, water level, rain gauges, land cover, land use,
and topographic information. Flood scenarios were generated using synthetic rainfall with
return times of 5, 10, 50, and 100 years for a specific basin. The calibration process yielded
highly accurate models. The authors noted that certain stretches of the channel are naturally
predisposed to flooding, which is exacerbated by local conditions and changes in land
use and coverage. Filianoti et al. [20] introduced a novel “performance matrix” to assess
flood prediction accuracy achieved by various models, taking into account stakeholders’
opinions and different evaluation parameters. Additionally, they analyzed the advantages
and disadvantages of software user experience. The authors evaluated four conceptual
physical-based models for predicting floods in a midsized Mediterranean watershed in
Southern Italy. According to their findings, HEC-HMS and MIKE 11 emerged as the most
favorable computer models. These two models demonstrated superior performance due
to their low complexity and computational requirements, alongside their user-friendly
interface and accurate flood prediction capabilities. Yang et al. [23] utilized both hourly
and daily rainfall data from a large number of stations as inputs for the SWAT model to
simulate daily streamflow. The simulation findings indicated that the SWAT model, when
fed with hourly rainfall inputs, outperformed the model with daily rainfall inputs in daily
streamflow simulation. The primary reason for this superior performance was its enhanced
ability to accurately simulate peak flows.
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Recently, attention has been significantly increased towards models based on machine
learning techniques in river calculation. These models have the capability to handle
nonlinear relationships, capture intricate patterns, adapt to changing conditions, integrate
diverse data sources, and effectively learn from historical flood data [28], meteorological
inputs [29], topographic features [28], and other relevant variables. The application of
machine learning in flood calculation has shown promising results in terms of improved
accuracy, efficiency, and scalability [30]. Machine learning effectiveness is highly dependent
on several factors that pose challenges. One such challenge is the need for extensive data
preprocessing, including data cleaning, normalization, and feature engineering [31], to
ensure the reliability and quality of the dataset. Furthermore, selecting relevant parameters
and identifying the best input combination are critical challenges in applying machine
learning techniques to flood calculation [32–35]. Another challenge lies in the model
selection and tuning process. Various machine learning algorithms can be applied to
flood calculation. The choice of the most suitable algorithm depends on the specific
characteristics of the dataset and the nature of the problem. Additionally, model tuning,
including parameter optimization and regularization techniques, is crucial to achieve
the best performance and prevent overfitting or underfitting. Interpretability is another
consideration in machine learning models for flood calculation. Interpreting complex
machine learning models and extracting actionable insights from them can be a challenge,
especially in critical decision-making processes.

In recent years, several machine learning models have been developed that utilize
precipitation and temperature data to predict daily discharge, as evident in studies con-
ducted by Kostić et al. [36], Stoichev et al. [37], and Stojković et al. [38]. As these models
were evaluated by a variety of samples, they might suffer from certain limitations in peak
flood prediction. The complex dynamics of river systems pose challenges for accurately
capturing extreme events, which can result in underestimation or overestimation of peak
discharge. Additionally, these models may exhibit limited applicability when applied to
different geographical areas, as they are often developed and calibrated using data specific
to a particular region. Recalibration efforts may be insufficient to overcome the inherent
differences in hydrological processes across diverse locations. Another limitation is the
constrained input selection and problem formulation in non-machine learning models.
Additional variables, such as flow rate or average flow rate, cannot be readily included.
This lack of flexibility restricts the model’s ability to incorporate valuable information
and potential predictors. In contrast, machine learning models offer greater flexibility in
defining inputs and have the capability to incorporate a wider range of variables. This
adaptability allows researchers to include historical parameters and relevant meteorolog-
ical variables in the modeling process, which can contribute to improved accuracy. By
leveraging machine learning algorithms, the model can capture complex relationships and
patterns in the data, leading to enhanced performance in daily discharge forecasting tasks.

In the realm of hydrology, Long Short Term Memory (LSTM) has gained significant
popularity as a prominent deep learning approach, particularly for rainfall-runoff pre-
diction. Nevertheless, there is a growing interest in employing techniques capable of
addressing the problem through straightforward associations. Among these methods is
the group method of data handling (GMDH). The GMDH has several potential benefits
over LSTM networks. Here are some key differences and advantages of GMDH in contrast
to LSTM:

Interpretability: GMDH is known for its transparent and interpretable nature. It builds
a set of polynomial regression equations that explicitly represent the relationships between
input variables and the output. This allows for easy interpretation and understanding of
how each input variable contributes to the final prediction. In contrast, LSTM is a black-box
model, and it can be challenging to interpret how the model arrives at its predictions,
making it less transparent.
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Data Efficiency: GMDH is known for its ability to handle smaller datasets effectively.
It can create complex models with high accuracy even when the data is limited. LSTM,
on the other hand, typically requires large amounts of data for training to achieve good
generalization, which might be a limitation in scenarios where data availability is scarce.

Computational Efficiency: GMDH is generally computationally efficient and can
rapidly derive models based on its self-organizing algorithm. LSTM, being a deep learning
model, requires more computational resources and time for training, especially when
dealing with large datasets and complex architectures.

Overfitting: GMDH is less prone to overfitting due to its self-organizing feature
selection mechanism, which helps it find the best set of input features for a given problem.
LSTM, on the other hand, can be prone to overfitting, especially if the model architecture is
complex and the dataset is limited.

Feature Selection: GMDH automatically performs feature selection by determining the
most relevant input variables for the model. In contrast, LSTM typically requires manual
feature engineering, and selecting the most important features can be a challenging and
time-consuming task.

Model Complexity: GMDH can build relatively simple and interpretable models
that can be useful for some applications, especially when transparency and simplicity are
desired. LSTM, as a deep learning model, has a higher level of complexity.

Previous research has shown that the Group Method of Data Handling (GMDH)
technique can capture the nonlinear relationships between independent variables and the
dependent variable [39]. However, this technique has certain limitations when applied to
daily river flow prediction. Some limitations of the classical GMDH in daily river flow
predictions are as follows:

• Limited polynomial structure: The classical GMDH is restricted to first-order polyno-
mials, which may not capture complex nonlinear relationships adequately. In contrast,
the ASGMDH introduces a new polynomial scheme that allows for the inclusion of
second and third-order polynomials, providing more flexibility and enhancing the
model’s ability to capture nonlinear dynamics.

• Fixed number of inputs: The classical GMDH has a fixed number of inputs in each
polynomial, which limits its capacity to consider a broader range of variables. In
ASGMDH, the number of inputs can vary, allowing for more comprehensive modeling
by incorporating two or three different inputs in each polynomial.

• Limited model types: The classical GMDH only offers 2nd-order polynomial models,
which may not be sufficient to capture higher-order interactions and complex relation-
ships in the data. ASGMDH introduces second and third-order polynomial models,
resulting in a total of four model types, providing a more diverse and comprehensive
range of modeling options.

To overcome these limitations, a modified version called the Adaptive Structure of
GMDH (ASGMDH) has been introduced in this study. The ASGMDH not only modifies
the main structure of the polynomial used in the classical GMDH but also incorporates
a feature selection technique, improving the model’s performance and flexibility. The new
polynomial scheme in ASGMDH allows for the inclusion of second and third-order poly-
nomials with two or three different inputs in each polynomial. This leads to creating four
distinct types of models, enabling a more comprehensive representation of the underlying
relationships between variables. The authors have done the generalization structure of the
GMDH in the projection of different hydrological variables, such as flood forecasting at the
Saint-Charles River [40], daily water level prediction [41], forecasting monthly fluctuations
of lake surface [42].
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1.3. Research Objectives

The main objective of this study is to develop a practical model for daily river flow
modeling by fusing machine learning algorithms. In this study, the input variables used for
daily river flow discharge forecasting include minimum, mean, and maximum temperature,
precipitation, and discharge with a single lead time. The dataset utilized for model training
and evaluation was collected from 21 October 2000, to 31 December 2021, encompass-
ing a total of 7546 samples. Once the ASGMDH model was calibrated, its performance
was thoroughly assessed through qualitative and quantitative evaluations. Additionally,
uncertainty and reliability analyses were conducted to further scrutinize the model’s per-
formance and provide insights into its reliability in real-world applications. Furthermore,
the sensitivity of the developed model to each of the input variables was examined using
partial derivative sensitivity analysis, enabling a better understanding of the significance
of each variable in the modeling process. These comprehensive assessments and analyses
contribute to a thorough understanding of the ASGMDH model’s capabilities and provide
valuable insights for its practical application in daily river flow forecasting, supporting
water resource management, and decision-making processes.

2. Materials and Methods
2.1. Study Area

The study area focuses on the Ottawa River, a prominent water body in Eastern Canada
(Figure 1). The river flows through two Canadian provinces, Ontario and Quebec, serving as
a natural boundary between them. With a length of 1271 km, it ranks as the second-longest
river in Eastern Canada. The Ottawa River originates from Lake des Outaouais, situated
in Quebec, approximately 250 km north of Ottawa, the capital city of Canada. The lake,
located at an elevation of 430 m, serves as the source of the river. From there, the Ottawa
River meanders through diverse landscapes, including forests, urban areas, and agricultural
regions, before reaching its mouth at an elevation of 20 m. Notably, the Ottawa River holds
significant hydrological importance as the primary tributary to the St. Lawrence River,
one of the major waterways in North America. The river’s expansive watershed covers
an area of approximately 146,300 km2. This extensive watershed encompasses various
ecosystems and landforms, contributing to the complexity of the river’s hydrological
processes. The Ottawa River exhibits significant variations in flow rates. The maximum
observed discharge within our study period occurred on 1 May 2019, reaching a value
of 5980 m3/s. Conversely, the minimum discharge occurred on 25 September 2005, with
a value of 165 m3/s. These extreme values highlight the dynamic nature of the river and
the wide range of flow conditions it experiences. Such variations in discharge emphasize
the need for accurate prediction models to effectively manage and mitigate flood risks in
the region.

Figure 2 visually represents the distribution of the five variables used in developing
the machine learning model. These variables include river discharge (m3/s), minimum
and maximum air temperatures (◦C), mean temperature (◦C), and precipitation (mm). The
figure showcases how these variables vary over time in the study area, encompassing
both the training and testing stages of the model. By examining the distribution of these
variables, valuable insights can be gained regarding the dynamics and patterns of the study
area’s hydrological and climatic conditions. The river discharge variable illustrates the
fluctuation in water flow rates, highlighting high and low discharge periods. The air tem-
perature variables, including the minimum, maximum, and mean temperatures, provide
a comprehensive understanding of the area’s temperature range throughout the observed
period. Additionally, the precipitation variable indicates the amount and variability of
rainfall over time. The study area experienced a significant flood event in May 2019, which
stands out as the most important flood in the recorded data. This flood was characterized
by a river discharge of 5980 (m3/s) on the first of May. Analysis of the results revealed that
the primary contributing factors to this flood were the high precipitation levels observed
in April 2019, combined with a heatwave that occurred towards the end of May. The
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heatwave led to snow melting, exacerbating the flood event in the study area. Notably, all
peak river flows in the area were observed during spring, indicating that spring floods are
the most common occurrence in this region. This finding held significant importance for
the development of the machine learning model. Unlike the conventional approach that
primarily considers previous lags in daily river flow prediction, we incorporated tempera-
ture as an additional input parameter. This inclusion aimed to account for the impact of the
heatwave-induced snow melting, a crucial natural event affecting flood prediction in the
study area. By incorporating temperature into the predictive model, we aimed to capture
the intricate relationship between temperature variations, snow melt, and subsequent river
flow. This approach recognizes the unique hydrological dynamics of the study area and
enables more accurate and reliable flood predictions. The integration of temperature as
an input parameter aligns with the need to account for the specific factors influencing
regional flood occurrences, providing a more comprehensive and robust prediction model.
The data used for model development spanned from October 2000 until December 2021.
The dataset was divided into two subsets: 70% of the data, covering the period from Octo-
ber 2000 to September 2015, was used for training, while the remaining 30% was allocated
for testing purposes.

Hydrology 2023, 10, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 1. The geographical location of the study area. 

Figure 2 visually represents the distribution of the five variables used in developing 

the machine learning model. These variables include river discharge (m3/s), minimum and 

maximum air temperatures (°C), mean temperature (°C), and precipitation (mm). The fig-

ure showcases how these variables vary over time in the study area, encompassing both 

the training and testing stages of the model. By examining the distribution of these varia-

bles, valuable insights can be gained regarding the dynamics and patterns of the study 

area’s hydrological and climatic conditions. The river discharge variable illustrates the 

fluctuation in water flow rates, highlighting high and low discharge periods. The air tem-

perature variables, including the minimum, maximum, and mean temperatures, provide 

a comprehensive understanding of the area’s temperature range throughout the observed 

period. Additionally, the precipitation variable indicates the amount and variability of 

rainfall over time. The study area experienced a significant flood event in May 2019, which 

stands out as the most important flood in the recorded data. This flood was characterized 

by a river discharge of 5980 (m3/s) on the first of May. Analysis of the results revealed that 

the primary contributing factors to this flood were the high precipitation levels observed 

in April 2019, combined with a heatwave that occurred towards the end of May. The heat-

wave led to snow melting, exacerbating the flood event in the study area. Notably, all peak 

river flows in the area were observed during spring, indicating that spring floods are the 

most common occurrence in this region. This finding held significant importance for the 

development of the machine learning model. Unlike the conventional approach that pri-

marily considers previous lags in daily river flow prediction, we incorporated 

Figure 1. The geographical location of the study area.



Hydrology 2023, 10, 164 7 of 23

Hydrology 2023, 10, x FOR PEER REVIEW 7 of 24 
 

 

temperature as an additional input parameter. This inclusion aimed to account for the 

impact of the heatwave-induced snow melting, a crucial natural event affecting flood pre-

diction in the study area. By incorporating temperature into the predictive model, we 

aimed to capture the intricate relationship between temperature variations, snow melt, 

and subsequent river flow. This approach recognizes the unique hydrological dynamics 

of the study area and enables more accurate and reliable flood predictions. The integration 

of temperature as an input parameter aligns with the need to account for the specific fac-

tors influencing regional flood occurrences, providing a more comprehensive and robust 

prediction model. The data used for model development spanned from October 2000 until 

December 2021. The dataset was divided into two subsets: 70% of the data, covering the 

period from October 2000 to September 2015, was used for training, while the remaining 

30% was allocated for testing purposes. 

 

 

 

 
 

 

Figure 2. The time series of the applied variables at both the training and testing stages. 

Table 1 summarizes the descriptive statistics of the variables at the training and test-

ing stages. The maximum and minimum values in Table 1 reveal important insights about 

the range and extremities of the variables. Analyzing the discharge variable, we find that 

0

20

40

60

80

100

120

140

1
-O

ct
-2

0
0
0

1
-O

ct
-2

0
0
2

3
0

-S
ep

-2
0
0
4

3
0

-S
ep

-2
0
0
6

2
9

-S
ep

-2
0
0
8

2
9

-S
ep

-2
0
1
0

2
8

-S
ep

-2
0
1
2

2
8

-S
ep

-2
0
1
4

2
7

-S
ep

-2
0
1
6

2
7

-S
ep

-2
0
1
8

2
6

-S
ep

-2
0
2
0

P
re

ci
p

it
ai

to
n
 (

m
m

)

Time (Day)

Train Test

0

1000

2000

3000

4000

5000

6000

7000

1
-O

ct
-2

0
0
0

1
-O

ct
-2

0
0
2

3
0

-S
ep

-2
0
0
4

3
0

-S
ep

-2
0
0
6

2
9

-S
ep

-2
0
0
8

2
9

-S
ep

-2
0
1
0

2
8

-S
ep

-2
0
1
2

2
8

-S
ep

-2
0
1
4

2
7

-S
ep

-2
0
1
6

2
7

-S
ep

-2
0
1
8

2
6

-S
ep

-2
0
2
0

D
is

ch
ar

g
e 

(m
3
/s

)

Time (Day)

Train Test

Figure 2. The time series of the applied variables at both the training and testing stages.

Table 1 summarizes the descriptive statistics of the variables at the training and
testing stages. The maximum and minimum values in Table 1 reveal important insights
about the range and extremities of the variables. Analyzing the discharge variable, we
find that the maximum discharge recorded during the study period is 4400 (m3/s) in the
training set and 5980 (m3/s) in the testing set. Conversely, the minimum discharge is
165 (m3/s) in the training set and 330 (m3/s) in the testing set. These extreme values
indicate the potential for significant variations in water discharge, with the testing data
exhibiting a wider range of values compared to the training data. Analyzing the discharge
variable, we observe that the mean discharge values in the training and testing sets are
1261.72 (m3/s) and 1417.57 (m3/s), respectively. The median values provide a measure of
the central tendency, with 1190 (m3/s) in the training set and 1260 (m3/s) in the testing
set. The standard deviation is 690.84 (m3/s) for the training set and 886.25 (m3/s) for the
testing set, indicating greater variability in discharge values in the testing data. Turning to
the precipitation variable, we observe a maximum precipitation value of 115.8 (mm) in the
training set and 83 (mm) in the testing set. Conversely, the minimum precipitation values
are zero in the training and testing sets, indicating periods of no recorded precipitation
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in the study area. Examining the precipitation variable, we find that the mean values are
2.35 (mm) in the training set and 2.60 (mm) in the testing set. The standard deviation is
5.74 (mm) in the training set and 6.52 (mm) in the testing set, suggesting slightly higher
variability in precipitation measurements in the testing data. Regarding the temperature
variables (Tmax, Tmin, and Tmean), the maximum and minimum values provide insights into
the temperature extremes experienced. The maximum values indicate the highest recorded
temperatures, with 37.1 ◦C for Tmax, 36.4 ◦C for Tmin, and 30.9 ◦C for Tmean in the training
set. Similarly, the testing set shows maximum values of 36.4 ◦C for Tmax, 36.4 ◦C for Tmin,
and 29.1 ◦C for Tmean. On the other end of the spectrum, the minimum values represent the
lowest recorded temperatures, with −23.2 ◦C for Tmax, −20.9 ◦C for Tmin, and −26.5 ◦C for
Tmean in the training set, and −30.7 ◦C for Tmax, −28.9 ◦C for Tmin, and −23.7 ◦C for Tmean
in the testing set. For the temperature variables (Tmax, Tmin, and Tmean), the mean values
are relatively close in both sets, indicating consistency. The standard deviations are slightly
higher in the testing set, implying greater variability in temperature measurements during
the testing period. The skewness values, which are negative for all temperature variables,
indicate a slight left-skewness in the distribution of temperature data.

Table 1. The descriptive statistics of the variables at the training and testing stages.

Index Stage Mean Med SD SV K S Min Max

Q (m3/s)
Train 1261.7 1190 690.84 477,262.5 1.57 1.13 165 4400
Test 1417.6 1260 886.25 785,439.6 6.22 2.18 330 5980

Pr (mm)
Train 2.35 0 5.74 32.94 51.38 5.25 0 115.8
Test 2.6 0 6.52 42.56 32.55 4.79 0 83

Tmax (◦C)
Train 11.79 12.7 12.58 158.38 −0.97 −0.26 −23.2 37.1
Test 12 12.3 12.28 150.91 −0.99 −0.16 −20.9 36.4

Tmin (◦C)
Train 1.78 2.8 11.61 134.75 −0.64 −0.45 −30.7 24.6
Test 2.07 2.2 11.13 123.94 −0.65 −0.34 −28.9 23.9

Tmean (◦C)
Train 6.8 7.8 11.94 142.66 −0.85 −0.36 −26.5 30.9
Test 7.04 7.6 11.55 133.4 −0.87 −0.24 −23.7 29.1

Pr = Precipitaiton; Q = Discharge; Med = Median; SD = Standard Deviation; SV = Sample Variance; K = Kurtosis;
S = Skewness; Min = Minimum; Max = Maximum.

2.2. Machine Learning Technique

The Group Method of Data Handling (GMDH) proposed by Ivakhnenko [43] is an in-
ductive algorithm for mathematical modeling and data analysis. It is a self-organizing
system that aims to construct a mathematical model based on input-output relationships in
a given dataset. The GMDH algorithm is capable of solving complex nonlinear problems by
automatically optimizing the structure and parameters of the model [41,44,45]. It employs
a unique approach where a model is constructed as a network of interconnected neurons,
where each neuron in a layer is formed by connecting different pairs of neurons from
the previous layer using a quadratic polynomial. This process generates new neurons in
subsequent layers, facilitating the modeling of complex relationships between inputs and
outputs. This flexible representation enables GMDH to effectively map inputs to one or
more outputs, making it a valuable tool for tackling intricate problems that require cap-
turing nonlinear dynamics in various modeling and prediction tasks [46,47]. The GMDH
algorithm is designed to minimize the computational error between the observed output
variable yi and the predicted output ŷi. It achieves this by constructing a model ( f̂i) that
maps the input variables X = (x1, x2, x3, . . ., xn) (where n is the number of input variables) to
the predicted output ŷi. GMDH leverages its self-organizing capability to build a network
of interconnected neurons, where each neuron represents a 2nd order polynomial function
involving various combinations of the input variables. By optimizing the structure and
parameters of this network, GMDH aims to achieve a model ( f̂i) that provides the closest
approximation to the actual output (yi) based on the given inputs (xi1, xi2, xi3, . . ., xin).
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Thus, GMDH operates by minimizing the computational error between the observed and
predicted output, resulting in an effective modeling approach, as shown in Figure 3.
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Figure 3. The schematic structure of GMDH for a provided set of input data.

By finding an optimal function, the GMDH-type neural network aims to minimize
the squared difference between the actual output (yi) and the predicted output (ŷi). This
minimization objective can be expressed as:

OF = Min
ŷ

∑M
i=1 (ŷi − yi)

2 (1)

where OF is the objective function, M is the total number of data samples, and yi and ŷi are
the ith samples of the actual and predicted output.

The relationship between input variables and the predicted output variable can be
expressed using a complex discrete form of the Volterra functional series, known as the
Kolmogorov-Gabor polynomial. This polynomial takes the form:

ŷ = q0 +
M

∑
i=1

qixi +
M

∑
i=1

M

∑
j=1

qijxixj +
M

∑
i=1

M

∑
j=1

M

∑
k=1

qijkxixjxk + . . . (2)

where ŷi is the predicted output value, {q0, qi, qij, qijk} ae unknown coefficients, xi, xj, and xk
are ith, jth, and kth input variables (respectively), and M is the total number of data samples.

This polynomial captures the general connection between the input variables and the
output variable, with each term representing the contribution of different combinations of
the input variables. The coefficients (q0, qi, qij, qijk, ...) determine the impact of each term
on the overall relationship. The Kolmogorov-Gabor polynomial provides a flexible and
expressive representation for modeling complex nonlinear relationships between inputs
and outputs, allowing for capturing intricate patterns and interactions within the data. This
polynomial captures the general connection between the input variables and the output
variable, with each term representing the contribution of different combinations of the input
variables. The unknown coefficients (q0, qi, qij, qijk, ...) determine the impact of each term
on the overall relationship. In the context of the given equation and description, the input
vector X = (x1, x2, ..., xn) represents a collection of input variables. The unknown coefficients
qi (i = 1, 2, 3, 4, 5) in the equation correspond to the weights vectors or polynomial
coefficients associated with each term in the polynomial series. These coefficients determine
the influence and contribution of each input variable xi in the overall relationship between
the inputs and the output variable. By adjusting the values of these coefficients, the model
can capture the complex interactions and patterns between the inputs and outputs, enabling
effective modeling and prediction of the relationship between the variables. The complete
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mathematical description can be simplified as a partial quadratic polynomials system
consisting of two variables (neurons). The simplified form takes the following structure:

ŷ = G(xi, xj) = q1 + q2xi + q3xj + q4x2
i + q5x2

j + q6xixj (3)

where xi and yi represent the input variables, while q0, q1, q2, q3, q4, and q5 are the unknown
coefficients or weights associated with the polynomial terms. Each term in this equation
represents the contribution of different combinations of the input variables and their
quadratic forms. By adjusting the values of the coefficients, the model can effectively
capture and represent the complex interactions and patterns between the input variables,
resulting in improved modeling and prediction capabilities. In the basic form of the GMDH
algorithm, all possible combinations of two independent variables from a total of n input
variables (xi, i = 1, 2, 3, ..., M) are considered to construct a regression polynomial in
the form of quadratic polynomials with only two variables that best fit the dependent
observations (yi, i = 1, 2, ..., M) in a least-squares sense. The number of neurons in the
first hidden layer is determined by the number of these combinations, which is given by
(n,2) = n(n− 1)/2, (where n is the number of input variables). Therefore, n(n− 1)/2 neurons
are built in the first hidden layer based on the observed data. Each neuron in the hidden
layer represents a specific combination of two input variables. By systematically exploring
all these combinations, the GMDH algorithm aims to construct a practical model that
captures the underlying relationships and patterns in the data. The least-squares approach
is used to optimize the fit between the model’s predictions and the actual observations,
ensuring a robust and accurate data representation. Each neuron represents a combination
of variables (xia, xin) from the input vector {(yi, xia, xib); (i = 1, 2, 3, ..., M) (a, b∈{1, 2, 3, ..., n})}.
The model is defined as follows:

y1 = q0 + q1x1a + q2x1b + q3x1ax1b + q4x1a
2 + q5x1b

2

y2 = q0 + q1x2a + q2x2b + q3x2ax2b + q4x2a
2 + q5x2b

2

−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−

yM = q0 + q1xMa + q2xMb + q3xMaxMb + q4xMa
2 + q5xMb

2

(4)

where yi represents the observed output variable for the ith observation, and Q = {q0, q1, q2,
q3, q4, q5} is the vector of polynomial coefficients. The y values can be represented by the
equation y = Aa. The matrix A represents the input variables:

A =


1 x1a x1b x1ax1b x1a

2 x1b
2

1 x2a x2b x2ax2b x2a
2 x2b

2

. . . .. . .

. . . .. . .
1 xMa xMb xMaxMb xMa

2 xMb
2

 (5)

and y is the vector of observed output variables y = [y1, y2, y3, ..., yM]. The goal is to find the
optimal coefficients Q = {q0, q1, q2, q3, q4, q5} that minimize the difference between predicted
and observed output values.

The classical GMDH encounters several limitations in daily river flow predictions,
including (i) Restriction to 2nd-order polynomial structure, (ii) Limitation in the number
of variables that can serve as inputs to neurons (only two variables allowed), (iii) Limited
use of neurons solely from adjacent layers. To overcome these limitations, a new scheme
is introduced to assess the impact of more complex models on improving the predictive
performance of GMDH. This modified GMDH model allows for generating 2nd and
3rd-order polynomials with two and three inputs, respectively, within each polynomial.
As a result, three additional polynomial forms, in addition to the previously mentioned
2nd-order polynomial in Equation (3), are defined as follows:

ŷ = G(xi, xj, xk) = q0 + q1xi + q2xj + q3xk + q4x2
i + q5x2

j + q6x2
k + q7xixj + q8x1xk + q9xjxk (6)
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ŷ = G(xi, xj) = q0 + q1xi + q2xj + q3x2
i + q4x2

j + q5xixj + q6xix2
j + q7x2

i xj + q8x3
i + q9x3

j (7)

ŷ = G(xi, xj, xk) = q0 + q1x1 + q2x2 + q3x3 + q4x2
1 + q5x2

2 + q6x2
3

+q7x1x2 + q8x1x3 + q9x2x3 + q10x3
1 + q11x3

2 + q12x3
3 + q13x2

1x2
+q14x2

1x3 + q15x2
2x1 + q16x2

2x3 + q17x2
3x1 + q18x2

3x2 + q19x1x2x3

(8)

Based on these equations, it is evident that the 2nd-order polynomial with three inputs
(Equation (6)) and the 3rd-order polynomial with two inputs (Equation (7)) each have ten
unknown coefficients. However, the 3rd-order polynomial with three inputs (Equation (8))
has twenty unknown coefficients. This new scheme of GMDH is known as the Adaptive
Structure of GMDH (ASGMDH), which can dynamically adapt and optimize itself based
on the available data or changing input patterns. This adaptability enables the model to
effectively capture and represent complex relationships and patterns in the data. By incor-
porating an adaptive structure into the GMDH method, the model can enhance its capacity
to handle diverse datasets, optimize its performance, and improve its predictive accuracy.
In the ASGMDH, an additional improvement is the automatic selection of input variables.
This means that not all inputs are necessarily included in the final version of the model,
which is a combination of one or more polynomials. Essentially, this method autonomously
conducts feature selection during the process of generating optimal polynomials. This
feature selection capability is beneficial because it allows the model to identify and in-
corporate only the most relevant input variables, thereby reducing dimensionality and
potentially improving its predictive performance. By automatically selecting the inputs that
contribute the most to the model’s accuracy, the ASGMDH optimizes the representation of
the underlying relationships within the dataset.

The objective function of the ASGMDH is established using the corrected version of
the Akaike Information Criteria (AICc) [48,49]. It comprises two primary components:
an accuracy term and a complexity term. The accuracy term focuses on assessing the
model’s ability to predict accurately. It takes into account how well the model captures the
underlying patterns and relationships present in the dataset. This term aims to maximize
the accuracy or goodness-of-fit of the model to the observed data. On the other hand, the
complexity term accounts for the complexity or simplicity of the model. It penalizes overly
complex models, thereby aiming to avoid overfitting and promote model parsimony. The
complexity term discourages the inclusion of unnecessary variables or incredibly intricate
model structures that may lead to decreased generalization performance on new, unseen
data. Combining these two terms within the objective function, the ASGMDH seeks to
strike a balance between accuracy and model complexity. The goal is to find the optimal
model that achieves a good balance between capturing the patterns in the data while
keeping the model as simple and interpretable as possible.

AICc = M× Ln

(
1
M

M

∑
i=1

(
Qt

A −Qt
P
)2
)
+

2KM
K−M− 1

(9)

where M is the number of samples, Qt
A and Qt

P are the actual and predicted (respectively)
flow discharge at tth sample, and K is the number of tuned parameters of the desired model.
All the codings for implementing the classical GMDH and ASGMDH have been done in
MATLAB.

2.3. Statistical Measures

This paper used four statistical indices to evaluate and assess the performance of the
machine learning models. The coefficient of Determination (R2) represents the proportion
of the variance in the dependent variable (predicted values) that can be explained by the
independent variables (input features). It ranges from 0 to 1, with a higher value indicating
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a better fit between the predicted and actual values. R2 is commonly used to measure the
goodness of fit and overall performance of a model. A high R2 value suggests that the
model captures a significant portion of the variability in the data. Normalized Root Mean
Squared Error (NRMSE) measures the average magnitude of the residuals (differences
between predicted and actual values) relative to the range of the dependent variable. It
is calculated as the ratio of the root mean squared error to the range of the dependent
variable. NRMSE provides a normalized measure of the model’s error, allowing for better
comparison across different datasets. A lower NRMSE indicates a more accurate model,
representing a smaller average deviation from the actual values. Mean Absolute Relative
Error (MARE) measures the average relative difference between the predicted and actual
values. It is calculated as the mean of the absolute differences divided by the mean of the
actual values. MARE provides a measure of the average percentage error of the model. It is
advantageous when the magnitude of the error relative to the actual values is important.
A lower MARE indicates a more accurate model, representing a smaller average percentage
deviation from the actual values.

R2 =

 ∑M
t=1 (Q

t
A −QA)(Qt

P −QP)√
∑M

t=1 (Q
t
A −QA)

2
√

∑M
t=1 (Q

t
P −QP)

2

2

(10)

NRMSE =

√
1
M ∑M

t=1 (Q
t
A −Qt

P)
2

1
M ∑M

t=1 Qt
A

(11)

MARE =
1
M∑M

t=1

∣∣∣∣∣Qt
A −Qt

P
Qt

A

∣∣∣∣∣ (12)

NSE = 1− ∑M
t=1 (Q

t
A −Qt

P)
2

∑M
t=1 (Q

t
A −QA)

2 (13)

where M is the number of samples, Qt
A and Qt

P are the actual and predicted (respectively)
flow discharge at tth sample, QA and QP are the average of the actual and predicted
flow discharge, respectively. These four indices collectively comprehensively evaluate the
model’s performance [50,51]. While R2 assesses the overall goodness of fit, NRMSE, MARE,
and NSE, provide measures of the model’s accuracy, precision, and relative performance
compared to a benchmark. By considering multiple indices, researchers can gain a more
robust understanding of the model’s strengths and weaknesses, leading to improved model
selection, refinement, and better overall accuracy.

2.4. Reliability Analysis

To gauge the reliability of measurements and determine whether the observed results
are consistent and reproducible, the Reliability analysis (RA) can be performed. RA is
a statistical method used to assess the consistency, stability, and dependability of measure-
ments, scales, or tests. More precisely, it assesses whether a proposed model reaches an
acceptable level of performance. The primary goal of RA is to determine the extent to
which the measurements obtained from a particular approach are dependable and free from
random error. It helps researchers or practitioners assess whether the approach consistently
estimates what it intends to evaluate over time, across different conditions, or among
different individuals. RA provides practitioners with valuable insights into the quality and
consistency of applied tools, allowing them to make informed decisions regarding using
specific approaches in their practice. It helps ensure the techniques employed are reliable,
valid, and suitable for the intended analysis or interpretation. The RA is defined as follows:

RA =
100
M ∑M

t=1 Rt (14)
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where

Rt =


0

∣∣∣∣Qt
A−Qt

P
Qt

A

∣∣∣∣ > α

1
∣∣∣∣Qt

A−Qt
P

Qt
A

∣∣∣∣ ≤ α
(15)

where Qt
A and Qt

P are the actual and predicted (respectively) flow discharge at the tth
sample, and α is the acceptable relative error. The value of α is project-dependent and
can vary based on specific requirements. However, as a general guideline, it is often
suggested that the maximum value of α should be set to 0.2 or 20% [40,52]. The current
study examines various values for α, including 0.01, 0.02, 0.05, 0.1, 0.15, and 0.2.

2.5. Uncertainty Analysis

Uncertainty analysis is utilized to examine the expected range of a model or experi-
ment, precisely the uncertainty interval (UI) that approximates the discrepancy between
estimated and actual values. U95, a well-known technique for calculating the UI, is inter-
preted as follows: “Through repeated experimentation, the true value of the test result is
expected to fall within the UI approximately 95 times out of 100 experiments” [52]. The
definition of U95 is as follows:

U95 =
1.96
M

√
∑M

t=1 (Q
t
A −QA)

2
+ ∑M

t=1 (Q
t
A −Qt

P)
2 (16)

where Qt
A and Qt

P are the actual and predicted (respectively) flow discharge at the tth
sample, and M is the total number of data samples.

3. Results and Discussions

The river flow prediction in this study involved the consideration of five different
inputs. These inputs included the measured discharge from the previous day, which served
as a historical record summarizing watershed characteristics. Additionally, real-time data
on air temperatures (minimum, maximum, and mean) and precipitation were incorporated.
The development of the Adaptive algorithm, known as ASGMDH, introduced significant
improvements to the traditional GMDH approach. ASGMDH allowed for the inclusion of
second and third-order polynomials, with two or three different inputs in each polynomial.
This enhancement resulted in four distinct scenarios, as illustrated in Figure 4. These
scenarios not only improved the main structure of the polynomial used in the classical
GMDH but also incorporated a feature selection technique. This feature selection technique
enhanced the model’s performance and flexibility.

Figure 4 demonstrates the different combinations of variables used in each scenario. In
the case of model M33, Tmin, Tmean, and Qt−1 were utilized to predict the output, employing
a polynomial equation with a degree of three. In M32, Tmax, Pr, and Qt−1 were used with
a polynomial equation of degree two. For model M23, Tmean and Qt−1 were combined in
a polynomial equation of degree three. Lastly, in model M22, Pr and Qt−1 were employed
with a polynomial equation of degree two. By incorporating these different scenarios,
the ASGMDH model demonstrated improved adaptability and accuracy in predicting
river flow. The selection of specific variables and the utilization of polynomial equations
with varying degrees contributed to the model’s effectiveness in capturing the complex
relationships within the data. As highlighted in Figure 4, it is evident that all the models
have a single layer in their final structure. However, there are three key differences in the
structure of these developed models: (i) the number of inputs in the generated polynomial,
(ii) the polynomial degree for each one, and (iii) the type of input variables. Referring to
Figure 4, the models with three inputs are M33 (Equation (13)) and M32 (Equation (14)),
while the models with two input variables are M23 (Equation (15)) and M22 (Equation (16)).
Additionally, the models M32 (Equation (14)) and M22 (Equation (16)) employ 2nd-order
polynomials, whereas the models M33 (Equation (13)) and M23 (Equation (15)) utilize
3rd-order polynomials.
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In the case of input variables for river flow discharge forecasting, it is observed that
the selected inputs from the five provided options are below the maximum limit. Across all
the developed models, which vary in polynomial types and the allowed number of inputs
in each polynomial, different inputs have been identified as the most influential variables
for daily river flow forecasting.

Qt =−51.95 + 1.07×Qt−1 + 29.33× Tmean − 28.30× Tmin − 16.07E− 3× Tmean ×Qt−1

+17.59E− 3× Tmin ×Qt−1 + 8.58× Tmin × Tmean − 1.84E− 05×Qt−1
2 − 4.54× Tmean

2

−3.88× Tmin
2 − 2.14E− 3× Tmin × Tmean ×Qt−1 + 1.46E− 06× Tmean ×Qt−1

2

+9.67E− 4× Tmean
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2

+1.03E− 3× Tmin
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3
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Qt= 25.07 + 0.98×Qt−1 + 0.235× P + 0.644× Tmax

+3.49E− 4× P×Qt−1 − 1.79E− 4× Tmax ×Qt−1 + 21.97E− 3× Tmax × P

+2.29E− 06×Qt−1
2 + 51.4E− 4× P2 − 54.05E− 3× Tmax

2

(18)

Qt= 0.68 + 1.02×Qt−1 − 1.398× Tmean + 14.59E− 4× Tmean ×Qt−1

−1.39E− 05×Qt−1
2 + 0.144× Tmean

2 + 1.425E− 07× Tmean ×Qt−1
2

−14.47E− 5× Tmean
2 ×Qt−1 + 1.64E− 09×Qt−1

3−29.06E− 4× Tmean
3

(19)

Qt = 3.157 + 0.998×Qt−1 + 0.804× P + 28.66E− 5× P×Qt−1 − 1.87E− 6×Qt−1
2 + 34.55E− 4× P2 (20)
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Scatter plots depicting the daily river flow discharge for four ASGMDH-based models
during both the training and testing stages are presented in Figure 5. The grand line in the
scatter plot represents a perfect match between the observed daily discharge values (Q)
and the predicted values from all four equations in the train and test stages. A diagonal
line signifies a strong positive linear relationship between observed and predicted values.
Closer proximity to the grand line indicates a higher degree of agreement and a better fit of
the equation to the observed data. The predicted values in all four scenarios follow almost
the same prediction pattern compared to the observed values. The similarity in prediction
patterns suggests that all four equations are capable of capturing the underlying patterns
and trends in the observed daily discharge. This consistency in predictions further supports
the reliability and effectiveness of the equations in estimating the daily discharge values.
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Figure 5. Scatter plots of the daily river flow discharge for four ASGMDH-based models at the
training and testing stages.

Figure 6 displays the statistical indices for the ASGMDH-based models developed for
daily river flow forecasting. The R2 values for all models and datasets range from 0.985
to 0.992, indicating a strong correlation between the predicted and observed river flow
values. The models explain a significant portion of the variance in the data, suggesting
their effectiveness in capturing the underlying patterns. The NRMSE values for all models
and datasets are relatively low, ranging from 0.057 to 0.067. This indicates that the models
have a good level of accuracy in predicting river flow values, with small deviations from
the observed data. The MARE values for all models and datasets range from 0.036 to 0.044,
indicating a low average relative error in the predictions. The models perform well in
estimating the river flow values with good precision. The NSE values for all models and
datasets are high, ranging from 0.985 to 0.992. This indicates a strong agreement between
the predicted and observed values, highlighting the models’ ability to accurately reproduce
the observed river flow patterns. Overall, the statistical indices demonstrate the strong
performance and accuracy of the developed models. The high R2, low NRMSE, MARE,
and high NSE values indicate that the models can effectively capture the relationships
between the input variables and river flow, providing reliable predictions. These results
validate the effectiveness of the proposed ASGMDH approach for daily river flow modeling
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and emphasize its potential for practical applications in water resource management and
decision-making processes.
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Figure 6. Statistical indices for the developed ASGMDH-based models in daily river flow forecasting.

Figure 7 illustrates the reliability analysis results conducted for the ASGMDH-based
models, considering different values of α as provided in Equation (15). The figure reveals
a clear correlation between the α value and the reliability analysis (RA) value. Specifically,
the models exhibit the highest (or lowest) RA values corresponding to the highest (or lowest)
α values. Notably, the α values experience a relatively modest increase of less than 10%.
For α values greater than or equal to 10, all models demonstrate an RA value exceeding
95%. These findings indicate the satisfactory performance of the presented ASGMDH
models in accurately predicting daily river flow discharge. The RA values in Figure 7
offer more detailed insights into the model’s predictive performance. Approximately
20% of all predicted samples during the test mode exhibited a relative error of less than
1%, while 38% demonstrated a relative error of less than 2%. Furthermore, a significant
proportion of samples, approximately 75%, exhibited a relative error of less than 5%.
These results showcase the models’ ability to provide accurate predictions within a narrow
margin of error. Additionally, the reliability analysis shows that more than 95% of all
predicted samples during the test mode had a relative error of less than 10%. Moreover,
approximately 98% of the samples demonstrated a relative error of less than 15%, while
99% exhibited a relative error of less than 20%. These findings indicate the high reliability
and effectiveness of the developed ASGMDH models in accurately forecasting daily river
flow discharge. The robust performance of the models, as evidenced by the high percentage
of samples falling within the desired relative error thresholds, confirms their reliability
in real-world flood prediction scenarios. These results provide valuable information to
decision-makers in water resource management and related fields, as they can rely on
the ASGMDH-based models to make informed decisions and implement effective flood
mitigation and response strategies.
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Figure 7. The results of the reliability analysis for the developed ASGMDH-based models.

The U95 value is a measure of uncertainty and represents the upper 95% prediction
interval around the predicted values. In the context of the ASGMDH-based models for
daily river flow discharge, a lower U95 value indicates a narrower prediction interval. It
suggests a higher level of confidence in the model’s predictions. Figure 8 presents the
outcomes of the uncertainty analysis conducted on the ASGMDH-based models. The results
showcase notable differences in the U95 values among the different models. Particularly,
model M33, which is the most complex with 20 terms, exhibits the lowest U95 value,
indicating higher confidence in its predictions. On the other hand, the simplest model,
M22, consisting of only six terms, displays the highest U95 value, indicating a larger
uncertainty in its predictions. A noteworthy comparison arises between two models of
similar complexity, namely M33 and M32, consisting of ten terms. Surprisingly, M32,
which employs a second-order polynomial with three inputs, demonstrates a lower U95
value compared to M23, which employs a third-order polynomial with two inputs. This
unexpected result suggests that the predictive performance of M32 is superior, despite its
lower model complexity. Furthermore, when comparing the U95 values of different models
with the benchmark model M33, it is observed that the relative error values for all three
cases are negligible, measuring less than 1%. These findings emphasize the high accuracy
and reliability of the ASGMDH models in predicting daily river flow discharge, even for
the models with lower complexity. Consequently, these results instill confidence in the
effectiveness of the developed models and their capability to deliver accurate predictions
with minimal uncertainty.
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Figure 8. The results of the uncertainty analysis for the developed ASGMDH-based models.

After evaluating the different developed models using the ASGMDH method, a model
based on classical GMDH is introduced to facilitate a comparison with existing methods.
Figure 9 represents the final structure of the classical GMDH model and its accuracy, where
all input variables (Tmax, Tmin, Tmean, Pr, Qt−1) are included. The high R2 values indicate
a strong correlation between the observed and predicted values in the training and testing
stages. The low values of NRMSE and MARE suggest that the model has a small overall
error, with the predicted values being close to the observed values. The NSE value of 0.985
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in the training stage and 0.992 in the testing stage indicate a good model fit, where values
close to 1 indicate a high level of accuracy.
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Figure 9. The structure and statistical indices of the classical GMDH for daily river flow discharge
forecasting.

However, in the presented ASGMDH models (Equations (17)–(20)), only two or three
inputs are included in the final model structure. This indicates that the classical method,
constrained by its limitations, fails to produce a simpler model. In contrast, the ASGMDH
method employs the corrected Akaike Information Criterion (AICc) for small sample sizes
to determine the final model structure, taking into account both model complexity and
accuracy. This inherent feature selection capability of ASGMDH, combined with AICc,
results in a simpler model with improved predictive performance. Adopting the AICc
index provides a robust and objective approach for model comparison. By considering both
simplicity and accuracy, it ensures that the selected model not only captures the underlying
relationships in the data but also avoids overfitting and unnecessary complexity.

To ensure a fair comparison between the classical GMDH and ASGMDH models, the
AICc index, which accounts for both simplicity and accuracy, is employed. The results
depicted in Figure 10 clearly indicate that the majority of ASGMDH models have smaller
AICc values compared to the GMDH model. This implies that the ASGMDH models
achieve a better balance between model complexity and accuracy. Among the presented
ASGMDH models, the lowest AICc value is attributed to M32, with a value of 19,648.71.
Consequently, based on the AICc criterion, M32 is identified as the superior model in this
study. The superiority of M32 based on the AICc criterion highlights the effectiveness of
the ASGMDH method in producing a simpler yet accurate model for predicting daily river
flow discharge. It is important to highlight that both models demonstrate exceptional speed
in forecasting daily flow discharge. The execution time for each model is impressively
quick, taking less than 2 s to complete.
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Figure 10. Comparison of the ASGMDH and classical GMDH in daily river flow forecasting based
on the AICc.
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To examine the changing pattern of daily river flow discharge in relation to the
input variables in the ASGMDH-based model (M32), the analysis of sensitivity using the
partial derivatives (PDSA) technique is utilized [53–55]. This approach entails assessing
the sensitivity of the outcomes by measuring the partial difference between the output
variable (Qt) and each individual input variable (Tmax, Pr, Qt−1). Notably, a larger partial
derivative value indicates a more significant impact of the input variables on the results.
When the partial derivative is positive, an increase in the input variables corresponds
to a rise in the output variable, and vice versa. This approach of utilizing the PDSA
technique provides valuable insights into the changing patterns of daily river flow discharge
concerning the input variables. By quantifying the sensitivity of the model outputs, it
enables a deeper understanding of the influence of each input variable, namely maximum
temperature (Tmax), precipitation (Pr), and previous discharge (Qt−1), on the resultant river
flow discharge (Qt). The magnitude and direction of the partial derivatives help identify
the relative importance and directionality of the impacts.

This sensitivity analysis sheds light on the intricate dynamics between the maximum
temperature and river flow discharge in the ASGMDH-based model (M32). The observed
linear relationship, with a negative slope, emphasizes the role of the maximum temper-
ature as a critical driving factor for changes in daily flow discharge. Understanding this
relationship enables researchers and practitioners to anticipate the effects of temperature
variations on river systems and their potential impact on water resources management
and flood risk assessment. These findings provide valuable insights into the model’s sen-
sitivity and contribute to a more comprehensive understanding of the complex interplay
between temperature and river flow dynamics. Figure 11 illustrates the sensitivity analysis
of the ASGMDH-based model (M32) concerning the input variables utilized in the model.
The graph displays the partial derivatives that reflect the sensitivity of the relationship
investigated in this study, particularly concerning the maximum temperature. Overall, it
can be observed that positive values of the maximum temperature correspond to negative
sensitivity values, whereas negative values of the maximum temperature yield positive
sensitivity values. This indicates a linear relationship with a slope of −0.1 between the
maximum temperature threshold and sensitivity. As a result, when dealing with negative
maximum temperature values, increasing the variable value lead to an increase in the flow
discharge. Conversely, within the range of positive values, an increase in the maximum
temperature result in a decrease in the daily flow discharge value calculated by the model.
Indeed, suppose the model assigns greater importance to the maximum temperature value
than the actual recorded value. In that case, it can lead to lower calculated flow discharge c
than the expected values. This discrepancy occurs because the model becomes more sensi-
tive to changes in the maximum temperature parameter, causing it to disproportionately
influence the overall flow discharge prediction.
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Figure 11. Sensitivity analysis results of the ASGMDH-based model (M32) show the influence of
each input variable.

Among the variables examined, the maximum temperature demonstrates the highest
sensitivity. The sensitivity values associated with the maximum temperature show a clear
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linear relationship, with negative values for positive maximum temperature values and
positive values for negative maximum temperature values. This indicates that an increase
in the maximum temperature leads to a decrease in the daily flow discharge, while a re-
duction in the maximum temperature corresponds to a rise in the discharge. Regarding
precipitation, the sensitivity values consistently exhibit positive values across all ranges.
For small precipitation values (Pr < 10 mm), the sensitivity values vary within the range
of [0, 3]. As the precipitation value increases, the sensitivity becomes more constrained
within the narrower range of [1, 2]. This suggests that precipitation positively impacts daily
flow discharge, with larger precipitation events having a relatively more pronounced effect.
Similarly, the sensitivity analysis reveals that Qt−1, the previous day’s flow discharge, also
exerts a positive influence on the current day’s discharge. The sensitivity values for Qt−1
range from 0.97 to 1.03, indicating a relatively smaller sensitivity range compared to the
other two variables. Nevertheless, an increase in the previous day’s discharge corresponds
to a rise in the current day’s discharge, although the magnitude of this increase may vary
across different domains. The sensitivity analysis on the input variables utilized in the
developed ASGMDH-based model for daily river flow discharge prediction reveals that the
maximum temperature exhibits the highest sensitivity among the variables. Following that,
precipitation and Qt−1 rank as the second and third most influential variables, respectively.

4. Conclusions

This study highlights the significance of understanding flood prediction and manage-
ment’s underlying factors and dynamics. Using the Adaptive Strcutre of Group Method
of Data Handling (ASGMDH) model, with its explicit equations and optimization capa-
bilities, valuable insights and accurate predictions were obtained. Notably, the sensitivity
analysis revealed that the maximum temperature exhibited the highest sensitivity among
the variables, followed by precipitation and Qt−1. This emphasizes the importance of
considering temperature fluctuations and precipitation patterns when predicting and man-
aging floods. Reliability and validity were ensured through a comprehensive reliability
analysis, confirming the robustness of the proposed model. Furthermore, the uncertainty
analysis of the ASGMDH models revealed notable differences in the U95 values across
different models. Interestingly, the most complex model displayed the lowest U95 value,
indicating its ability to provide more precise predictions. In addition, simpler models
with fewer terms demonstrated superior predictive performance, suggesting that model
complexity alone does not guarantee accuracy. This highlights the importance of model
selection based on both complexity and accuracy considerations. Additionally, comparing
ASGMDH models with the classical GMDH model using the AICc index demonstrated the
superiority of the ASGMDH models. The ASGMDH models consistently outperformed
the classical GMDH model, as indicated by their lower AICc values. The ASGMDH-based
model shows a second-order polynomial (AICc = 19,648.71) in its final form, while the
classical GMDH-based model has seven second-order polynomials (AICc = 19,701.56). This
indicates that the ASGMDH models strike a better balance between accuracy and model
complexity, offering a more robust and efficient approach for daily river flow discharge
prediction. These models offer a reliable tool for water management practitioners and
decision-makers, facilitating effective planning and decision-making in various water man-
agement applications. By gaining a deeper comprehension of the influence of temperature
and the occurrence of spring floods, researchers and practitioners can enhance the effective-
ness and applicability of machine learning techniques in flood prediction and management.
The findings of this study highlight the importance of considering temperature fluctuations,
precipitation levels, and historical discharge data in flood modeling. These insights, along
with the reliable predictions provided by the ASGMDH model, empower decision-makers
to make more accurate and effective decisions in flood management strategies, leading to
improved mitigation and adaptation measures in the face of increasing flood risks. Given
the valuable insights provided by the current study into historical discharge patterns, it
is essential to consider the potential impact of climate change on the reliability and ap-
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plicability of this model in the future. Therefore, as a natural extension of this research,
the next step will comprehensively evaluate the developed model under various climate
change scenarios. This evaluation will encompass the incorporation of climate projections
and the utilization of the developed machine learning model, which has demonstrated
promising capabilities in the current study. By integrating climate projections and advanced
modeling techniques, we aim to assess the sensitivity of the model to changing climatic
conditions and its ability to accurately predict future discharge patterns. This investigation
is crucial, particularly for flood-prone areas along the Ottawa River, as it will enhance our
understanding of the hydrological dynamics and provide a solid foundation for developing
more robust and adaptive hydrological models in the face of an uncertain climate future.
Moreover, this evaluation will enable us to identify the key drivers of change in discharge
patterns, including the influence of climate dynamics and the intricate interactions within
hydrological processes. By employing a numerical model, we can quantitatively analyze
the interplay between these factors and gain insights into the mechanisms that govern the
river’s response to changing climatic conditions.

The ultimate goal of this research is to improve our understanding of the Ottawa
River’s hydrological behavior and its vulnerability to climate change. Refining and vali-
dating the model through this evaluation can enhance its reliability and applicability in
flood forecasting and water resource management. This knowledge will empower decision-
makers and stakeholders with valuable information to mitigate risks, develop effective
adaptation strategies, and safeguard communities in the face of an uncertain climate future.
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Mostafa Biazar, and Mohammadreza Askarizad Masouleh. J. Irrig. Drain. Eng. 2021, 147, 07021005.

35. Ebtehaj, I.; Zeynoddin, M.; Bonakdari, H. Discussion of “Comparative assessment of time series and artificial intelligence models
to estimate monthly streamflow: A local and external data analysis approach” by Saeid Mehdizadeh, Farshad Fathian, Mir Jafar
Sadegh Safari and Jan F. Adamowski. J. Hydrol. 2020, 583, 124614. [CrossRef]
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