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Abstract: Precise estimation of the spatial and temporal characteristics of rainfall is essential for
producing the reliable catchment response needed for proper management of water resources. How-
ever, in most parts of the world, gauged rainfall stations are sparsely distributed and fail to properly
capture the spatial variability of rainfall. Furthermore, the gauged rainfall data can sometimes be of
short length or require validation. Following this, we present a procedure that enhances the trust-
worthiness of gauged rainfall data and the accuracy of the rainfall estimations of five satellite-based
precipitation estimate (SPE) products by validating them using the 1779 gauged rainfall stations
across Thailand. The five SPE products considered include CMORPH-BLD; TRMM-3B42; CHIRPS;
CHIRPS-PL; and TRMM-3B42RT. Prior to validation, the gauged rainfall dataset was verified using
double mass curve (DMC) analysis to eliminate questionable and inconsistent readings. This led
to the improvement of the Nash–Sutcliffe Efficiency (NSE) between the station of interest and its
surroundings by 13.9% (0.758–0.863), together with an average 11.8% increase with SPE products,
whilst dropping only 7% of questionable dataset. Three different bias correction (BC) procedures
were applied to correct SPE products using gauge-based gridded rainfall (GGR). Once DMC and BC
procedures were implemented together, the performance of the SPE products was found to increase
significantly. Finally, the application of the ensemble weighted average of the three best-performing
bias-corrected SPE products (Bias-CMORPH-BLD, Bias-TRMM-3B42, and Bias-CHIRPS) further
enhanced the NSE to 0.907 and 0.880 in calibration and validation time periods, respectively. The
proposed DMC-based correction SPE and the weighting procedure of multiple SPE products allows
for an easy means of obtaining daily rainfall in remote locations with sufficient accuracy.

Keywords: gauge-based gridded rainfall; satellite based precipitation estimate; double mass curve;
bias correction; ensemble product

1. Introduction

Accurate spatial distribution of rainfall is essential for producing reliable runoff esti-
mates for water resource management. Interpolation methods such as geostatistical Kriging;
Inverse Distance Weighted (IDW); Thiessen Polygon; and Thin Plate Spline (TPS) [1–3] are
often used to generate spatial rainfall estimates from the gauged rainfall measurements.
However, uncertainties arise if the observation network becomes increasingly scarce. Al-
though there are numerous gauged rainfall stations in Thailand’s river basins, their areal
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distribution varies from one basin to another, depending on the topography and anthro-
pogenic impacts. For example, the floodplain of the Chao Phraya basin, where Bangkok is
situated, has a rain gauge density of 78.6 km2/station. In contrast, the rain gauge density in
mountainous areas such as the Salawin river basin is 1469.7 km2/station. Furthermore, the
trustworthiness of gauged rainfall data can sometimes be questionable. Factors including
the aerodynamic design of the stations and the effects of wind and wetting losses increase
the likelihood of systematic errors [4–6].

An alternative/supplement to gauged rainfall measurements is the use of satellite-
based precipitation estimate (SPE) products, which provide an easy alternative to ground
observations and are effective in spatiotemporally estimating the variability of precipitation
at high spatial and temporal resolutions [7]. In addition, the incorporation of multiple
earth observation sensors has been shown to further improve the accuracy, coverage, and
spatiotemporal resolution of rainfall estimates [8,9]. Among many high-resolution SPE
products, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA) and the Climate Prediction Centre Morphing Technique (CMORPH)
have been recognised as the two better-performing products [10–13]. Even though TMPA
products (Version 6 and Version 7) performed better than CMORPH in most studies [14–17],
CMORPH showed better performance in some, including the investigations carried out
by Shen et al. [18] and Li et al. [19]. The TMPA Version 7, which is the latest version,
exhibits improved accuracy of rainfall estimation in both real-time (3B42RT) and post-real-
time (3B42) products over its predecessor (Version 6) [20–23]. Furthermore, Xue et al. [24]
and Zulkafli et al. [25] have utilised TRMM-3B42V6 and TRMM-3B42V7 in estimating
runoff, and the results showed that Version 7 generated hydrographs closer to the observed
hydrographs than those of Version 6.

However, the poor spatial resolution (0.25◦, which is equivalent to a spatial coverage
of approx. 770 km2/pixel) of the TMPA and CMORPH products is a major drawback in
capturing the detailed spatial variations of rainfall required for accurate estimation of the
runoff of the basin. Therefore, the Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) version 2.0 was developed by Funk et al. [26] using three main com-
ponents. These include the Climate Hazards group Precipitation Climatology (CHPclim),
the satellite-only Climate Hazards group Infrared Precipitation (CHIRP), and the station
blending procedure to produce CHIRPS. These products provide rainfall estimates at the
finest spatial resolution of 0.05◦ (coverage of approx. 30 km2/pixel). Duan et al. [27];
Poortinga et al. [28]; and Simons et al. [29] compared the accuracy of SPE products in Italy,
China, and Vietnam using TRMM-3B42V7, CMORPH, and CHIRPS and concluded that
CHIRPS was the second-best-performing rainfall product after TRMM-3B42V7.

The accuracy of SPE is usually enhanced by comparing and bias-correcting them with the
gauged rainfall data [30]. Among many BC procedures, linear bias correction [31–33], distribu-
tion transformation [34,35], and regression analysis [36–38] are widely and successfully
utilised in various studies.

As SPEs are validated against the gauged rainfall stations, their accuracy is highly
dependent upon the quality of the gauged rainfall data used, which is always subjected
to some degree of uncertainty. Searcy and Hardison [39] proposed a double mass curve
(DMC) for checking the consistency of hydrologic data by comparing the cumulative
data for a single station with the cumulative data from several other stations in the area.
The DMC has been continuously utilised for many kinds of hydrological data including
rainfall [40–42], runoff, sediment [43–46], and aquifer drawdown [47], as well as rainfall–
runoff and runoff–sediment relations [48].

The objective of this study is to enhance the accuracy of five SPE products, consisting
of TRMM-3B42, CMORPH-BLD, CHIRPS, and the two near-real-time products, which are
TRMM-3B42RT and CHIRPS-PL, covering Thailand’s river basins and combine them to
form a weighted averaged series. Gauged rainfall data from over 1700 stations were utilised
to improve the accuracy of the SPE products by applying three BC procedures, consisting
of linear bias correction (LBC), bias correction using distribution transformation, and bias
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correction using regression analysis (RABC). Prior to its application, the monthly gauged
rainfall data from 2001 to 2015 was validated using the DMC procedure. The usefulness of
the DMC to increase the accuracy of areal rainfall estimates and to possibly decrease the
number of existing gauged rainfall stations was also investigated. Thereafter, the advantage
of applying the DMC to the gauged rainfall data along with the BC was evaluated.

2. Materials and Methods
2.1. Study Area and Data Description
2.1.1. Study Area

Thailand is located at the centre of peninsular Southeast Asia between 5◦ N–21◦ N
latitude and 97◦ E–106◦ E longitude. Thailand is bordered to the west by Myanmar and
the Andaman Sea, to the northeast by Laos, to the southeast by Cambodia, and to the
south by the Gulf of Thailand and Malaysia (see Figure 1). The country covers a total
area of 515,934.08 km2 and is divided into 25 main river basins with areas varying from
4148 km2 to 70,943 km2. The altitude ranges from −6 m (MSL) to 2565 m (MSL). The
northern region is the mountainous area and is the origin of the Ping, Wang, Yom, and
Nan River Basins—the main tributaries of the Chao Phraya River Basin, which covers the
area of nearly one-third of the country. Thailand has a tropical climate affected by the
southwestern and northeastern monsoons, which cause the rainy season (May to October)
and the dry season (November to April), respectively, for most of the country. This is except
for the southern part, which gains extra rainfall for the first three months of the dry season.
The annual average rainfall (2001–2015) of the southern areas is around 2045 mm, while
that of other regions is approximately 1402 mm.
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2.1.2. Gauge Rainfall Data

Monthly rainfall data from 1779 non-automatic gauge rainfall stations during the
period from 2001 to 2015 were used in this study. Around 65% of these stations were
operated by the Thailand Meteorological Department (TMD), and 33% were operated by
the Royal Irrigation Department (RID). The remaining stations were managed by other
government agencies. Figure 1 shows these gauged rainfall stations, which were already
checked as to whether they were situated at the right positions; then, the incorrect stations
were relocated to the appropriate locations. The majority of these stations are densely
located in the central region, which is concentrated by the irrigated areas.

2.1.3. Satellite-Based Precipitation Estimate (SPE) Products

Five SPE products were selected for this study, comprising CMORPH-BLD, TRMM-
3B42, TRMM-3B42RT, CHIRPS-PL, and CHIRPS. The characteristics of these products
are presented in Table 1, which describes the temporal and spatial resolutions, temporal
and spatial coverages, latency, and data source. The summaries of these products are
described below.

(1) The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997
through a collaboration between the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA). TRMM is a low-earth-
orbit satellite equipped with Precipitation Radar (PR), TRMM Microwave Imager
(TMI), Visible and Infrared Sensor (VIRS), lightning imaging sensor (LIS), and the
Earth’s Radiant Energy System (CERES) [49]. The TRMM Multi-satellite Precipitation
Analysis (TMPA) products are the combination of infrared (IR) data from geostationary
satellites and microwave (MW) data from multiple satellites. The TRMM-3B42 V7 3-
hourly precipitation products cover the tropical and subtropical regions with a spatial
resolution at 0.25 × 0.25 grid scale. There are four steps in creating the products.
Step 1, the passive microwave field of view from different sources is calibrated and
combined using algorithms such as sensor-specific versions of the Goddard Profiling
Algorithm (GPROF). Step 2, the IR precipitation estimates are computed using the
histogram matching of monthly MW precipitation estimates. Step 3, the MW and IR
precipitation estimates are merged, with IR estimates being utilised to fill in the gap
where MW estimates are missing. Rain gauge data are finally utilised to rescale and
calibrate the merged precipitation estimates. TRMM-3B42RT product is originally
evaluated to provide the near-real-time data and is then bias-corrected using monthly
gauge rainfall data from the Global Precipitation Climatology Centre (GPCC) to
generate the post-real-time data, TRMM-3B42 product [50–52]. The datasets of these
two products were downloaded from NASA’s Goddard Space Flight Center website
(https://disc2.gesdisc.eosdis.nasa.gov/data/, accessed on 1 April 2020) and utilised
in this study.

https://disc2.gesdisc.eosdis.nasa.gov/data/
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Table 1. Descriptions of the satellite-based rainfall estimate (SPE) products utilised in this study.

SPE Product Gauged
Observation

Temporal
Resolution

Spatial
Resolution

Temporal
Coverage

Spatial
Coverage Latency Data Source

TRMM-3B42 V7 GPCC 3 h 0.25 × 0.25◦ 1998–2019 50◦ S–50◦ N 2 months
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_

L3/TRMM_3B42_Daily.7/2015/01/
Accessed on 1 April 2020

TRMM-3B42RT V7 - 3 h 0.25 × 0.25◦ 1998–2019 50◦ S–50◦ N 8 h
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_

RT/TRMM_3B42RT_Daily.7/2015/01/
Accessed on 1 April 2020

CHIRPS-PL V2.0 GTS and Conagua 2 days 0.05 × 0.05◦ 1981–2015 50◦ S–50◦ N 1 week
https://data.chc.ucsb.edu/products/CHIRPS-2.0/

prelim/global_monthly/tifs/
Accessed on 15 April 2020

CHIRPS V2.0 GPCC, GTS, and
Conagua 1 day 0.05 × 0.05◦ 1981–

present 50◦ S–50◦ N 3 weeks
https://data.chc.ucsb.edu/products/CHIRPS-2.0/

global_monthly/tifs/
Accessed on 15 April 2020

CMORPH-BLD V1.0 CPC unified daily gauge
analysis, GPCC 1 day 0.25 × 0.25◦ 1998–

present 60◦ S–60◦ N 2 months
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1

.0/BLD/0.25deg-DLY_EOD/GLB/2015/201501/
Accessed on 30 April 2020

https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B42_Daily.7/2015/01/
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B42_Daily.7/2015/01/
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_RT/TRMM_3B42RT_Daily.7/2015/01/
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_RT/TRMM_3B42RT_Daily.7/2015/01/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/prelim/global_monthly/tifs/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/prelim/global_monthly/tifs/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/0.25deg-DLY_EOD/GLB/2015/201501/
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/0.25deg-DLY_EOD/GLB/2015/201501/
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(2) Climate Hazards Group Infrared Precipitation (CHIRPS) and Climate Hazards Group
Infrared Precipitation with stations (CHIRPS) were developed by the University
of California Santa Barbara’s Climate Hazards Group to support the United States
Agency for International Development Famine Early Warning Systems Network
(FEWS NET) [26]. Four steps are involved in producing CHIRPS dataset. Firstly,
Infrared Precipitation (IRP) pentad rainfall estimates are first generated using local
regressions between TRMM 3B42V7 precipitation analysis pentads and cold cloud
duration with a uniform threshold of 235 K. Secondly, the temporal component
of IRP pentadal is converted to percentage anomalies and multiplied by the spatial
component CHPClim pendatal to produce the Climate Hazards Group IR Precipitation
(CHIRP)—the unbiased gridded estimate. The adjusted IRP is then combined with
gauged rainfall data from Global Telecommunications System (GTS) and Conagua
(Mexico) to create a rapid preliminary version (CHIRPS-PL) (2-day latency). Finally,
a later final version (CHIRPS) is delivered within the third week of the following
month by using extra gauged rainfall observations, mainly from the USA, Central
America, South America, and sub-Saharan Africa [53–56]. CHIRPS-PL and CHIRPS
were employed in this study and were downloaded from https://data.chc.ucsb.edu/
products, accessed on 15 April 2020.

(3) The National Oceanic and Atmospheric Administration (NOAA) Climate Prediction
Centre MORPHing method (CMORPH) generates precipitation data by merging
passive microwave-based precipitation estimates from multiple low-earth-orbit (LEO)
satellites and the infrared data from multiple geostationary satellites [57]. CMORPH
uses thermal IR temperatures to create the cloud systems advection vectors (CSAVs)
to fill the gaps where temporal and spatial observations of MW-based rain rates
are not available. The CSAVs are later applied to propagate MW-based rain rates in
forward and backward directions between two successive MW overpasses using linear
interpolation to morph the shape and intensity of the propagated rainfall pattern to
produce CMORPH-RAW [27,58]. The CMORPH-CRT is produced by adjusting the
CMORPH-RAW against the CPC unified daily gauge-based analysis over land and
the pentad Global Precipitation Climatology Centre (GPCC) over the ocean using
the probability density function bias correction procedure [59]. The CMORPH–CRT
is additionally combined with the gauge analysis using the optimal interpolation
technique to generate the CMORPH–BLD product [7]. CMORPH-BLD are available
at https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/0.25deg-DLY_EOD/
GLB/2015/201501/, accessed on 30 April 2020.

2.2. Methods
2.2.1. Validation of Gauged Rainfall Data Using the DMC Procedure

Inaccuracies in raw gauged rainfall data necessitate a validation procedure. DMC
was used to observe correlations between (a) rainfall depths measured at each station
and (b) the weighted average rainfall of the surrounding stations [39]. The weighted
average rainfall was calculated using the Inverse Distance Square (IDS) procedure, and the
number of stations used in the calculation was chosen to optimise the correlation between
these variables.

Once DMC indicated a discrepancy, unreliable data were eliminated from the gauged
rainfall dataset, thereby improving the correlation of the DMC. However, although the
continual removal of unreliable data would gradually enhance the DMC, excessively doing
so would affect the integrity of the gauged rainfall dataset. Therefore, to determine the
suitable extent of elimination, a set of DMCs was produced from the gauged rainfall dataset
which had data eliminated to different extents, beginning from a minimum Nash–Sutcliffe
coefficient (NSE) threshold of NSE < 0.6 [60]. Whilst increasing the threshold, the correlation
between the DMC and SPE products was monitored. It is suspected that there would be
an NSE threshold at which the gauged rainfall data would begin to lose its reliability and,
thus, display lower correlations with the SPE products.

https://data.chc.ucsb.edu/products
https://data.chc.ucsb.edu/products
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/0.25deg-DLY_EOD/GLB/2015/201501/
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/BLD/0.25deg-DLY_EOD/GLB/2015/201501/
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2.2.2. Effect of the Validity of Gauged Rainfall Data on Their Correlation with SPE

Due to the hypothesis that the accuracy of the final SPE product is dependent upon
the quality of gauged rainfall data, a procedure was carried out to verify this. Firstly, the
correlation between each of the SPE products and the original gauged rainfall dataset was
determined. Each SPE product was then compared with the gauged rainfall datasets, which
were used to produce the DMCs in Section 2.2.1 in order to observe any changes in their
correlations as the NSE threshold increased.

2.2.3. Usefulness of DMC

A method was devised to reinforce the effectiveness of using the DMC procedure to
enhance the accuracy of gauged rainfall data. In order to create the correlational improve-
ments as provided by DMCs, this could only be achieved by hypothetically densifying the
observation network within the study area. Hence, as a means to replicate the outcome
from Section 2.2.1, stations were randomly removed from the gauged rainfall dataset to
induce an increase in the root mean square error (RMSE) in the areal rainfall estimates
relative to utilising the full dataset. The stations were gradually removed from the dataset
until the subsequent increase in RMSE was equivalent to the reduction in RMSE as a result
of the DMC procedure.

2.2.4. Pixel-Based Comparison of SPE Products

To perform BC on the SPE products, the gauged rainfall dataset must be gridded.
Hence, gridded gauged rainfall (GGR) datasets were generated using the validated gauged
rainfall datasets. Each pixel was calculated by weighting the rainfall depths at surrounding
stations using the IDS procedure. No more than ten gauged rainfall stations within a radial
area of 25 km2 were included in the calculation. The three nearest stations were selected
if no stations were situated within the specified area. Consequently, the GGR data were
compared with SPE products to determine the most accurate product for estimating rainfall
in this study.

2.2.5. Bias Correction Procedure for SPE Products

The mismatch between the SPE and GGR data limits the ability to directly utilise SPE
products for rainfall estimation. This can be appreciably mitigated with bias correction
(BC). In this study, three common BC methods were chosen to improve the accuracy of SPE
products, comprising linear bias correction (LBC), bias correction using regression analysis
(RABC), and bias correction using distribution transformation (DTBC). The GGR data were
utilised to correct the SPE products on the BC process. To demonstrate the effectiveness
of DMC for eliminating unreliable rainfall data prior to producing the GGR data, the BC
procedures were also applied to gridded rainfall data generated from uncorrected (original)
rainfall data, which shall be simply referred to as GGROri hereafter. The theory of each BC
procedure is described below.

(1) Linear bias correction (LBC)

The linear bias correction (LBC) method is a simple and widespread procedure to
be used for adjusting the systematic error of SPE products [31–33]. A bias corrector was
calculated at each pixel as the ratio between the summation of the GGR and SPE rainfall for
the overall time series. This factor was later used to adjust the whole time series of SPE
dataset, as shown in Equation (1).

SPE′(i) = SPE(i)·
∑n

i=1 GGR(i)

∑n
i=1 SPE(i)

(1)

where SPE′(i) is the bias-corrected SPE dataset for ith month, SPE(i) is the original SPE
dataset for ith month, GGR(i) is the gauged-based gridded rainfall for ith month, and n is
number of months, respectively.



Hydrology 2023, 10, 154 8 of 21

(2) Bias correction using regression analysis (RABC)

Nonlinear regression analysis has been demonstrated to be an effective method in
reducing the discrepancy between SPE product and gauged rainfall data [36–38,61,62]. In
this study, the second-order polynomial regression was chosen to correlate the monthly
GGR and SPE datasets of each pixel, as shown in Equation (2). The bias correctors a and b
were computed and employed to adjust the SPE rainfall for the entire time series.

SPE′(i) = aSPE2
(i) + bSPE(i) (2)

(3) Bias correction using distribution transformation (DTBC)

Distribution transformation bias correction was applied for the correction of Global
Climate Model (GCM) datasets [34]. This method was utilised in this study to adjust SPE
datasets by substituting their standard deviation and mean with those from the GGR data,
as presented in Equation (3).

SPE′(i) =
(SPE(i) − SPEµ

SPEσ

)
× GGRσ + GGRµ (3)

where SPEµ is the mean of original raw SPE dataset, SPEσ is the standard deviation of
original SPE dataset, GGRµ is the mean of GGR dataset, and GGRσ is the standard deviation
of GGR dataset. SPE′(i) and SPE(i) are the corrected and original SPE datasets for time step
i, respectively.

2.2.6. Cross-Validation of Bias Correction Procedures

The temporal cross-validation technique was used to test the effectiveness of BC
procedures. To reduce the effect of overfitting in training datasets, the sliding window
validation introduced by Kotu and Deshpande [63] was utilised by subdividing the whole
dataset (180 months) into ~70% of data (132 months) for calibration and ~30% (48 months)
for validation. At the first iteration, the datasets between the 1st and 132nd month were
selected for calibration to evaluate the bias correctors of the SPE datasets. These correctors
were then applied to correct SPE datasets of the validation period (133rd to 180th month).
For the following iterations, the calibration and validation periods were slid to the following
months, and this process was repeated until the whole dataset was used (see Figure 2). The
accuracy of bias-corrected SPE products relative to the GGR datasets within the validation
period was determined by using NSE. The average NSE value from 180 iterations of sliding
windows for each of the SPE products was determined to assess the overall performance.
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3. Results and Discussion
3.1. Effect of Validity of Gauged Rainfall Data on Their Correlation with SPE Products

To create the original DMC, the weighted rainfall depth for each station was calculated
using 10 surrounding stations (varying from three to ten due to the uneven distribution
of stations). The average NSE between rainfall depths at the stations of interest and the
weighted average rainfall depths of the surrounding stations (i.e., the original DMC) was
0.758, as shown in Table 2. The average NSE between the original DMC and each SPE
product in decreasing order was CMORPH (0.612), CHIRPS-PL (0.608), TRMM-3B42 (0.575),
CHIRPS (0.512), and TRMM-3B42RT (0.354).

The effect of data elimination on the correlation with SPE products is also presented
in Table 2. For example, consider the first scenario, wherein 0.51% of gauged rainfall
data was removed because they did not reach the NSE threshold of 0.60. Basically, this
led to the removal of one gauge rainfall station as the complete time series was found
unreliable, leaving us with 1778 stations. This improved the average NSE of the DMC
to 0.783. The DMC also showed improved NSE with all SPE products (e.g., for TRMM-
3B42, NSE improved from 0.575 to 0.603). By gradually increasing the NSE threshold and
dropping the data/stations, it was revealed that the NSE of gauged rainfall data and SPE
began to decline at the threshold of 0.84. Meanwhile, this occurred for CHIRPS-PL and
CMORPH-BLD at the threshold of 0.95. However, at this threshold the gauged rainfall
dataset was significantly compromised due to a 27% removal of data. For this reason, the
suitable NSE threshold used to produce the validated gauged rainfall dataset was fixed at
0.84, at which 6.95% of the data were removed, lowering the total number of stations to 1743.
This improved the NSE of the DMC by 13.9% from 0.758 to 0.863. The NSE between the
gauged rainfall dataset with the SPE products also increased by an average of 11.8%—with
CMORPH-BLD, CHIRPS-PL, TRMM-3B42, CHIRPS, and TRMM-3B42RT increasing by
8.3%, 7.1%, 8.7%, 12.9%, and 22.0%, respectively.

This demonstrates the ability of DMC to validate gauged rainfall data, which is
important for ensuring that the dataset is reliable for performing BC on SPE rainfall
estimates. Having determined the optimal NSE threshold of 0.84, the NSE of the validated
gauged rainfall dataset and SPE products was further examined. For each product, the
NSE of the monthly rainfall estimates and the corresponding gauged rainfall depth was
determined. A cumulative distribution function was produced to show the percentage of
gauged and SPE rainfall depth pairs which show the NSE above a certain value, as shown
in Figure 3. In total, 34.8% and 27.2% of gauged rainfall depths showed an NSE > 0.8
with CMORPH-BLD and TRMM-3B42, respectively. Moreover, 73.1% of gauged rainfall
depths showed an NSE > 0.7 with CMORPH, followed by with CHIRPS-PL (66.0%) and
TRMM-3B42 (64.1%).

Further observations can be made with the bracketed values in Figure 3, which show
the percentage increase in SPE after validating the gauged rainfall dataset. For instance,
for CMORPH-BLD, the percentage of rainfall depth pairs with NSE > 0.8 increased by
16.3% (from 18.5% to 34.8%). The steep slope of the cumulative distribution curves for
most products indicates the effectiveness of eliminating unreliable gauged rainfall data in
improving their correlation with SPE products. On average, the major improvement was
seen for NSE thresholds of >0.7 and >0.8.
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Table 2. Correlations of the DMC and the SPE products after performing data elimination to different NSE thresholds.

NSE
Threshold

N
Discarded
Data (%)

Double Mass Curve TRMM-3B42 TRMM-3B43RT CHIRPS CHIRPS-PL CMORPH-BLD

NSE
(Original)

NSE
(After)

NSE
(Original)

NSE
(After)

NSE
(Original)

NSE
(After)

NSE
(Original)

NSE
(After)

NSE
(Original)

NSE
(After)

NSE
(Original)

NSE
(After)

Original 1779 0.00 0.758 - 0.575 - 0.354 - 0.512 - 0.608 - 0.612 -
0.60 1778 0.51 0.758 0.783 0.575 0.603 0.355 0.421 0.513 0.565 0.608 0.624 0.612 0.640
0.65 1776 0.85 0.758 0.790 0.576 0.604 0.355 0.421 0.513 0.566 0.608 0.628 0.613 0.643
0.70 1774 1.38 0.758 0.801 0.576 0.610 0.356 0.425 0.514 0.569 0.609 0.630 0.613 0.647
0.75 1764 2.39 0.759 0.817 0.581 0.616 0.361 0.427 0.519 0.569 0.612 0.636 0.618 0.652
0.80 1755 4.11 0.760 0.839 0.584 0.621 0.364 0.431 0.521 0.580 0.612 0.642 0.619 0.662
0.81 1752 4.96 0.761 0.845 0.584 0.621 0.364 0.429 0.522 0.579 0.613 0.644 0.620 0.662
0.82 1751 5.51 0.761 0.851 0.585 0.620 0.364 0.432 0.522 0.577 0.613 0.645 0.620 0.665
0.83 1746 6.21 0.761 0.857 0.586 0.622 0.365 0.433 0.523 0.577 0.613 0.648 0.621 0.662
0.84 1743 6.95 0.761 0.863 0.586 0.625 0.365 0.432 0.524 0.578 0.614 0.651 0.622 0.663
0.85 1733 7.29 0.761 0.869 0.587 0.624 0.366 0.430 0.525 0.576 0.615 0.653 0.623 0.664
0.90 1699 13.76 0.761 0.909 0.590 0.617 0.371 0.417 0.529 0.577 0.616 0.663 0.626 0.668
0.95 1605 27.21 0.763 0.953 0.597 0.616 0.378 0.412 0.539 0.572 0.619 0.666 0.632 0.673

1 432 80.74 0.777 1.000 0.557 0.479 0.326 0.482 0.477 0.451 0.578 0.467 0.591 0.538

Note: N is the number of gauged rainfall stations; rows with bolded numbers correspond to the NSE threshold which yields the maximum NSE after dropping the data/stations for each
SPE product; the highlighted row is the suitable NSE threshold used to produce the validated gauged rainfall dataset.
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3.2. Usefulness of DMC

The usefulness of the DMC procedure can be further evaluated using Table 3. After
the validation of the gauged rainfall dataset with a threshold NSE of 0.84, at which 6.95%
of data were removed, the RMSE of areal rainfall estimates was reduced by 16.3 mm. In
contrast, the attempt to induce an increase in the RMSE of areal rainfall estimates by
16.3 mm required the random removal of 514 stations from the total of 1743 stations
from the validated gauged rainfall dataset. Thus, this suggests that in order to achieve
the equivalent NSE improvements between gauged rainfall data and SPE products,
the observation network must be significantly densified from 591.7 km2/station to
395.7 km2/station.
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Table 3. Comparison of the effect of the DMC procedure and the random removal of gauged rainfall
stations on reducing and inducing error in the areal rainfall estimates across 25 sub-basins.

Region Code Basin
Number

of Station

DMC Random Removal

Discard
(%)

Density
(km2/St.)

Reducing
RMSE
(mm)

St. Remove
(%)

Density
(km2/St.)

Increasing
RMSE
(mm)

North

06 Ping 101 4.9 331.7 10.8 11 10.9 367.0 10.6
02N Khong 22 2.7 477.8 13.7 3 13.6 528.1 12.9
08 Yom 49 5.9 479.0 16.1 16 32.7 684.2 16.9
07 Wang 21 4.0 539.7 11.3 5 23.8 674.6 10.7
09 Nan 63 4.5 545.4 10.8 13 20.6 671.3 10.6
03 Kok 14 5.8 561.5 14.6 3 21.4 663.6 12.0
01 Salawin 13 5.0 1592.2 23.0 4 30.8 2122.9 24.8

Central

10 Chao Phraya 254 4.9 78.9 10.1 47 18.5 96.0 10.1
12 Pasak 120 10.4 129.1 28.1 93 77.5 538.7 28.2
13 Tha Chin 77 5.5 173.0 4.4 10 13.0 195.5 4.5
11 Sakae Krang 18 3.8 297.4 10.8 5 27.8 388.9 9.6

North-East
04 Chi 163 5.7 299.6 19.5 70 42.9 517.2 19.6
05 Mun 190 5.1 370.2 15.6 59 31.1 530.4 15.5

02NE Khong 123 3.6 383.4 20.1 38 30.9 548.3 20.6

East

16 Bang Pakong 51 7.2 209.8 12.4 15 29.4 289.2 12.9
18 East Coast Gulf 46 8.3 284.6 22.0 11 23.9 363.7 20.9
15 Phachinburi 27 5.8 372.0 20.7 10 37.0 568.9 21.6
17 Tonle sap 8 13.8 583.7 35.0 6 75.0 2043.0 37.2

West

19 Phetchaburi 35 4.4 178.9 3.4 5 14.3 201.9 4.0

20 Prachuapkhiri-
Khan Coast 23 8.6 310.1 5.5 5 21.7 375.4 6.1

14 Mae Klong 65 5.8 471.6 19.8 19 29.2 656.1 19.8

South

23 Thale Sap Songkhla 59 8.7 146.2 8.4 9 15.3 169.6 8.4
21 Peninsula-East Coast 97 14.3 255.6 19.5 20 20.6 314.1 19.2
25 Peninsula-West Coast 72 13.5 260.8 26.1 25 34.7 391.2 26.9
24 Pattani 10 27.0 365.5 25.3 6 60.0 731.0 25.8
22 Tapi 22 24.7 589.6 16.4 6 27.3 753.4 15.7

Summation/Average 1743 6.95 395.7 16.3 514 30.2 591.7 16.3

Note: St. is gauged rainfall station.

3.3. Pixel Based Comparison of SPE Products

As mentioned before, the monthly GGR data were compared with SPE products to
determine the most accurate product for rainfall estimation in Thailand. For each product,
the average RMSE and NSE between SPE and the GGR were calculated for all pixels. The
spatial variation of RMSE and NSE are presented in Figure 4. To further simplify and
visualise the variation in RMSE and NSE, an average value was taken for each region of
Thailand and is presented in Table 4. CMORPH-BLD was the best performer, providing
the highest average NSE of 0.800 and lowest RMSE of 49.6 mm. This was followed by
TRMM-3B42, CHIRPS-PL, CHIRPS, and TRMM-3B42RT, respectively. Oceanic influences
of the Andaman Sea and the Gulf of Thailand are likely to have contributed the reduced
spatial correlations in southern Thailand.

3.4. Bias Correction of SPE Products

The NSE for each SPE product is presented in Table 5. Given the average NSE of
0.576 for all SPE products and the original GGR data, BC was applied in conjunction with
DMCs in an attempt to increase the NSE. Improvements were evaluated by comparing the
bias-corrected SPE and GGR datasets. This was iterated for all 180 sliding window periods
and is presented as a line plot in Figure 5. As seen, the RABC, LBC, and DTBC methods
provided very similar improvements, enhancing the average NSE between the GGR and
SPE datasets to 0.801, 0.796, and 0.787, respectively. Therefore, the selection of the BC
procedure was an insignificant factor in optimising the NSE. Instead, to effectively utilise
the benefits of BC, it was found that the GGR data must first be reasonably accurate. By
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taking the example of the RABC method, the application of the DMC procedure enhanced
the average NSE by 14.9% from 0.576 to 0.662. As displayed in Figure 5b, this allowed
for a total improvement of 39.1% to 0.801, which could not be attained by performing
BC without first applying DMCs (i.e., GGROri dataset), wherein a 29.2% increase to 0.744
was observed.
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Table 4. Comparison between monthly average GGR and SPE rainfall estimates in the six regions
of Thailand.

Region Indicator TRMM-3B42RT CHIRPS CHIRPS-PL TRMM-3B42 CMORPH-BLD

Central RMSE (mm) 67.2 52.3 44.3 39.4 37.7
NSE 0.393 0.655 0.760 0.797 0.817

North RMSE (mm) 61.3 54.6 51.5 43.3 39.7
NSE 0.621 0.720 0.761 0.795 0.852

West RMSE (mm) 90.8 83.6 70.0 75.0 47.8
NSE −0.028 0.151 0.435 0.366 0.749

North-East RMSE (mm) 80.6 60.6 56.1 49.6 49.8
NSE 0.525 0.746 0.790 0.824 0.829

East RMSE (mm) 79.2 63.1 60.4 48.8 50.2
NSE 0.488 0.736 0.780 0.820 0.806

South RMSE (mm) 108.7 112.5 99.3 84.0 80.0
NSE 0.304 0.299 0.525 0.603 0.634

Thailand RMSE (mm) 78.3 67.2 60.9 53.5 49.6
NSE 0.459 0.618 0.713 0.745 0.800

Note: Bolded values are the minimum RMSE for each region; underlined values are the maximum NSE for
each region.
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Table 5. Variation in NSE between SPE products and gauged rainfall datasets prior to and after undergoing DMC and BC procedures.

SPE
Product

Rainfall Dataset
BC

Method

Bias Correction (BC) NSE Improvements (%)

Raw
(GGRori)

DMC-Corrected
(GGR)

Calibration Validation Provided by BC to: Overall
(DMC + BC)GGRori GGR GGRori GGR GGRori GGR

CMORPH-BLD 0.710
0.792

(11.5%)

RABC 0.812 0.862 0.782 0.843 10.1 6.5 18.7
LBC 0.802 0.854 0.783 0.842 10.2 6.4 18.6

DTBC 0.797 0.853 0.764 0.836 7.6 5.7 17.7

TRMM- 3B42 0.639
0.728

(13.9%)

RABC 0.811 0.859 0.780 0.839 22.1 15.2 31.3
LBC 0.800 0.850 0.783 0.841 22.5 15.4 31.6

DTBC 0.796 0.850 0.764 0.835 19.6 14.6 30.7

CHIRPS 0.525
0.622

(18.5%)

RABC 0.768 0.815 0.736 0.793 40.2 27.6 51.2
LBC 0.754 0.802 0.734 0.790 39.9 27 50.5

DTBC 0.744 0.798 0.706 0.777 34.6 24.9 48

CHIRPS-PL 0.667
0.740

(10.9%)

RABC 0.762 0.809 0.729 0.787 9.4 6.4 18
LBC 0.742 0.790 0.719 0.776 7.8 4.9 16.3

DTBC 0.737 0.791 0.698 0.770 4.7 4.1 15.4

TRMM- 3B42RT 0.337
0.430

(27.6%)

RABC 0.728 0.767 0.690 0.740 104.7 72.3 119.6
LBC 0.707 0.747 0.681 0.729 102 69.7 116.3

DTBC 0.696 0.741 0.654 0.716 93.8 66.6 112.5

Average 0.576
0.662

(14.9%)

RABC 0.776 0.822 0.744 0.801 29.2 20.9 39.1
LBC 0.761 0.808 0.740 0.796 28.5 20.1 38.2

DTBC 0.754 0.807 0.717 0.787 24.6 18.8 36.7

Note: Bolded values are the maximum NSEs among three BC methods; Underlined values are the maximum NSEs’ percent of improvement among three BC methods.
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Figure 5. Validation of average NSE between gauged rainfall datasets prior to and after under-
going correction procedures for 180 sliding windows over the calibration and validation periods.
(a) Calibration period; (b) validation period. Note: (1) AVG. 0.576 is the average NSE between SPE
products and GGRori; (2) AVG. 0.662 is the average NSE between SPE products and GGR; (3) AVG.
0.744 is the average NSE between GGRori and bias-corrected SPE products using RABC; (4) AVG.
0.801 is the average NSE between GGR and bias-corrected SPE products using RABC; and (5) the
three arrows (labelled 14.9%, 29.2%, and 39.1%) denote the percentage improvement from (1) to (2),
(1) to (3), and (1) to (4), respectively.

Inevitably, variations in GGR data will affect their degree of fit with SPE over the
validation period—take, for instance, the poor NSEs of below 0.5 observed in the rear-
most sliding windows in Figure 5b. Nevertheless, the impact of outlying data was effec-
tively reduced, particularly with the combined usage of DMCs and BC (in this case, the
RABC method), which lowered the range of NSE values from 0.479–0.623 (∆ = 0.144) to
0.775–0.821 (∆ = 0.046). The lone usage of BC, on the other hand, was able to limit this
discrepancy to between 0.702 and 0.767 (∆ = 0.065).



Hydrology 2023, 10, 154 16 of 21

Moreover, with the application of DMCs, the NSE of the GGR and SPE datasets became
less sensitive to the selected BC procedure, particularly for the latter sliding windows where
the discrepancy between the methods were noticeably marginalised. All in all, this clearly
demonstrates the benefits of the BC procedures, which allow the corrected SPE datasets to
be utilised with greater confidence.

It shall be noted that the influence of these BC procedures on individual SPE products
is quite variable. Given that BC simply transforms the SPE dataset to produce a better
fit with the gauged rainfall dataset, those with weaker original NSE values show notable
changes. For instance, the NSE between GGR and CMORPH-BLD estimates improved by
19% from 0.710 to 0.843 after applying the RABC method with DMCs, whereas TRMM-
3B42RT showed a 120% improvement. Amongst the five SPE products assessed in this
study, the three best-performing ones were the post-real-time datasets, namely CMORPH-
BLD, TRMM-3B42, and CHIRPS, which will subsequently be used to develop a weighted
ensemble SPE product.

3.5. Ensemble Bias-Corrected SPE Products

Recommending a final SPE product for use might not help with obtaining optimal
results for all locations and seasons, as the performance in an individual SPE product varies
in time and space. It makes sense to use a SPE product at a given location and time of the
year which provides the best rainfall match. Keeping this in mind, as the final part of the
research, the three best-performing bias-corrected SPE (BSPE) products (Bias-CMORPH-
BLD, Bias-TRMM-3B42, and Bias-CHIRPS) were pulled together to create an ensemble
weighted average at each grid point. At a given location, the weights were allowed
to vary with time and were formed on the basis of differences in SPE and GGR values
following Equation (4). The product with the minimum error was allocated maximum
weightage. These weights were then used to form the ensemble weighted average following
Equation (5).

Wi =
1/(BSPEi − GGR)2

∑n
j=1 1/

(
BSPEj − GGR

)2 (4)

SPEE = ∑n
i=1 WiBSPEi (5)

In order to access the fidelity of the proposed approach, a cross validation in space was
adopted. The procedure involved randomly dropping 30% of the grid points, calibrating
the model at the remaining 70% of locations, and noting down the weights estimated using
Equation (5). These weights were then used to simulate rainfall time series at the dropped
30% locations and calculated the NSE using the observed and simulated time series. The
whole procedure was repeated 20 times to obtain the unbiased results.

The weighted averaged results so obtained are presented in Figure 6 in the form
of bar charts of NSE for both the calibration and validation periods. For comparison,
NSEs of individual BSPE products using RABC are also included in the figure. The NSEs
for calibration were obtained by comparing the GGR time series at 70% of the locations
with the BSPE. For validation, NSEs were compared between the GGR time series at the
remaining 30% of grid points and the BSPE from the surrounding pixels. These procedures
were also repeated 20 times. As can be seen from the results presented in Figure 6, the
combined product provides an improved NSE in comparison to each individual BSPE
products irrespective of the calibration and validation periods.
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BSPE products.

Figure 7 provides the spatial variation of averaged NSEs across 20 simulations. Over-
all, irrespective of the regions or time periods, the approach provides high NSEs over the
country, barring a few grid points in the south during validation. These results are encour-
aging and suggest that after BC and forming a weighted average, these BSPE products can
be used in data-scarce locations with confidence.
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4. Conclusions

The importance of acquiring good-quality rainfall data is ever-increasing. The ease
of access of SPE products has made them a demanding area of research. Yet, the biases
in the SPE products and continual quest to produce reliable areal rainfall estimates still
limits SPE from being confidently applied for water resource management purposes. This
study demonstrates the effectiveness of validating monthly gauged rainfall data prior to
their use in SPE validation. By using conventional DMC to eliminate questionable gauged
rainfall data, this led to the elimination of around 7% of gauged rainfall data and reduced
the RMSE between the station of interest and its surroundings by 16.3 mm. The improved
accuracy, which was equivalent to around a 33% increase in the density of the observation
network (from 592 to 396 km2 per station), further validates the usefulness of DMCs.

The BSPE datasets without DMC provided significant improvements to the NSE
(25–29%). Further, 10% (total 36–39%) improvements in NSE were gained by combining the
DMC and BC. As a final part of the research, the final DMC and BSPE products were pooled
together to form the weighted ensemble average. The results show that the combined
product further improves rainfall estimates at left-out locations.

The research emphasises the need to check the quality of gauged rainfall data prior
to performing BC in order to effectively enhance the accuracy of the SPE products. The
weighted averaged SPE product further enhances the rainfall estimates and highlights the
usefulness of the approach in obtaining rainfall in inaccessible and data-sparse regions.
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