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Abstract: A three-step data assimilation (DA) of deep learning (DL) predictions to a process-based wa-
ter budget is developed and applied to produce an active, operational water balance for groundwater
management. In the first step, an existing water budget model provides forward model predictions of
aquifer storage from meteorological observations, estimates of pumping and diversion discharge, and
estimates of recharge. A Kalman filter DA approach is the second step and generates updated storage
volumes by combining a long short-term memory (LSTM) network, a DL method, and predicted
“measurements” with forward model predictions. The third “correction” step uses modified recharge
and pumping, adjusted to account for the difference between Kalman update storage and forward
model predicted storage, in forward model re-simulation to approximate updated storage volume.
Use of modified inputs in the correction provides a mass-conservative water budget framework that
leverages DL predictions. LSTM predictor “measurements” primarily represent missing observations
due to missing or malfunctioning equipment. Pumping and recharge inputs are uncertain and
unobserved in the study region and can be adjusted without contradicting measurements. Because
DL requires clean and certain data for learning, a common-sense baseline facilitates interpretation of
LSTM generalization skill and accounts for feature and outcome uncertainty when sufficient target
data are available. DA, in contrast to DL, provides for explicit uncertainty analysis through an
observation error model, which allows the integrated approach to address uncertainty impacts from
an LSTM predictor developed from limited outcome observations.

Keywords: data assimilation; Kalman filter; long short-term memory network (LSTM); operational
water budget; observation error model; common-sense baseline; uncertainty analysis

1. Introduction

The operational water budget is an important water resources management and
conservation tool. Organizations managing a collection of surface water reservoirs and
associated distribution systems can, and do, directly implement quasi-real time accounting
of amount of water in storage and in transmission to guide decision making. Bathymetry,
and thus storage volume for each reservoir surface elevation, inflows, and outflows, are
mostly observable and measurable for a surface water reservoir. Seepage losses are typically
the only unknown outflow, which cannot be measured and are usually calculated based on
observed changes in reservoir volume and estimates for surface water inflows, calculated
evaporation, and observed outflows.

The ability to observe and measure a managed surface water reservoir means that
the concept of residence time, Rt in Equation (1), can guide resource management and
conservation. In Equation (1), V̄ is time-averaged volume, e.g., annual average volume,
and ¯Qtot is total outflow discharge from the reservoir, averaged over the same time interval
as volume. Inflows to the managed reservoir are likely uncertain and dependent on climate
and actions and management of other agencies. Equation (1) provides for management of
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outflows, given the known amount of water currently available, to provide future supply
and to generate a factor of safety to address uncertain inflows.

Rt =
V̄
¯Qtot

(1)

Groundwater reservoirs, in contrast to surface water reservoirs, have limited observ-
ability and measurability. Voids or spaces not filled by solid material in the subsurface
provide for the storage of groundwater. The arrangement, configuration, and intercon-
nection of voids tend to be heterogeneous and anisotropic, and there are no bathymetric
or as-built surveys available for aquifers. The true areal extent and storage volume of an
aquifer is rarely known. Additionally, inflows to and outflows from groundwater reservoirs
are rarely observable. Recharge and inter-aquifer flows are typically not directly observed
or even measurable. Wells provide direct point observations of water levels and outflow
discharge from pumping when they are monitored. Outflow discharge at springs is also
monitored in some cases.

Given the inherent uncertainty surrounding aquifer extent, total inflow discharge, and
total outflow discharge created by limited observability and measurability, groundwater
reservoir characteristics are often estimated using numerical models and “calibration-
constrained uncertainty analyses [1,2]”, which use limited observations and soft informa-
tion constraint in an inverse-style approach to select ensembles of aquifer characteristics
that provide for history matching between simulation results and observations and gener-
ate equally feasible descriptions of the aquifer. Equally feasible collections of parameter
values produce ensembles of possible storage volumes for an aquifer, which means that a
value for Rt in Equation (1) is not available as a simple guide to water conservation and
management.

“Calibration-constrained uncertainty analyses [1,2]” are a type of data assimilation
(DA). DA covers a collection of approaches for optimal combination of information from
numerical model simulations with observations. It uses a “forward” numerical model to
make predictions; measurements, or observed values, are assimilated with the predictions
to derive updated values. The goal is to obtain the “best” description of a dynamical
system and inherent uncertainty with the updated values. DA is frequently employed
for two different purposes: (1) to compute the best possible estimate of a model state
and (2) inverse-style approaches to estimate model parameters or deduce optimal model
forcing [3]. Best estimates of model state are often used in operational and forecasting
implementations where the goal may be to use quasi-real time information to update
or improve model forecasts. Inverse-style approaches, such as “calibration-constrained
uncertainty analyses [1,2]”, focus on model calibration.

The Kalman filter [4] is a digital filter and DA algorithm that provides “best” estimates
of a system state. It recursively estimates state variables in a noisy linear dynamical system
by leveraging a series of measurements in conjunction with initial state predictions from
a forward model to generate estimates of unknown variables. It requires a linear model
of system state and a Gaussian-like distribution of measurement errors, and its estimates,
or updates, combine a model prediction with a measurement using a weighted average.
More weight is allocated to estimates that have greater certainty. The result is generation of
estimates that tend to be more accurate than estimates based on a single measurement. As
part of the update process, the joint probability distribution over the variables for each time
frame is estimated. The Kalman filter is used widely in many technical and quantitative
fields and can often be implemented in real time [5–7]. Linear or classical Kalman filters
have been applied to hydrologic problems since the 1970s [8–11].

Ref. [12] developed an ensemble form of the Kalman filter, the ensemble Kalman filter
(EnKF), which uses a Monte Carlo framework to generate updates that combine predictions
and measurements and which is applicable to highly nonlinear systems and non-Gaussian
error terms [13]. EnKF approaches have also been employed in a variety of hydrological
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DA studies [14–24]. Previously, EnKF approaches have been extended with one or more
“corrector” update steps to enforce water budget closure [11,25–27].

DA traditionally employs forward numerical models that are process- or physics-
based. In contrast, statistical learning algorithms seek to discover rules which are statistics-
rather than physics-based for executing a data analysis or comparison task based on known
examples of inputs or features and corresponding outputs or outcomes. Machine learning
(ML) and deep learning (DL) are sub-fields of artificial intelligence (AI) [28] and are types
of statistical learning [29]. An ML approach involves training a statistical algorithm, or
“machine”, to “learn” from input data; DL methods are a subset of ML algorithms [28]. DL
approaches are artificial neural network methods that can use multiple neuron layers and
are deep in the sense of having more than one learning layer within the algorithm [30].

DL and Kalman filter-style algorithms have been combined to estimate system state.
Ref. [31] uses DL to make predictions of battery charge and health state combined with
an extended Kalman filter to update these predictions with observations. Ref. [32] de-
velop a neural network-based (a neural network is a DL algorithm) Kalman filter for the
interpolation of sea surface dynamics, which is an alternative to the EnKF for DA.

A Kalman filter integration of long short-term memory (LSTM) network predictions
to a process-based water budget model is developed and implemented in this paper. The
integration is a three-step calculation that uniquely combines DL, i.e., LSTM, predictions
into a mass-conservative water balance framework. LSTM predictions for water level
elevations in wells are combined with the aquifer storage description in the water budget
model so that the DA integration solves for the state variable of aquifer volume, which
allows for water resources management using Equation (1). The DL predicted stage
generally replaces unavailable observations from missing or malfunctioning equipment.
DA provides explicit and inherent inclusion and representation of data uncertainty, and
the DA integration accounts for data uncertainty impacts to LSTM predictions externally to
DL training, testing, and validation.

2. Data and Methods

A DA integration of a process-based water balance model with DL forecasts of stage
is presented in this paper. An existing process-based water budget model, discussed in
Section 2.2.1, is slightly modified for integration. Long short-term memory (LSTM) net-
works are the DL algorithm used to predict water levels and are discussed in Section 2.3. DA
techniques, discussed in Section 2.4, provide for integration. Existing data sets (used with
the starting-point, process-based water budget model in previous studies and employed for
LSTM training, testing, and validation in this study) include well water level observations,
river discharge estimated at six gauging stations, weather parameter observations, and
extractions, and are discussed in Section 2.6. Data sets are discussed after methods because
methods and conceptual approaches dictate which data sets are important to this study.

2.1. Study Site

The study site is Uvalde County, Texas (TX); the town of Uvalde is the county seat
and is approximately 90 miles west of San Antonio, TX. Uvalde County Underground
Water Conservation District (UCUWCD) has management authority over a portion of
the groundwater resources in Uvalde County. This site is used because of the existing
process-based water budget model for this area that provides the forward model for DA, as
discussed in Section 2.2. The conceptual focus for water budgeting is the Uvalde Pool of
the Edwards Aquifer, which is present in the lower half of Uvalde County, as shown on
Figure 1.
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Figure 1. Study site location and extent, stream gauging station configuration, and locations of
index wells. The study site is about 145 km west of San Antonio, TX near the town of Uvalde, TX.
Seven stream gauging stations are shown on the Nueces, Leona, and Frio Rivers. “Specified Inflow”
gauging stations provide model inputs; “Target” gauging stations are locations of model predicted
outcomes for river discharge. “Index wells” are locations of model predicted outcomes for water
level elevations in aquifers. “Recharge Zone” is the delineated Edwards Aquifer recharge zone.

The Uvalde Pool of the Edwards Aquifer is under the jurisdiction of the Edwards
Aquifer Authority (EAA). Local aquifers such as the Buda Limestone, the Austin Chalk,
and the Leona Gravels are hydraulically connected to the Uvalde Pool of the Edwards
Aquifer in certain areas [33,34]. These local aquifers are under the jurisdiction of UCUWCD.
The term “Uvalde Pool System” is used hereafter to refer to the Uvalde Pool of Edwards
Aquifer in conjunction with four hydraulically connected minor aquifer segments: (1) Buda
Segment #1, (2) Austin, (3) Leona Gravels, and (4) Buda Segment #2.

The study region is complex geologically and hydrogeologically. The Balcones Fault
Zone (BFZ) is an en echelon fault system that offsets strata within the Uvalde Pool System.
Late Cretaceous volcanic features and magmatic intrusions, including the Uvalde Salient,
also play a role in shaping the Uvalde Pool System. The Edwards Aquifer (including the
Buda Limestone and Austin Chalk sub-components) is comprised of carbonates and has
depositional porosity, structural porosity, and secondary dissolution porosity [33,34].
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Figure 2 shows a conceptualization of hypothesized configuration and linkage among
the various aquifer segments and between the Nueces, Leona, and Frio Rivers and the
aquifer segments. Communication among rivers and aquifers provides for inflow to and
discharge from the Uvalde Pool System. However, the degree of communication between a
particular river and aquifer is poorly constrained [33]. The high level of uncertainty in these
estimates and the high degree of geologic complexity with volcanic and magmatic features
and caves and conduits from secondary dissolution within the region identified on Figure 1
makes informed water resource management of the Uvalde Pool System challenging.

Figure 2. Schematic showing conceptualization of linkage among sub-component aquifers, or aquifer
segments, in the Uvalde Pool System. The linkages among rivers and aquifer segments are unob-
served and hypothesized. Aquifer segments are approximately scaled to represent relative volumetric
capacity. (Graphic by Isaac Herrera, 6 April 2023, Southwest Research Institute).

2.2. Forward Model

DA requires a forward model to generate initial predictions, which are updated with
or assimilated to measurements and data. The forward model for this application is a
modified version of the UCUWCD Water Balance Model; this model was developed as an
operational water management tool for UCUWCD as part of a previous applied science
study [35]. Modifications to the UCUWCD Water Balance Model are minimal and are only
those necessary for DA integration of DL predictions within the water budget calculation
provided by the model.

In its original form, the UCUWCD Water Balance Model was a dynamically linked Soil
and Water Assessment Tool 2012 (SWAT2012) [36] and Hydrological Simulation Program—
FORTRAN (HSPF) [37] model. These two models were linked to take advantage of the
relative strengths and to compensate for the limitations of the individual models. The
linkage is dynamic because recharge and runoff estimates, simulated in the SWAT2012
model for each day, are provided to the HSPF model as inputs [35].
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The UCUWCD Water Balance Model simulates interrelated water flows among the
aquifer segments in the Uvalde Pool System. Figure 2 provides a hypothesized schematic
depicting the linkages among the aquifer segments and river segments. This model was
created to analyze management and planning scenarios for the Austin, Buda, and Leona
Gravels segments of the Uvalde Pool System and to examine potential impacts from water
management scenarios applied in one segment on the Uvalde Pool System as a whole [35].

A lumped, rather than distributed, representation of the component aquifers is used
because characterization and parameterization information is limited, and highly uncertain,
for the internal workings of the aquifer segments. History matching during UCUWCD
Water Balance Model calibration suggests limited prediction skill because of uncertainty in
forcing data and the complexity of the study area [35].

2.2.1. HSPF-Only Forward Model

For use as a forward model, dynamic linkage with SWAT2012 is removed and replaced
with specified external inflows in the HSPF part of the UCUWCD Water Balance Model.
These specified external inflows are the simulated recharge and runoff time series from
the SWAT2012 portion of the original model. The modified, HSPF-only portion of the
UCUWCD Water Balance Model, i.e., the forward model for DA, depicts the river segments
that interact with and the aquifer segments that are part of the Uvalde Pool System.

HSPF is a set of computer codes for simulation of hydrologic and associated water
quality processes on pervious and impervious land surfaces and in streams and well-
mixed impoundments. It provides a comprehensive package for simulation of watershed
hydrology and surface water-related considerations at the watershed scale. HSPF was
originally developed as the Stanford Watershed Model in the 1960s [37]. Although HSPF
provides many different representational capabilities, only RCHRES routing structures,
which represent well-mixed streams and impoundments, are used in the forward model.

RCHRES components in HSPF solve the “reservoir” ordinary differential equation
(ODE). A RCHRES provides up to five exits or outlets. Discharge from each exit can be
directed to a different destination. RCHRES structures can be linked in series to route water
from upstream to the basin outlet. Hydrologic, or lumped, routing [38] is implemented to
move water through a series of RCHRES structures. To implement hydrologic routing, a
calculated outflow discharge is used to close the reservoir ODE and generate a solution for
current storage in the RCHRES.

In HSPF, there are three different outflow discharge calculation methods: (1) outflow
demand as a function of volume; (2) outflow demand as a function of time; and (3) outflow
demand as a combined function of volume and time. For volume dependent outflow
demand calculations, the level pool assumption is used to interpolate outflow demand
from a stage–storage–area–discharge table, or FTABLE [37].

Table 1 identifies the routing among the aquifer segments in the Uvalde Pool System;
the aquifer segments are the focus of forward model implementation. The Edwards
aquifer segment is significantly larger than the other segments, as shown on Table 1. It is
approximately ten times larger than the Austin aquifer segment, and more than 100 times
larger the Buda #1, Leona Gravels, and Buda #2 aquifer segments.

2.3. Long Short-Term Memory (LSTM) Networks

Long short–term memory (LSTM) networks are the DL algorithm used in this study.
They are a variant of the recurrent neural network (RNN) structure and can predict se-
quences. LSTM networks were introduced by Ref. [39]. LSTM provides a deep structure
because it can have multiple layers, and it has memory that allows it to learn (1) to forget
information and (2) for how long to retain state information. LSTM networks differ from
other RNN approaches because of specially designed units called gates, which control the
flow of information, and memory cells, which provide state [30].

The ability to employ sequences as inputs and to produce predicted sequences differen-
tiates LSTM from other classes of statistical learning algorithms. Sequences are time series
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and can be any data obtained at, recorded at, or processed to regular intervals. Explicit
incorporation of a time series provides for representation and learning of system dynamics.
The most common time series- and LSTM-related task is forecasting, predicting what will
happen at the next sequence interval [28].

Table 1. Aquifer segment routing table in HSPF.

HSPF Reservoir ID R001 R002 R003 R009 R010

Name Edwards Buda #1 Austin Leona Gravels Buda #2
Mean 1 Storage Volume (Mm3) 2 14,399 106 1077 91 87
Volume Relative to Edwards (%) 100 0.7 7.5 0.6 0.6

Inflow

Recharge External Inflow Time Series from SWAT2012

1 North Nueces
River Edwards Edwards Edwards Buda #1

2 West Nueces
River Buda #1 Buda #1

3 Frio River Buda #2 Austin
4 Buda #2

Outflow 3

1 Out of model
(east) Austin South Nueces

River Leona River Austin

2 Buda #1 South Nueces
River Leona Gravels Pumping Leona Gravels

3 Austin Leona Gravels Pumping Out of model
(south) Pumping

4 Leona Gravels Buda #2
5 Pumping Pumping

1 Mean storage volume calculated for 1 October 2018 to 30 September 2019. 2 Mm3 is million cubic meters. 3 Up to
five outflow exits or ports can be used in HSPF.

LSTM implementations follow the template provided by Refs. [40–42] and include
the entity-aware LSTM (EA-LSTM) approach of Ref. [42]. The reader is referred to these
sources for details of LSTM algorithms. Dynamic inputs to LSTM models are time series
with a defined sequence length, or number of time intervals into the past. The EA-LSTM
algorithm provides for incorporation of static features with dynamic features; static features
have a sequence length of one because they are static. LSTM and EA-LSTM algorithms are
implemented in Keras [28,43] and Tensorflow [44].

Because LSTM networks can be “deep”, they can have multiple layers. Here, five layers
are used: (1) input layer, (2) EA-LSTM layer, (3) LSTM layer, (4) dropout layer, and (5) dense
layer. The purpose of LSTM models in this study is to provide surrogates for aquifer water
levels when these observations are unavailable due to missing or malfunctioning equipment.
LSTM approaches have been used in a variety of sequence prediction contexts [45,46]
including to examine hydrology-related concerns [47–51] such as predicting aquifer water
levels [52].

2.3.1. Training, Testing, and Validation

LSTM models, and all statistical learning approaches, use a training, testing, and
validation process to generate the “final” model. To implement this process, the complete
data set for model development is split into a training sub-set, a testing sub-set, and a
validation sub-set. The model learns to predict outcomes from the training set. The test
set is a partition of the training set that was not seen during learning and training, and the
trained model is applied to the test set to predict outcomes for comparison to the training
set. This allows training of different model iterations on different portions of the data set.
The validation set is an independent data set that is not used for training or testing and
provides for assessment of the model’s ability to generalize [28].

Data sets were split into a training and testing portion and a validation portion when
the record length and total number of available sequences permitted. The goal would
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typically be to use about 15% of the complete data set for an independent validation data
set. Unfortunately, the focus of this study is well water level observations in the aquifer
segments in the Uvalde Pool System, and three of the five wells used in the study are
observable for only about 11 months. Consequently, this limiting 11-month period was
used as the validation set for all targets as shown in Table 2.

K-fold cross-validation with iterations was used to split the training and testing sub-set
into separate training and testing portions. Four folds were typically used, with three folds
generating a combined learning and training set, and one fold providing the testing sub-set
for each iteration. Input data sets had a rank-3 tensor format with time sequences stored in
index 1 (0-based). Shuffling for k-fold cross-validation occurred on index 0, which means
that the arrow of time is always respected and complete and ordered input time sequences
are always provided for training, testing, and validation even though random shuffling is
applied to the batch index (index 0). Table 2 lists the training, testing, and validation data
set configurations.

For “All Other Wells” in Table 2, five folds were used, and training and testing occurred
on 80% of the data set (i.e., four of the five folds). Validation predictions were then applied
to the full data set, 20% of which was not seen during training and testing. This approach
is not ideal, and it likely promotes over-fitting at the expense of generalization. Limited
data availability for these four wells provides limited training, testing, and validation
possibilities.

K-fold cross-validation produces an ensemble of best-fit models, one best-fit model for
each fold of each iteration. Internally in Keras, the mean square error (MSE) was employed
as the loss function during training, and the minimum mean absolute error (MAE) was the
tracking metric for determining a best-fit model for each fold of each iteration. Different, or
separate, goodness-of-fit metrics, see Section 2.5, were then used to compare predictions to
the validation data set to select “final” models from ensembles of best-fit models.

Table 2. Target data set configurations for training, testing, and validation.

Data Set Total Sequences Train and Test (% 1) Validation (% 2) Folds Iterations

Discharge 6209 95.3 4.7 4 5
J-27 Well 2100 86.1 13.9 4 5
All Other

Wells 3 291 100 0 4 5 5

1 Training and test percentage is the percentage of total sequences reserved for training and testing. 2 Validation
percentage is the percentage of total sequences reserved for validation. 3 “All Other Wells” are Ehler Well,
Willoughby Well, McBride #1 Well, and McBride #3 Well. 4 Record length and thus number of sequences is too
small for partitioning into an independent validation data set.

Although discharge and index well water levels are predicted outcomes from LSTM
models, only predicted index well water levels are employed to assimilate DL predictions
to the forward model. Unfortunately, the “All Other Wells” category of index wells in
Table 2 is data-limited. However, the goal of this study is to use DA to leverage all avail-
able information for quasi-real-time analysis of water resource management. Additional
observations are not available, and the resource management needs to continue up until,
during, and after the acquisition of future observations. Given the known quality and
quantity limitations on the most important training observations, it is assumed that out-
come data set uncertainty will be greater than the impacts of hyperparameter tuning, and
hyperparameters were fixed to values determined to be reasonable during initial training.
Hyperparameters are architectural level parameters that control the internal function of the
algorithm [28]. Table 3 provides the selected hyperparameter values.
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Table 3. LSTM Hyperparameters.

Hyperparameter Value

Solver Adam
Batch Size 25

Learning Rate 0.001
Internal Cells 50
Dropout Rate 0.35

Sequence Length (days) 183

2.3.2. Standardization

Statistical learning algorithms, such as LSTM, benefit from the standardization of data
sets prior to the implementation of training and testing. Standardization, also colloquially
called scaling, has a significant impact on final solution quality. Statistical learning esti-
mators are expected to behave poorly if features, or inputs, are not somewhat similar to
standard normally distributed data with zero mean (µ) and unit variance (σ2 = 1.0 where
σ is the standard deviation) [28,29,53].

Standardization typically involves transforming the data to center it by removing µ and
scaling by dividing by σ; this form of simple standardization ignores the data distribution
shape [53]. Equation (2) describes this simple standardization procedure, which is hereafter
referred to as Z-score standardization. In Equation (2), Z is the standardized value and x is
the unstandardized or dimensioned value. Note that standardization produces a statistical
learning implementation where dimensionless and scaled inputs, or features, are used to
generate dimensionless and scaled outputs, or targets.

Zi =
xi − µ

σ
(2)

Power transforms are an advanced standardization approach which seek to map data
from any input distribution shape to close to a Gaussian shape [53]. Power transformation
is analogous to methods used in hydrometeorological indices such as the standardized
precipitation index (SPI) [54] and standardized precipitation evapotranspiration Index
(SPEI) [55].

In this study, standardization is typically accomplished using Equation (2), and power
transforms are not strictly used. For highly variable data sets such as discharge, the base
10 logarithm, log10, of discharge is Z-score standardized using Equation (2). During testing
and implementation, it was found that this “Z-score of log10” standardization performed
better than power transformation approaches for these discharge data sets.

Table 4 provides the listings of standardization method used for each data set. Weak
stationarity requires that the first two statistical moments of a time series do not change
across time. It is identified, or defined, as a time series that has a constant mean and an
autocovariance function that depends only on the time difference, or lag, and is independent
of the points in time that are different [56,57]. Use of a single or constant value of µ and
σ for Equation (2) is an assumption of weak stationarity across the period identified in
Table 4. Note that different periods of weak stationarity are assumed for different data sets
in Table 4.

2.3.3. Common-Sense Baseline Comparison

A common-sense baseline should be used for DL models to evaluate the skill of a
trained model. If the trained model cannot improve on the selected baseline, it cannot
produce generalized predictions from the input data sets. The best way to improve a
DL model is to train it on more data or better data. Noisy or inaccurate data will harm
generalization ability [28]. The need for and utility of a common-sense baseline is enhanced
for hydrologic applications because many data sets are noisy, are relatively inaccurate
because they rely on a model to estimate the observed value from a measured value, and
are not weakly stationary across the analysis interval.
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UCUWCD Water Balance Model goodness-of-fit metrics provide the common-sense
baseline for comparison of trained LSTM statistical learning model results. The UCUWCD
Water Balance Model generated a limited prediction skill because of uncertainty in forcing
data and the complexity of the study area. Consequently, a common-sense baseline is also
developed for discharge targets for analysis of LSTM generalization skill for discharge
outcomes because of concerns with the UCUWCD Water Balance Model skill. Discharge
outcome and common-sense baselines are discussed in Section 2.6.2.

No additional common-sense baselines, i.e., beyond the UCUWCD Water Balance
Model goodness-of-fit metrics, are used for well water level targets because there are
insufficient outcome observations for baseline development and because these observations
are used in DA operational forecasting, as discussed in Section 2.4.2. DA implementations
use an observation error model, discussed in Section 2.6.1, to address forward model and
observation uncertainty.

Table 4. Standardization approach by data set.

Data Set 1 Feature or Target Method Weak Stationarity

Discharge Feature and Target Z-score of log10 1 January 2003 to 31 December 2019
J-27 Well Target Z-score 31 January 2014 to 31 October 2019

Ehler Well Target Z-score 27 October 2017 to 13 August 2018
Willoughby Well Target Z-score 27 October 2017 to 13 August 2018
McBride #1 Well Target Z-score 27 October 2017 to 13 August 2018
McBride #3 Well Target Z-score 27 October 2017 to 13 August 2018

Deficit (D) Feature Z-score 1 January 1990 to 31 December 2019
Pumping 2 Feature Z-score 1 January 2003 to 31 December 2019
Diversions Feature Z-score of annual trend 3 1 January 2003 to 31 December 2019

Watershed Properties Static Feature 4 Z-score NA 5

1 Data sets are presented in Section 2.6. 2 Annual survey estimates of pumping are distributed to monthly
estimates using Section 2.6.4. 3 A constant annual diversion estimate is distributed to monthly values using
annual trends as discussed in Section 2.6.4, which results in Z-score standardization of the trend. 4 Static features
are a property of the EA-LSTM method discussed in Section 2.3. 5 Time series weak stationarity is not applicable
to static values.

2.4. Data Assimilation (DA)

Methods and techniques that comprise DA as a category are derived from Bayes’
theorem, Equation (3). Equation (3) shows how to update prior information as new in-
formation becomes available [3]; it quantifies the model parameter uncertainty, where k
represents model parameters. Observations or targets are h. P() signifies a probability
distribution, P(k) is the prior parameter probability distribution, P(h|k) is the likelihood
function, and P(k|h) is the posterior parameter probability distribution. The posterior pa-
rameter probability distribution P(k|h) is the probability distribution of model parameters
updated by conditioning to observations [2].

P(k|h) = P(h|k)P(k) (3)

2.4.1. Observation Error Models

DA approaches account for uncertain forward model inputs and for uncertainty
inherent in observations [3]. Observation uncertainty is addressed using an observation
error model, which always includes consideration of expected measurement errors and can
include numerical model representation error, which is part of the h term in Equation (3).
Representation error accounts for different representations of reality between the forward
model and observations. With numerical weather prediction and oceanographic forward
models, numerical representation errors are typically errors due to scales and physical
processes that are unresolved by either the numerical model or the observations [3,58].

If observations are calculated or modeled quantities derived from the measurement of
a different quantity, then an additional error component can be added to the observation
error model. An example of a calculated quantity is discharge observed at a gauging
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station that uses a rating curve to transform a measurement of water stage to an observed
discharge value.

Ref. [59] presents a rating curve representation error component for observation error
models for discharge observations. An observation error model includes error components
related to the observations and to limitations of the forward numerical model. When
a rating curve representation error component is included, the observation model also
includes an error component related to limitations of a rating curve as a hydrodynamics
model.

2.4.2. Kalman Filter Integration

A Kalman filter is used to integrate the forward and LSTM models and to update the
storage volume in the five aquifer segments, shown in Figure 2 and identified in Table 1,
within the Uvalde Pool System. A monthly assimilation window is used for the update.
The forward model (see Section 2.2.1) simulates the monthly averaged storage volume in
each aquifer segment, which provides the initial prediction for each assimilation window.

Projections of the monthly averaged water level from the trained LSTM model are con-
verted to monthly average storage “measurements” using the stage–storage–area–discharge
table, or FTABLE, stored within the forward model for each aquifer segment. A Kalman
filter calculation then provides the updated storage value for each aquifer segment that
combines the forward model prediction with the LSTM predicted measurement.

Forward model simulation across the assimilation window, i.e., the month, is then
performed again, in a “corrector” step, using adjusted pumping and recharge volumes to
try to reproduce the updated value from the Kalman filter calculation and to adjust the
forward model for simulation of the next assimilation window. Pumping and recharge
forcing are adjusted in the corrector step because these quantities are uncertain and are not
observed in the study area.

The adjustment residual is the updated storage volume from the Kalman filter cal-
culation minus the storage volume predicted by the forward model, and the value of the
adjustment residual guides corrections to pumping and recharge. If the adjustment residual
is less than zero, the pumping volume from that aquifer segment for the assimilation win-
dow is increased by the adjustment residual. If the adjustment residual is greater than zero,
the pumping volume across the assimilation window for that aquifer segment is compared
to the adjustment residual. When the assimilation window pumping volume is greater than
or equal to the adjustment residual, the pumping volume during the assimilation window
is reduced by the adjustment residual. In the case of a larger adjustment residual than
the assimilation window pumping volume, recharge to that aquifer segment is increased
by the difference between the adjustment residual and the pumping volume during the
assimilation window.

Figure 3 provides a schematic representation of the three-step integration process.
Step one is forward model prediction, and step two is the Kalman update which combines
“measurements” from the LSTM predictor with forward model predictions. Step three is the
forward model correction. The Kalman filter update calculation for storage is analogous
to the object tracking or position estimation implementation that is often provided as
a Kalman filter implementation example [7,60]. Additional details of the Kalman filter
calculation are provided in Appendix A.

The implementation used here requires the first two assimilation windows, i.e., the
first two months, as initialization periods. After initialization, the predicted state covariance
matrix Cp can be calculated for the current assimilation window with Equation (4), where k
denotes the current assimilation time window, k− 1 is the previous assimilation time win-
dow, Ck−1 is the updated state covariance matrix from the previous assimilation window,
and A is the state transition matrix. Q is the process noise covariance matrix and provides
for incorporation of an observation error model into a Kalman filter implementation.

Cp = ACk−1 AT + Q (4)
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The Kalman gain, Equation (5), can be determined using Cp, H which is the state to
measurement matrix that converts measured values to state values, and R, which is the
measurement covariance matrix. Kalman gain determines how the “measurement” will
influence the updated system state estimate [7].

Kk = Cp HT
(

HCpHT + R
)−1

(5)

The updated system state, xk, can then be calculated using Equation (6), where xp
is the predicted system state from the forward model and zk are the measurements pre-
dicted by the trained LSTM model. The

(
zk − Hxp

)
term is the measurement residual, or

innovation [60].
xk = xp + Kk

(
zk − Hxp

)
(6)

In Equation (6), the function of the Kalman gain, Kk, is evident. It is the weight
given to the measurements and current-state prediction, and it can be “tuned” to impact
filter performance. If the variance of the measurement is small relative to variance of the
prediction, then Kk will be closer to one. When the variance of the prediction is small
relative to the variance of the measurement, then Kk will be closer to zero. A high gain
means the filter places more weight on the most recent measurements, zk, and moves
towards or conforms better with the recent measurements. Alternatively, low gain results
in more movement towards or conformance with model predictions, xp. At the extremes, a
gain close to one produces a “jumpy” trajectory; a gain close to zero smooths out noise but
decreases filter responsiveness. When a really noisy measurement comes in to update the
system state, the Kalman gain will trust the “predicted” state estimate more than the new,
but inaccurate, measurement [6,7].

LSTM Predictor

Predicts water level
"measurements," zk Kalman Filter - Data Assimilation

Daily simulation of
monthly assimilation
window, k, provides

predicted aquifer storage,
 xp

Step 1

Re-simulate assimilation
window, k, with adjusted

pumping and recharge

Step 3

Adjusted pumping
and recharge using:

Residual = xk - xp

Forward Model, HSPF

Predicted system
state, xp

Calculate predicted
state covariance matrix,

Cp

Calculate dynamic
Kalman gain, Kk

Calculate updated system
state, xk, combining zk 

and xp

Step 2

Update state
covariance matrix,

Ck

Cp initialization uses
first two assimilation
windows, k = 1 and 2

Figure 3. Flow chart description of the three-step Kalman filter integration of the forward model
and LSTM predictor. Cp is defined in Equation (4), Kk is defined in Equation (5), xk is defined in
Equation (6), and Ck is defined in Equation (7).
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The optimality of Kalman filtering assumes that errors, or the innovation, have a
normal, or Gaussian, distribution [6]. The final calculation in filter application to the
current assimilation window is to estimate the updated state covariance matrix, Ck, using
Equation (7).

Ck = Cp − Kk HCp (7)

2.5. Goodness-of-Fit Metrics

Two commonly used goodness-of-fit measures for discharge hydrographs are (1) Nash–
Sutcliffe efficiency (NSE) [61] and (2) Kling–Gupta efficiency (KGE) [62]. The NSE is defined
in Equation (8) [61], where s is the simulated or calculated value and o is the observed or
data value.

NSE = 1.0− ∑N
i=1(si − oi)

2

∑N
i=1(oi − ō)2 (8)

The KGE metric, see Equation (9), was developed through the decomposition of
the NSE into the linear correlation coefficient between observed and simulated values,
ρ, a measure of relative variability in the simulated and observed values, α, and a bias
component, β [62]. Both NSE and KGE range from −∞ to 1.0 with 1.0 representing a
“perfect” match. In Equations (10)–(12), µ is the mean; σ is the standard deviation, and N is
the number of observations.

KGE = 1−
√
(ρ− 1)2 + (α− 1)2 + (β− 1)2 (9)

ρ =
∑N

i=1((si − s̄)(oi − ō))/N
σsσo

(10)

α =
σs

σo
(11)

β =
µs

µo
(12)

A custom goodness-of-fit metric is used to compare predicted outcomes among trained,
or “final”, models. This metric is the sum of NSE and KGE, ΣNK from Equation (13). ΣNK
ranges from −∞ to 2.0 with 2.0 representing “perfect” fit.

ΣNK = NSE + KGE (13)

NSE and KGE are traditionally used for time series goodness-of-fit comparison for
sequences that have significant variability. For time series that vary slowly and rhythmically,
such as groundwater elevations, other metrics such as root mean square error (RMSE) and
normalized root mean square error (NRMSE) are typically used. The RMSE is defined
in Equation (14). The NRMSE is the RMSE normalized by the range of observed values,
o. Traditionally, a NRMSE less than 10% identifies an acceptable match of simulated to
observed water level elevations in wells.

RMSE =

√
∑N

i=1(oi − si)
2

N
(14)

2.6. Data

Three distinct data types are employed in DL training, testing, and validation. Out-
comes, or targets, provide known values for history matching. Water level elevations
observed in five wells and river discharge observed at three stream gauging stations are
the target data sets. These target data sets were used for calibration and validation of
the UCUWCD Water Balance Model, and the LSTM model is trained to predict the target
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time series that were used in UCUWCD Water Balance Model “calibration-constrained
uncertainty analyses [1,2]”.

Feature data sets provide the inputs from which the LSTM model learns to predict
outcomes. Dynamic input data sets include river discharge at three “inflow” gauging
stations on Figure 1, weather and climate parameters, and pumping and water rights
diversions. Similar inputs are used for the UCUWCD Water Balance Model and the LSTM
model because the goal of LSTM model development is to produce a DL predictor that
predicts values for UCUWCD Water Balance Model calibration targets using inputs that
are as alike as possible given the standardization requirements of DL feature preparation
and the dimensional consistency requirements of process-based models.

The third data type is static watershed properties; these data provide static inputs,
or features. In this study, static properties used in EA-LSTM models are derived from the
parameterization of the UCUWCD Water Balance Model. Similar target, feature, and static
data sets are used in the LSTM predictor and the UCUWCD Water Balance Model, which
provides the base model for forward model development.

2.6.1. Water Level Observations in Wells

Time series of water levels observed in wells provide one type of target data set. Well
elevation targets are used from the five wells shown on Figure 1. Only the J-27 well is
a dedicated monitoring well; water is pumped from the other four wells. Each well is
assumed to be an “index well” and thus provide an observation of the current volume of
water in the aquifer using a look-up table to interpolate volume from the observed stage,
i.e., the water level elevation observed in the well.

Table 5 provides information on these wells. The period of data coverage is limited
for three wells (Willoughby, McBride #1, and McBride #3) to 10 to 12 months because of
equipment malfunction. The “Start” date in Table 5 for Willoughby, McBride #1, Ehler,
and McBride #3 wells denotes the approximate date of installation of automated logging
equipment; the “End” date in Table 5 for Willoughby, McBride #1, and McBride #3 wells
denotes the approximate date of equipment malfunction. After malfunction, no data were
collected from these wells for several years. Water level elevations are observed in each
well at daily or higher frequencies. Daily average water level observations are aggregated
to monthly averaged water level targets.

Table 5. Index well metadata.

Well Name Aquifer Source 1 Period Used in Study
Start End

J-27 Edwards EAA 2 1 February 2014 31 October 2019
Willoughby Buda #1 UCUWCD 3 1 November 2017 30 September 2018

McBride Well #1 Austin UCUWCD 3 1 November 2017 31 August 2018
Ehler Leona Gravels EAA 2 1 February 2017 30 September 2019

McBride Well #3 Buda #2 UCUWCD 3 1 November 2017 31 October 2018
1 “Source” denotes the agency responsible for collecting, distributing, and maintaining water level elevation data
sets. 2 EAA is the Edwards Aquifer Authority. 3 UCUWCD is Uvalde County Underground Water Conservation
District.

As discussed in Section 2.4.1, DA approaches, including the Kalman filter, use an
observation error model that represents uncertainty introduced from noisy data and limita-
tions of the forward model. In Kalman filter implementation, the observation error model
is a combination of Q in Equation (4) and R in Equation (5). Note that R in Equation (5) is
constant during assimilation in this implementation, and there is no k subscript denoting an
R term identified with a particular assimilation window. Q and R provide the observation
error model because these are the two independent terms that affect the Kalman gain, Kk,
in Equation (5). As mentioned in Section 2.4.2, the Kalman gain can be “tuned” to impact
filter performance.
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An observation error model represents uncertainty from measurement error and
representation error. Measurement error is expected to be significant for all index wells
except for J-27 because J-27 is a monitoring well, and the other index wells are pumped
with some unknown frequency. The “index well” assumption is that the water level
observed in the well can be used as a staff gauge to interpolate water storage volume.
If pumping occurs in an index well, then the water level observation is also measuring
well efficiency and localized variations in water surface, and there is an expectation for
significant measurement error.

The “index well” concept means that the water level elevation observed in the well
represents a flat potentiometric surface that exists in a reservoir or bucket that is filled
with granular material, i.e., porous media. It is unlikely that the potentiometric surface is
truly flat because it is known that water is moving through the Uvalde Pool System and
a gradient is required to drive this movement. It is also probable that porous media flow
is not the most important flow process in this highly complex environment with highly
transmissive pathways such as connected caves and regions of elevated secondary porosity
from dissolution. Consequently, the expectation is for significant uncertainty related to
differences between model assumptions and representations and what the water levels
observed in the wells represent in terms of a measurement of volume of water in an aquifer
segment.

Because there is significant uncertainty and limited data, see Table 5, Kalman filter
implementation relies on Kalman gain tuning to produce a balance between forward model
predictions and LSTM model measurements. Tuning provides a way to distribute the
uncertainty from measurement and representation error between the forward model and
the measurements.

2.6.2. River Discharge Observations

Discharge observations from six of the seven United States Geological Survey (USGS)
gauging stations shown on Figure 1 provide either DL inputs or targets. Station ID 8196300
is not used in DL modeling, but is used in the forward model; this station is not used
because it always provides a small observed discharge relative to Station ID 8195000 and
thus provides minimal additional value for training and prediction. The “outflow” type
denotes discharge observations which are used as targets for training and model skill
assessment; the “inflow” type provides an observation of surface water inflow into the
study area. Table A2, in Appendix B, provides summary characteristics for these gauging
stations.

As mentioned in Section 2.3.3, a common-sense baseline is developed for discharge
targets. A synthetically estimated, expected uncertainty envelope for stream discharge
data sets, developed in Ref. [59], was used to generate the common-sense baseline for
predicted discharge outcomes. The common-sense baseline is then used to (1) provide a
lower threshold that needs to be exceeded for demonstration of model skill and (2) generate
an upper threshold above which the model is assumed to be over-fitting and learning to
reproduce measurement noise and calculation uncertainty.

Additional details of the baseline assessment calculation are provided in Appendix B.
In the baseline assessment, a Monte Carlo model is used to generate realizations of synthetic
discharge from the gauging station time series. Synthetic discharge is flow regime depen-
dent and employs expected error estimates by flow regime from Ref. [63] of ±50–100% for
low flows, ±10–20% for medium to high flows, and ±40% for out of bank high flows. A
thousand realizations of synthetic discharge are generated using a biased normal variate
to produce unique realizations of discharge that honor the expected error estimates in a
stochastic sense. For each realization, goodness-of-fit metrics are calculated for the synthetic
discharge realization and the observed discharge sequence.

Table 6 provides a summarizing statistical description of calculated goodness-of-
fit metrics from common-sense baseline analysis. Maximum and minimum ΣNK, from
Equation (13), define the upper and lower thresholds for each target-gauging station. For
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example, the lower threshold for Station ID 8197500 is 1.1. When a DL model implementa-
tion equals or exceeds this threshold for the validation data set, it is assumed that the DL
model demonstrates predictive skill. The upper threshold ΣNK for this station is 1.7. DL
models that equal or exceed this upper threshold for the validation data set are assumed
to be equally good because it is assumed that models that exceed this threshold have
learned to reproduce noise in the observation data set and are not generating additional
predictive skill.

Table 6. Common-sense baseline thresholds for discharge targets.

Station Id 1 NSE 2 KGE 3 ΣNK
4

Max. Mean Min. Max. Mean Min. Max. Mean Min.

8197500 0.9 0.8 0.8 0.4 0.3 0.2 1.7 1.2 1.1
8192000 0.8 0.8 0.8 0.4 0.4 0.2 1.6 1.2 1.1
8204005 0.9 0.8 0.6 0.5 0.4 −0.1 1.4 1.4 0.9

1 Figure 1 shows locations of gauging stations. 2 NSE is defined in Equation (8). 3 KGE is defined in Equation (9).
4 ΣNK is defined in Equation (13).

2.6.3. Weather and Climate Observations

Climate is the weather of a place averaged over across an interval of time [64]. Weather
refers to the daily and higher frequency events occurring in the atmosphere [65]. Three-
decade averages of weather measures, called climate normals, are frequently used to
provide place- and period-specific climate description from weather observations [66].

For DL model training and implementation, deficit (D) values provide the weather
parameter input. D is precipitation (P) depth minus the potential evapotranspiration (PET)
depth. D for LSTM model training is derived from the P and PET weather forcing data
sets used in the UCUWCD Water Balance Model.

P and air temperature data sets were obtained from the Parameter Elevation Regres-
sions on Independent Slopes Model (PRISM) Climate Group [67] on a 4 km grid for the
study area (see Figure 1) and used to calculate D. Daily data are available from 1981 to
present. These gridded meteorological data are derived, or interpolated, from thousands of
point data collection stations using information in long-term precipitation climatologies
and weather radar return patterns [68,69].

PET is calculated using the Hargreaves–Samani method, or the 1985 Hargreaves
equation [70,71]. This method produces reference crop evapotranspiration (ETo) predictions
for weekly or longer periods for use in regional planning, and is frequently used because
of its simplicity, reliability, minimum data requirements, and ease of computation. It has
been widely used in the US and globally when air temperature data are the only available
weather parameter observations [70,72].

Climate normals for 1991–2020 derived for the study basin from PRISM data sets are
provided in Figure 4. A negative D value is expected for every month because average
PET, on a monthly basis, is always larger than average P, which denotes a water supply
limitation on evapotranspiration.

2.6.4. Groundwater Pumping and Water Rights Diversions

Groundwater pumping and water rights diversions from streams and rivers are
another input data set for DL model training and implementation. These are the primary
removals of water from the regional water budget that are unrelated to processes in the
terrestrial hydrologic cycle. Neither pumping nor diversion volume is directly observed
for most extraction locations. Extractions, i.e., pumping and water rights extractions, are
estimated based on permitted diversion and pumping volumes in conjunction with rough
estimates for amounts that are exempt from permitting.
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Figure 4. Climate Normals, 1991–2020, for the study area. Potential evapotranspiration (PET) is
calculated with the Hargreaves–Samani method. Deficit (D) is precipitation (P) depth less PET depth.
There is a negative average D value for every month of the year denoting a water supply limitation
on evapotranspiration.

Table 7 provides the estimated distribution of annual pumping, by month, for Uvalde
County, TX, empirically estimated by the EAA for use in resource management. Values in
Table 7 are proportions of annual totals. It is assumed that water rights diversions follow
the same annual pattern as pumping.

Annual volumetric estimates of diversion and pumping volume are used in conjunc-
tion with Table 7 to generate dimensionally consistent diversion and pumping time series
used in the UCUWCD Water Balance Model. DL methods require input standardization,
and the monthly percentages or proportions in Table 7 are used for standardized LSTM
model inputs.

Table 7. Edwards Aquifer Authority (EAA) empirically estimated annual pumping distribution for
Uvalde County, TX.

Month Proportion of Annual Total (%)

Jan 5.4
Feb 6.7
Mar 7.2
Apr 9.9
May 8.9
Jun 10.4
Jul 15.2

Aug 8.4
Sep 9.2
Oct 7.6
Nov 5.0
Dec 6.1
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2.6.5. Soil Properties

A selection of watershed properties is used to develop static parameters for EA-LSTM
implementation. These properties were extracted from the Soil Survey Geographic Database
(SSURGO) mapping of the study area [73] during development of the UCUWCD Water
Balance Model to parameterize previous watershed regions. In this model, soil properties
were identified for 15 hydrologic response units (HRUs).

The two soil properties from the UCUWCD Water Balance Model that are used for
static EA-LSTM properties are (1) available water capacity (AWC) and (2) hydrologic soil
group (HSG) designation. There are four HSG types that are defined for each HRU. A
single value of AWC, which is the area weighted average of all soil layers, is used for each
HRU. Five properties for 15 HRUs are 75 static watershed properties.

AWC is the volume of water that should be available to plants if the soil, inclusive
of fragments, were at field capacity. It is commonly estimated as the amount of water
held between field capacity and wilting point, with corrections for salinity, fragments, and
rooting depth [74].

HSGs are based on estimates of runoff potential made by soil scientists as part of soil-
mapping procedures. Soils are assigned to one of four groups (A, B, C, or D) according to
the rate of water infiltration when the soils are not protected by vegetation, are thoroughly
wet, and receive precipitation from long storms. HSG A soils have low runoff potential
when thoroughly wet, and water is transmitted freely through the soil so that the infiltration
and percolation potential is high. HSG B soils have moderately low runoff potential when
thoroughly wet and water transmission through the soil is unimpeded. HSG C are soils
that have a slow rate of infiltration and transmission when thoroughly wet; HSG D soils
have a very slow infiltration and transmission rate when thoroughly wet and thus have a
high runoff potential [75].

3. Results

Results were generated from the training and validation of the LSTM model that
projects time series values for the UCUWCD Water Balance Model calibration targets.
LSTM projections of water levels in index wells provide “measured” values for Kalman
filter updates and provide predicted water level values prior to installation of monitor-
ing equipment and after equipment malfunction. LSTM model results are discussed in
Section 3.1. Results related to the Kalman filter integration of LSTM predictor “measure-
ments” to forward model simulations are provided in Section 3.2.

3.1. Trained and Partially Validated Complex Graph LSTM Predictor

Table 4 identifies three different groups of targets, or outcomes, for LSTM training.
These three groups are delineated by the length and coverage of the available data sets
for training.

1. “Outflow” discharge from gauging stations 8197500, 819200, and 8204005;

• Data coverage 1 January 2003 to 31 November 2019;

2. J-27 well water level elevations;

• Data coverage 31 January 2014 to 31 October 2019;

3. “Other Wells,” Ehler, Willoughby, McBride Well #1, and McBride Well #2, water level
elevations;

• Data coverage 27 October 2017 to 13 August 2018;

Three separate LSTM models, one for each target group, were created and trained
to maximize the data availability for each target group. The “Other Wells” group has
insufficient data for independent validation; this is a concern for the generalization ability
of the “Other Wells” LSTM model.

After independent training and validation, the three LSTM models were combined
into a single complex graph model as shown in Figure 5, which is the LSTM predictor. The
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LSTM predictor is considered as partially validated because insufficient outcome data were
available to validate the “Other Wells” LSTM model.

The complex graph LSTM predictor projects index well water level outcomes used as
“measurements” in the Kalman filter integration approach shown on Figure 3. The LSTM
predictor takes one set of inputs and routes copies of the inputs to each sub-model and
produces eight outputs or predicted outcomes. Three of the eight outputs are discharge
outputs, which are not used in the Kalman filter integration. The remaining five outputs
are well water level outputs for the wells described in Table 5.

Table 8 presents a comparison of goodness-of-fit metrics across the UCUWCD Water
Balance Model, the forward model, and the LSTM predictor. The goodness-of-fit metrics
for the LSTM predictor are significantly better, relative to the other two models, for the
index wells. However, the “Other Wells” grouping is likely over-fit because there were
insufficient data for independent validation. Sufficient data for independent validation
does exist for the J-27 well. The goodness-of-fit metrics for J-27 identify skill in predicting
water level outcomes.

Goodness-of-fit metrics for discharge targets are similar between the UCUWCD Water
Balance Model and the LSTM predictor. The comparison of Table 8 to Table 6 suggests that
the LSTM predictor is probably over-fitting at Station ID 8197500 because ΣNK is a “perfect”
2.0, and the upper threshold in Table 6 is 1.7. The observed discharge at 8197500 is zero
for the entire 291 day validation period listed on Table 4. Consequently, it is difficult to
determine how much skill the LSTM predictor has for this station. For Station ID 8192000,
validation ΣNK is 1.5, which is between the lower threshold value of 1.1 and upper threshold
value of 1.6 in Table 6. Validation ΣNK is 1.3 for Station ID 8204005, which is between the
lower threshold value of 0.9 and upper threshold value of 1.4.
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Figure 5. Complex graph LSTM model configuration. For the first index in the “Input Layer”, the
input is 25, and this is the batch size index. The second index has size 183 and this is the sequence
length. Approximately 0.5 years of data are provided as the input sequence to produce an output
sequence of length one. The third index has size 186 and denotes the number of features that are
provided for each sequence interval, or time interval. The LSTM models condense 186 features to
8 outputs.
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Table 8. Comparison of goodness-of-fit statistics among models.

Target UCUWCD Water Balance Model Forward Model 1 Complex Graph LSTM Predictor
Name ID NRMSE (%) ΣNK NRMSE (%) ΣNK NRMSE (%) ΣNK

Nueces River 8192000 1.5 1.8 1.5
Frio River 8197500 1.5 1.9 1.0

Leona River 8204005 1.5 2.0 1.3
Edwards J-27 11.5 −0.3 11.3 −0.3 4.2 1.5

Leona Gravels Ehler 21.9 0.6 21.7 0.6 4.0 1.9
Buda #1 Willoughby 17.2 1.5 16.4 1.5 5.6 1.9
Austin McBride #1 22.9 0.5 23.8 0.4 5.3 1.9

Buda #2 McBride #3 29.5 1.0 26.5 1.2 5.6 1.9
Sum 2 7.9 9.1 12.9

1 The forward model uses outflow demand time series from gauging stations for Station IDs 8192000, 8197500,
and 8204005, which explains the near-perfect goodness-of-fit scores, and it is run independently of Kalman filter
integration to produce these results. 2 The sum row is sum of ΣNK values for all targets.

3.2. Kalman Filter Integrated Water Balance Results

The goal of this study is to use DA to integrate DL model predictions to a process-
based water budget calculation. A Kalman filter implementation provides DA integration.
The LSTM predictor from Section 3.1 provides DL model predictions which are integrated
to the process-based forward model. Kalman filter integration is implemented as shown in
Figure 3. The forward model provides the predicted values, xp, and the LSTM predictor
from Section 3.1 generates the measured values, zk. The Kalman filter calculates the
dynamic Kalman gain using Equation (5), and the Kalman gain is used, along with xp and
zk, to generate the Kalman update, xk, which is a weighted combination of xp and zk.

The Kalman update cannot be used directly as a predicted value for the forward model
without violating the inherent mass balance in the process-based water budget calculations.
Consequently, pumping and recharge are adjusted to cover the difference between the
Kalman update and the initially predicted value. The forward model is then re-run for the
last assimilation window using adjusted pumping and recharge. The UCUWCD Water
Balance Model is a network model that has many different linkages (see Table 1) and there
is no guarantee that updating one or two components of the water budget will lead directly
to the desired predicted value, i.e., a predicted value from the “correction” assimilation
window that exactly matches the Kalman update value.

Manual Kalman gain tuning was utilized to generate Kalman filter updated water
balance model results that seemed to subjectively “best” capture the observed water levels
cast to aquifer segment storage volume. The goal of the subjective, manual exercise
was to capture the observed storage volume values within the envelope provided by
the Kalman update ± three standard deviations, or σ. This six σ range is assumed to
provide a 95% confidence interval (CI). σ values are listed in Appendix A, Table A1.
Additional information on tuning and “best” Kalman gain tuning-related values is provided
in Appendix A.3.

Figure 6 displays the evolution of Kalman gain values across simulation time, after
tuning, for the five aquifer segments. Note that a Kalman gain and filter update are not
calculated for the first two assimilation windows, i.e., the first two months. The first two
months are required to initialize the calculation matrices. The Kalman update simulation
uses the same time parameters as the UCUWCD Water Balance Model and the forward
model. The simulation duration is 1 January 2016 through 30 September 2019, with a daily
time step. The assimilation window for the Kalman filter update application is monthly.

Table 9 lists the Kalman gain values at two selected time points: (1) October 2017,
which is the point when there are two years left in the simulation and gain values for
most of the aquifer segments are leveling off, and (2) September 2019, which is end of the
simulation. Volumetric results from the Kalman filter implementation are presented for
the two-year period from 1 October 2017 through 30 September 2019 in order to present
simulated values after most gain value evolution occurs.
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Storage-related results are shown from the Kalman filter-integrated or combined
calculations are compared to the forward model and LSTM predictions for the Edwards
and Austin aquifer segments on Figures 7 and 8, respectively. Equivalent figures for Buda
#1, Leona Gravels, and the Buda #2 aquifer segments are provided in Figures A3–A5 in
Appendix C. In these five figures, all “Observations” and “LSTM Measurements” fall within
the 95% CI.

Pumping volume, a removal or extraction of water from the aquifer segments, and
recharge volume, an addition of water to the aquifer segments, are dynamically updated
in the Kalman filter integration to attempt to have the updated forward model, after the
“correction” step, produce the Kalman update volume, xk, at the end of the re-simulation
of the previous assimilation window. Figures 9 and 10 display volumetric adjustments
to pumping and recharge across simulation time for the Edwards and Austin aquifer
segments, respectively. Volumetric adjustments to Buda #1, Leona Gravels, and Buda #2
aquifer segments are shown in Figures A6–A8 in Appendix C. No adjustments to Edwards
aquifer segment recharge were required as part of Kalman filter integration, as shown in
Figure 9. Table 10 summarizes the volume adjustments made to each aquifer segment
during the simulation presentation period of 1 October 2017 through 30 September 2019.
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Figure 6. Kalman gain evolution across simulation time. Kalman gain is not calculated for the first
two assimilation windows, i.e., the first two months. Kalman gain tuning, discussed in Appendix A.3
governs the early time values, which then evolve over simulation time to balance the uncertainty in
forward model predictions and LSTM predictor “measurements”. Gain values closer to zero provide
more weight to forward model predictions, while gain values closer to one allocate more weight to
LSTM predictor “measurements”.

Table 9. Kalman gain summary.

Aquifer Segment HSPF Reservoir ID Kalman Gain Values
October 2017 September 2019

Edwards R001 0.158 0.087
Buda #1 R002 0.190 0.154
Austin R003 0.281 0.279

Leona Gravels R009 0.624 0.624
Buda #2 R010 0.673 0.673
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Figure 7. Monthly averaged simulation results for Edwards aquifer segment. The “95% CI” is the
empirical confidence interval generated as the “KF Integration” simulated values plus and minus
three standard deviations, or 3σ. “KF Integration” are simulated values from the Kalman filter
integration of the process-based forward model and complex graph LSTM predictor and are the
results from the “correction” step where the forward model is re-run for the last assimilation window
with modified pumping and recharge. “Forward Model” are simulated values from the standalone
forward model without Kalman filter integration. “LSTM Measurement” are the values predicted by
the Complex Graph LSTM Predictor. “Observations” are calculated from measured water levels in
the index well.
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Figure 8. Monthly averaged simulation results for Austin aquifer segment. The “95% CI” is the
empirical confidence interval generated as the “KF Integration” simulated values plus and minus
three standard deviations, or 3σ. “KF Integration” are simulated values from the Kalman filter
integration of the process-based forward model and complex graph LSTM Predictor and are the
results from the “correction” step where the forward model is re-run for the last assimilation window
with modified pumping and recharge. “Forward Model” are simulated values from the standalone
forward model without Kalman filter integration. “LSTM Measurement” are the values predicted by
the complex graph LSTM Predictor. “Observations” are calculated from measured water levels in the
index well.
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Figure 9. Pumping and recharge adjustments to implement forward model correction for the Edwards
aquifer segment. No recharge adjustments were made for the Edwards aquifer segment, which is why
recharge is not shown. Pumping volume is generally reduced, with the exception of the second half of
2018.
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Figure 10. Pumping and recharge adjustments to implement forward model correction for the Austin
aquifer segment.

Table 10. Summary of volumetric pumping and recharge adjustments.

Aquifer Segment HSPF Reservoir ID Pumping Adjustment Recharge Adjustment
Mm3 1 % of Total 2 Mm3 1 % of Total 2

Edwards R001 −45 −21.3 0 0.0
Buda #1 R002 6 178 4 7
Austin R003 85 1224 160 128

Leona Gravels R009 14 72 2 45
Buda #2 R010 9 385 8 NA

1 Totals are in million cubic meters, Mm3, from 1 October 2017 to 30 September 2019. 2 “% of total” is the ratio,
as a percentage, of volumetric adjustment to originally specified volume from 1 October 2017 to 30 September 2019.
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4. Discussion

DA provides methods for incorporating observations, or data, with numerical models.
In this study, assimilated data are LSTM model predictions of the water level in five wells.
Three of the five target wells, Willoughby, McBride #1, and McBride #3, have observations
for only about 11 months. Observations are also available for a limited period, about
31 months, for a fourth target well, the Ehler well. Limited observations for these four
wells means that there are insufficient data for training, testing, and validation and that
the LSTM predictor is likely over-fitting estimates for these four wells, as discussed in
Section 3.1. Over-fitting is when a statistical learning predictor learns to reproduce inherent
noise and systematic error in a data set in addition to “true” physical trends.

The fifth target well, J-27, is a monitoring well and has a relatively long record of
observation as identified in Table 5. Sufficient data are available for training, testing,
and validation of the J-27 well. Because about 14% of the J-27 data set (see Table 2) was
reserved for independent validation and because the LSTM predictor demonstrates skill in
predicting J-27 water levels during the independent validation period (see Table 8), the J-27
portion of the complex graph LSTM predictor demonstrates generalization ability.

The Kalman filter integration combines the LSTM predictor “measurement” with the
process-based water budget forward model prediction by weighting the “measurement”
and the prediction with the dynamically evolving Kalman gain. The relative magnitude of
the prediction variance to the “measurement” variance is used in determining the Kalman
gain. The Kalman gain is external to or independent of LSTM predictor generalization
ability, which is analyzed only in relation to the noisy and uncertain outcome data set used
for training and validation, and it assimilates information from the process-based water
budget model that is not available to the LSTM predictor.

The LSTM predictor projects water level elevation for the Edwards aquifer segment
using the J-27 output, and Table 9 lists a relatively small Kalman gain value for the Edwards
aquifer segment. A Kalman gain value close to zero, such as 0.087 for the Edwards
aquifer segment, denotes a relatively large variance for forward model predictions and
provides more weight to forward model predictions, even though analysis of J-27 LSTM
predictions, relative to solely water level outcomes, suggest generalizability. In contrast,
Table 9 identifies Kalman gain values of 0.624 and 0.673 for the Leona Gravels aquifer
segment (Ehler index well) and the Buda #2 aquifer segment (McBride #3 index well),
respectively. Kalman gain values closer to one provide more weight to LSTM predictor
estimates in assimilation, even though it is expected that the LSTM predictor for the Ehler
and Buda #2 water levels is over-fit and is producing biased estimates, corrupted by noise
and error in the limited observation record used to train the “Other Wells” LSTM predictor.

An individual LSTM predictor was created for the J-27 well (see Figure 5) to leverage
data availability for training, testing, and validation of this well. A complex graph LSTM
predictor, see Figure 5, was then created to combine individual LSTM predictors so that the
J-27 and river discharge model could trained with relatively long records of observations
and could be subjected to independent validation. The primary means to improve a DL
model is to train it on more and better data [28], and statistical learning approaches assume
and require that training, testing, and validation data sets are clean and “perfect”.

Hydrological data sets tend to be noisy, contain rare occurrences or extreme events, and
be estimates of a desired parameter value from a different type of observation. Calculated
potential evapotranspiration from observed temperature, estimated river discharge from
observed stage, and calculated aquifer volume from index well stage are three commonly
used, derived hydrologic data sets. A common-sense baseline, see Section 2.3.3, can be used
with outcome or target data sets that are known to be noisy and contain errors to assess
statistical learning generalization ability. However, this assessment of generalizability is
limited to the outcome data set used in training and its inherent flaws. In this study, a
common-sense baseline is generated for the river discharge LSTM predictor (see Figure 5)
that provides two ΣNK thresholds: (1) a lower threshold that needs to be exceeded for
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demonstration of model skill and (2) an upper threshold. above which the model is assumed
to be over-fitting.

DA, in contrast to statistical learning methods, does not require data perfection and
provides for the explicit representation of expected measurement error in target observa-
tions through an observation error model, see Section 2.4.1. An observation error model
is employed for aquifer segment storage in this study. Measurements of water level stage
in wells are transformed to volumes using the storage volume description within the
forward model. The LSTM predictor provides the water level stage measurements that
are assimilated by the Kalman filter-integrated water-balance approach. Integration of the
LSTM predictor allows application of the observation error model to LSTM predictions and
accounts for inherent target uncertainty and system representation uncertainty externally
to the statistical learning algorithm.

The Kalman filter-based integrated LSTM predictor and process-based water budget
calculation presented here is a three-step implementation that employs existing models
and computer programs, with minimal modification, in the unique configuration explained
in Figure 3. Step one is the prediction of current aquifer segment storage with the forward
model. Step two is the generation of the Kalman update aquifer segment storage through
combination of LSTM predicted water levels, converted to aquifer segment storage, with
forward model predicted storage using Kalman gain weighting. Step three is the “cor-
rection” step where the unobserved pumping and diversion volume are adjusted for the
previous assimilation window, and the forward model is re-run with adjusted pumping
and diversion discharge to predict current aquifer segment storage that approximates the
Kalman update storage.

The forward model and the LSTM predictor are separate models and only the inputs
to the forward model are adjusted. The forward model provides a water budget calculation
where the budget framework enforces mass conservation. Because the LSTM predicted
stage is used only to calculate the Kalman update storage and because pumping and
diversion discharge are updated to account for the residual between step two storage and
step one storage, the Kalman filter-integrated water balance is inherently mass conservative,
even though it leverages statistical learning predictions for which mass conservation is
undefined.

EnKF approaches have been extended previously with one or more “corrector” update
steps to enforce water budget closure. Ref. [11] incorporated constraints to the EnKF and
applied a constrained EnKF in a two-step process to estimate a terrestrial water budget
across the southern Great Plains region of the United States (US). Step one in this estimation
is the standard EnKF, and step two is a constraint step that optimally redistributes water
budget imbalance created in step one to adjust or correct the budget calculation. Ref. [25]
produced a two update, weakly constrained EnKF approach that enforces water balance
closure and accounts for data uncertainty and applied it to assimilate gravity recovery
and climate experiment (GRACE) terrestrial water storage observations with a global-
scale hydrological model. This two-update, weakly constrained EnKF was subsequently
modified to incorporate a more general, unsupervised framework that permits an unknown
water-balance model covariance [26], and the unsupervised and modified framework
was applied for combined assimilation–calibration [27]. These previous EnKF “corrector”
applications are conceptually similar in implementation (but at disparate scales, and using
different types of data sets that are observed, and which do not employ statistical learning
predictions) to the three-step implementation in this study.

4.1. Integrated Volume Calculation—Advantages and Limitations

Kalman filters are a DA algorithm with the goal of continuously updating numerical
model results to represent observations, and are frequently employed in active, “opera-
tional” environments with real-time or near real-time updates to optimize assembly line
performance, track objects, and implement autonomous vehicle navigation and control [6,7].
Given the goal of continuous improvement, it only makes sense to use a classical Kalman



Hydrology 2023, 10, 129 26 of 41

filter implementation for “active” and rapid fusion of data with numerical models. In other
words, a Kalman filter is not a “calibration” technique but is a technique for continuous
optimization of dynamic system representation.

Here, Kalman filter integration produces an operations-focused water budget calcu-
lation that continuously evolves as additional data are acquired and that works with the
state variables of water storage volume and rate of change of storage. The volume of water
that is stored and volumetric additions to and extractions from storage are the primary
concerns for resource management and conservation. The volume of water stored in the
five aquifer segments in this study is an unobserved quantity. The explicit focus on storage
volume and the adjustment of uncertain discharges allows for resource planning using
Equation (1) and the concept of residence time, Rt.

The main advantages of Kalman filter integration of DL predictions to a process-based
water budget involve leveraging the advantages of each disparate approach, i.e., DL ver-
sus process-based approaches, to compensate for the deficiencies in the other approach.
Disadvantages of process-based water budget calculations include: (1) model parame-
terization and process representation complexity increases with site complexity, which
means that significantly more effort is required to make a water budget calculation for a
physically complex site than for a simple site, and (2) model inputs and outputs must have
dimensions and must balance dimensionally, which means that dimensionless, or propor-
tional, soft information is difficult to employ within purely deterministic implementations
of these models. Statistical learning advantages directly ameliorate the disadvantages
of process-based calculations and include that (1) site complexity is uncoupled from DL
model complexity so that there is no additional effort required for complex sites relative to
simple sites and (2) dimensionless trends can be used as features, or inputs, as is utilized
for pumping and water rights extractions in this study.

Similarly, the deficiencies of DL approaches are counterbalanced by the advantages of
process-based approaches. Disadvantages of DL models include: (1) dimensionless and
standardized inputs and outputs means no mass conservation or dimensionally consistent
representation, which can lead to allocating too much importance to trivial correlations,
and (2) standardization requires assumption of weak stationarity, which means that weak
stationarity among training inputs and prediction inputs must be assumed. Contrasting
advantages of process-based water budget calculations are: (1) explicit calculation of vol-
ume of water in storage, (2) physical process representation provides for representation of
process function outside of the range of calibration data, and (3) inherent mass conservation
and dimensional consistency as part of the budget, or balance, framework.

Kalman filter integration of these two fundamentally different approaches generates
further advantages of (1) working directly with the unobserved state variable of water
storage volume, (2) ability to combine dimensionless predictions of aquifer stage with
the process-based volume description when stage observations are limited or unavailable,
and (3) use of dimensionless extraction trends as inputs to predict aquifer stage in the
LSTM predictor allows for “correction” of these unobserved, and uncertain, volumetric
extractions and additions in the process-based model to yield “optimal” storage volume
solutions.

The main limitations of the Kalman filter integration are: (1) it does not create new
observations but merely spreads the uncertainty in previously observed values among
the state variables of storage volume and rate of change in storage volume and (2) it is
active, evolutional, and requires the continuous acquisition of additional observations to
promote evolution and ongoing representation enhancement. If additional observations,
i.e., additional data collection, are not planned, then using an active and evolutional
approach is a waste of time because no new observations are available for the continued
improvement of system state representation.
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4.2. Future Work

The future work goal for this study is to implement this type of operational DA of
DL predictions to process-based water budgets in an environment of continuous improve-
ment via continuous acquisition of new observations analogous to assembly line function
and process optimization for manufacturing. The LSTM predictor does not create “new”
observations. It only estimates water level values based on learning from a limited set of
observations. Consequently, the immediate need for future advancement in the current
study area is to remedy mechanical issues with observation collection equipment so that
new observations can be, and are, obtained.

Additional observations can be directly incorporated as “measurements” as soon
as they are available, and the LSTM predictor should only be used when observations
are not available. More data, and continual collections of observations, will allow for
examination of different distributions of the xk − xp residual volume correction (from
Figure 3) between pumping and recharge. The correction volume distribution between
pumping and recharge, used in this study, was arbitrarily derived to enable process-based
and mass-conservative correction of the water budget calculation. Additional observations
will eventually allow for iterative cycles of model development and optimization as part of
the ongoing improvement to dynamic system representation.

Iterative cycles of model development will include both the process-based forward
model and the LSTM predictor. An LSTM predictor should be re-trained and the updated
representation validated whenever there are one to two years of additional data. The
process-based forward model should be re-calibrated as part of this cycle of model opti-
mization; additional complexity should be incrementally introduced to the process-based
model as suggested by analysis of new observations. Finally, the process-based model will
eventually need to be changed to a systems dynamics model that can inherently represent
complex and interrelated water demands like feedback loops. The current process-based
model is only capable of hydrologic routing, one-way movement of water across the
interconnected aquifer and river segments, with a limit of five outflows.

5. Conclusions

LSTM-predicted water levels in wells are integrated to a process-based, mass-conservative
water budget framework via classic Kalman filter DA. The integrated calculation is a three-step
combination of a process-based water balance model, which is the forward model, with a
DL predictor. The volume of water stored in aquifer segments is the important system state
tracked in the assimilation.

In the first step, the forward model predicts aquifer storage volume. A Kalman
filter calculates an updated aquifer storage volume by assimilating “measurements” from
an LSTM predictor, predicted using similar inputs to the forward model, with initial
forward model predictions in the second step. The final calculation step utilizes modified
pumping and recharge inputs, adjusted to address the difference between the Kalman filter
update and the forward model prediction, to recalculate the water budget for the current
assimilation window in a “correction” step. Neither pumping nor recharge is observed in
the study area, and values used in the prediction step, i.e., step one, are approximate.

This Kalman filter integration provides advantages of working directly with the unob-
served state variable of water storage volume and combining dimensionless predictions of
aquifer stage from the LSTM predictor with the process-based volume description for the
water budget model in a mass-conservative fashion. It generates an operations-focused
water budget calculation that provides for optimal system representation conditional upon
existing observations and that can continuously evolve and improve as additional data are
acquired.

DL requires clean and consistent data because statistical learning focuses solely on
learning correlations from standardized data sets. Significant uncertainty issues are known
to impact the target, or outcome, data sets used to train and validate the LSTM predictor in
this study. A common-sense baseline is employed to facilitate interpretation of LSTM model
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generalizability accounting for uncertainty in river discharge observations. DA, in contrast
to statistical learning, provides for explicit incorporation of target data set uncertainty
including measurement error through the observation error model. An observation error
model is used for the storage state variable in the integrated calculation to externally address
data uncertainty impacts to LSTM predictions and to incorporate additional uncertainty
inherent in the dynamic system representation of the water budget model.

Funding: This research was funded by Southwest Research Institute, Internal Research and Develop-
ment Grant 15-R6209.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author wishes to acknowledge the contributions of three anonymous re-
viewers whose comments and suggestions improved the quality of this paper.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AWC Available water capacity
CI Confidence interval
DA Data assimilation
DL Deep learning
EA-LSTM Entity-aware long short-term memory
EAA Edwards Aquifer Authority
EnKF Ensemble Kalman filter
FDC Flow duration curve
GRACE Gravity Recovery and Climate Experiment
HRU Hydrologic response units
HSG Hydrologic soil group
HSPF Hydrological simulation program—FORTRAN
KGE Kling-Gupta Efficiency
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
MSE Mean square error
NRMSE Normalized root mean square error
NSE Nash-Sutcliffe Efficiency
ODE Ordinary differential equation
PDE Partial differential equation
PRISM Parameter-Elevation Regressions on Independent Slopes Model
RMSE Root mean square error
RNN Recurrent neural network
SPI Standardized precipitation index
SPEI Standardized precipitation evapotranspiration index
SSURGO Soil Survey Geographic Database
SWAT2012 Soil and Water Assessment Tool 2012
TX Texas
UCUWCD Uvalde County Underground Water Conservation District
US United States
USGS United States Geological Survey



Hydrology 2023, 10, 129 29 of 41

Appendix A. Definitions and Equations for Kalman Filter Implementation

Appendix A.1. Definitions

The Kalman filter implementation presented here is formulated to use measured and
projected water level elevations in “index wells” to calculate aquifer segment water storage
volume. The means for calculating volume from water level elevation is the FTABLE in the
UCUWCD Water Balance Model. The FTABLE provides mapping from volume to water
level elevation for the RCHRES structure.

There are five aquifer segments or sub-component aquifers in this analysis. The state
variables are volume, v, for each aquifer and rate of change in volume, ∆v, across the
current assimilation window, Equation (A1). k denotes the time index for the ending time
of the current assimilation window, tk. k− 1 denotes the time index for the ending time of
the previous assimilation window, tk−1.

∆v =
vk − vk−1

∆t
(A1)

∆t = tk − tk−1 (A2)

In Equation (6), xp is the vector of predicted states produced by the forward model
for the current assimilation time window, k. Equation (A3) provides definition of xp. The
subscripts identify the aquifer segment according to the list below.

xp =



v1
v2
v3
v9
v10
∆v1
∆v2
∆v3
∆v9
∆v10


(A3)

• 1: Edwards R001 from Table 1;
• 2: Buda #1 R002 from Table 1;
• 3: Austin R003 from Table 1;
• 9: Leona Gravels R009 from Table 1;
• 10: Buda #2 R010 from Table 1;

In Equation (6), zk is the vector of projected states for the current assimilation window,
k, produced by the trained LSTM model. The LSTM model produces water level elevations
in the index wells, which are converted from water level elevations to volume values using
the corresponding FTABLE. Equation (A4) provides the definition of zk; note this is the
same as Equation (A3); however, the sources are different. xp are predicted by the forward
model, and zk are projected by the LSTM predictor.

zk =



v1
v2
v3
v9
v10
∆v1
∆v2
∆v3
∆v9
∆v10


(A4)
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Appendix A.2. Equations

Equation (4) has A and Q terms that have not been previously defined.

• A is the state transition matrix, Equation (A5);
• Q is the process noise covariance matrix that provides the observation error model,

Equation (A6);

Because the transform from water level elevation to volume is executed external to the
Kalman filter implementation, the main diagonal of A is ones.

A =



1 0 0 0 0 ∆t 0 0 0 0
0 1 0 0 0 0 ∆t 0 0 0
0 0 1 0 0 0 0 ∆t 0 0
0 0 0 1 0 0 0 0 ∆t 0
0 0 0 0 1 0 0 0 0 ∆t
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(A5)

In Q, the standard deviation, σ, of volume provides the observation error model. The
volume sequences, from which the standard deviations are calculated, are projected by the
LSTM predictor across the full available input feature period of 1 February 2003 through 31
December 2019 for LSTM training because no index wells are included in the inputs.

Q =



σv1 0 0 0 0 0 0 0 0 0
0 σv2 0 0 0 0 0 0 0 0
0 0 σv3 0 0 0 0 0 0 0
0 0 0 σv9 0 0 0 0 0 0
0 0 0 0 σv10 0 0 0 0 0
0 0 0 0 0 σ∆v1 0 0 0 0
0 0 0 0 0 0 σ∆v2 0 0 0
0 0 0 0 0 0 0 σ∆v3 0 0
0 0 0 0 0 0 0 0 σ∆v9 0
0 0 0 0 0 0 0 0 0 σ∆v10


(A6)

Equation (5) has H and R terms that have not been previously defined.

• H is the state to measurement matrix, Equation (A7);
• R is the measurement covariance matrix, Equation (A8);

Because the transformation to volume is handled externally to the Kalman filter
algorithm, The H terms for indices one through five, which correspond to the volumes, are
one as shown in Equation (A7). The ∆v indices, six through ten, are set to zero because the
rate of change of volume is an “unobserved state” that is tracked as part of Kalman filter
implementation.

H =
[
1 1 1 1 1 0 0 0 0 0

]
(A7)

R in Equation (A8) is the initial measurement covariance matrix. This matrix is modi-
fied to tune the Kalman gain as discussed in Appendix A.3. The U term in Equation (A8)
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is an arbitrarily selected large number (8 × 109 in this implementation) that represents a
guess at initial hidden state uncertainty.

R =



σ2
v1

σv1 σv2 σv1 σv3 σv1 σv9 σv1 σv10 0 0 0 0 0
σv1 σv2 σ2

v2
σv2 σv3 σv2 σv9 σv2 σv10 0 0 0 0 0

σv1 σv3 σv2 σv3 σ2
v3

σv3 σv9 σv3 σv10 0 0 0 0 0
σv1 σv9 σv2 σv9 σv3 σv9 σ2

v9
σv9 σv10 0 0 0 0 0

σv1 σv10 σv2 σv10 σv3 σv10 σv9 σv10 σ2
v10

0 0 0 0 0
0 0 0 0 0 U 0 0 0 0
0 0 0 0 0 0 U 0 0 0
0 0 0 0 0 0 0 U 0 0
0 0 0 0 0 0 0 0 U 0
0 0 0 0 0 0 0 0 0 U


(A8)

Table A1 provides the standard deviation, σ, values used to calculate the initial
versions of the Q and R matrices in Equations (A6) and (A8).

Table A1. Standard deviation values used in initial R and Q matrix creation.

Aquifer Reservoir Standard Deviation Prediction
Segment ID Mm3 % of Edwards Period 1

Edwards R001 40.9 100 1 February 2003 to 31 December 2019
Buda #1 R002 4.1 10.1 1 February 2003 to 31 December 2019
Austin R003 47.4 116 1 February 2003 to 31 December 2019

Leona Gravels R009 2.1 5.2 1 February 2003 to 31 December 2019
Buda #2 R010 1.5 3.6 1 February 2003 to 31 December 2019

1 Standard deviation values were calculated from the complex graph, trained LSTM model predictions across
1 February 2003 to 31 December 2019. The LSTM model predicts water levels in index wells. These elevations
were converted to volume values using the FTABLES in the UCUWCD Water Balance Model.

Appendix A.3. Kalman Gain Tuning

In Table 8, the forward model produces NRMSE values greater than 10% for all five
index wells and does not do a “good” job of predicting water levels. The LSTM predictor
does, however, produce NRMSE values of less than 6% for all five index wells. Because
the observation record was short (less than 14 months) for four of the five index wells,
the LSTM predictor for these four index wells could not be both trained and validated on
independent sets of outcomes. It is probable that the LSTM predictor for these four index
wells is over-fitting. Over-fitting is when the model learns patterns that are specific to the
training data but that are misleading or irrelevant when it comes to new data [28].

A manual, trial and error Kalman gain tuning exercise was utilized to generate Kalman
filter updated water balance model results that seemed to subjectively best capture the
observed water levels cast to aquifer segment storage volume. The goal of the subjective,
manual exercise was to capture most of the observed storage volume values within the
envelope provided by the Kalman filter updated water balance predictions ±3σ. The
6σ range is assumed to provide a 95% confidence interval (CI). σ values are shown in
Table A1. For Kalman gain tuning, modified versions of the Q and R matrices are employed.
Equation (A9) shows the modified Q, or Qg, representation used for tuning. In this equation,
the q’s are aquifer segment unique multipliers.
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Q =



q1σv1 0 0 0 0 0 0 0 0 0
0 q2σv2 0 0 0 0 0 0 0 0
0 0 q3σv3 0 0 0 0 0 0 0
0 0 0 q9σv9 0 0 0 0 0 0
0 0 0 0 q10σv10 0 0 0 0 0
0 0 0 0 0 σ∆v1 0 0 0 0
0 0 0 0 0 0 σ∆v2 0 0 0
0 0 0 0 0 0 0 σ∆v3 0 0
0 0 0 0 0 0 0 0 σ∆v9 0
0 0 0 0 0 0 0 0 0 σ∆v10


(A9)

Final tuned values for the q’s are listed below.

• q1 = 10.0;
• q2 = 1.0;
• q3 = 10.0;
• q9 = 10.0;
• q10 = 10.0;

Equation (A10) shows the modified R, or Rg, representation used for tuning. In this
equation, the r’s are aquifer segment unique multipliers.

R =



r1σ2
v1

0 0 0 0 0 0 0 0 0
0 r2σ2

v2
0 0 0 0 0 0 0 0

0 0 r3σ2
v3

0 0 0 0 0 0 0
0 0 0 r9σ2

v9
0 0 0 0 0 0

0 0 0 0 r10σ2
v10

0 0 0 0 0
0 0 0 0 0 U 0 0 0 0
0 0 0 0 0 0 U 0 0 0
0 0 0 0 0 0 0 U 0 0
0 0 0 0 0 0 0 0 U 0
0 0 0 0 0 0 0 0 0 U


(A10)

Final tuned values for the r’s are listed below.

• r1 = 1× 103;
• r2 = 1.0 ;
• r3 = 1× 10−2;
• r9 = 1× 10−2;
• r10 = 1× 10−2;

Appendix B. Gauging Station Metadata and Discharge Statistics

Tables and figures describing stream gauging station metadata and statistical analysis
are included in this appendix. At all gauging stations in Table A2 and on Figure 1, water
stage recorders are used to measure water depth. A derived rating curve, unique to the
gauging station, provides the translation from measured water depth to an estimated
discharge. Stage measurement combined with estimation of discharge using a rating curve
provides a calculated, or modeled, estimate of discharge rather than a direct observation.
Discharge estimates from the gauges in Table A2 contain measurement and model error
with an expectation for larger errors relative to direct observations of discharge.

The purpose of discharge statistical analysis is to develop a common-sense baseline
for discharge targets following Ref. [59]. It is important for representation of the study
site that the common-sense baseline incorporate relative uncertainty expectations between
low flow and medium to high flow regimes. Ref. [63] provides flow regime dependent,
expected error estimates of ±50–100% for low flows, ±10–20% for medium to high flows,
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and ±40% for out of bank high flows for discharge calculated using a stage measurement
combined with a rating curve. Consequently, the largest relative uncertainty is expected for
gauge records that are dominated by relatively low discharges.

Low flows are important in study site representation because the study area contains
the BFZ Edwards Aquifer Recharge Zone, “Recharge Zone”, shown on Figure 1. Significant
seepage losses are observed from the Nueces and Frio Rivers across the Recharge Zone
using pairs of gauging stations. The upstream member of the pair provides observed
discharge prior to the Recharge Zone; Station ID 8190000 is the upstream member for the
Nueces River pair, and 8195000 is the upstream member for the Frio River pair. Station
ID 8197500 is the downstream member for the Frio River, and 8192000 is the downstream
member for the Nueces River. Differencing of the upstream member from the downstream
member provides an estimate of seepage losses across the Recharge Zone.

Flow duration curves (FDCs) are used to graphically portray differences in discharge
characteristics observed between the upstream and downstream members and to identify
flow regime thresholds. An FDC represents the relationship between the magnitude
and frequency of daily, in this case although weekly or monthly intervals could be used,
discharge for a particular river basin and provide estimates of the percentage of time a
given discharge was equaled or exceeded over a historical period [76]. Table A3 lists flow
regime thresholds identified using an FDC for each gauging station.

Figure A1 provides FDCs for 8195000 (upstream Frio River) and 8197500 (downstream
Frio River) along with flow regime threshold estimates. Discharge observed at the down-
stream 8197500 station is almost always smaller than that observed at the upstream 8195000
stations, even though the contributing area for 8197500 is 526 km2 larger, because of seepage
losses. FDCs and flow regime estimates for the Nueces River upstream versus downstream
stations are shown on Figure A2 and similar seepage loss patterns are evident in this
figure because discharge observed at the downstream station, 8192000, is generally smaller
than that observed at the upstream station, 8190000. Table A3 provides a summary of the
pertinent flow indices calculated from these FDCs.

On Figure 1, the “inflow” type provides description of water inflow into the study
area and identifies the upstream member of a seepage loss calculation pair. These “inflow”
gauging stations are used as features or inputs for LSTM training and prediction. Station
IDs 8195000 on the Frio River, 8190000 on the Nueces River, and 8190500 on the West
Nueces River are the discharge features.

Downstream members are “outflow” stations and provide targets. Station IDs 8197500
on the Frio River, 8192000 on the Nueces River, and 8204005 on the Leona River are the
discharge targets. Station ID 8204005 is the only station available on the Leona River and is
not a member of a seepage loss calculation pair.

As shown in Table A3, the downstream members of the seepage loss identification
pairs, 8197500 and 8192000, have 70th percentile discharges that are significantly smaller
than the upstream pair member. Both the 70th percentile and 20th percentile probability of
exceedance discharges are zero for 8197500 in Table A3, and the MDF of 1.0 m3/s-days has
an exceedance probability of about 4.7%. The expectation is for zero discharge over 90% of
the time at station 8197500.
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Table A2. Gauging Station Metadata.

Station
ID 1,2 River Description Start of Record Contributing

Area km2 Count (N) 3 Type 4

8197500 Frio Frio Rv bl Dry Frio Rv nr Uvalde, TX 1 October 1953 1634 24,837 Outflow

8195000 Frio Frio Rv at Concan, TX 30 September
1924 1008 24,837 Inflow

8190000 Nueces Nueces Rv at Laguna, TX 1 September
1952 1909 24,837 Inflow

8190500 West Nueces W Nueces Rv nr Brackettville, TX 28 September
1939 1797 24,016 Inflow

8192000 Nueces Nueces Rv bl Uvalde, TX 5 April 1939 4820 24,837 Outflow
8204005 Leona Leona Rv nr Uvalde, TX 1 March 2003 342 6881 Outflow

1 Discharge data and gauging information come from United States Geological Survey (USGS),
https://waterdata.usgs.gov/tx/nwis/rt (accessed on 23 June 2022). 2 All gauging stations are water-
stage recorders. 3 31 December 2021 is the end date for all records for this analysis, and data are available
through the present. “Count” is the count of days that have observations available from 1 January 1954 through
31 December 2021. 4 Type denotes whether a gauging station observes inflow to or outflow from the study
domain shown on Figure 1.

Table A3. Flow duration curve (FDC) analysis results.

Station ID
Mean Daily

Flow (MDF) 1

70th
Percentile

Threshold 2

20th
Percentile

Threshold 3

2nd
Percentile

Threshold 4

Maximum
Observed
Discharge

Daily
Standard
Deviation

Monthly
Standard
Deviation

m3/s-days m3/s-days m3/s-days m3/s-days m3/s-days m3/s-days m3/s-months

8197500 1.04 0.00 0.00 7.05 915 15.1 4.4
8195000 3.62 1.33 4.07 16.37 699 12.3 5.1
8190000 4.97 1.59 5.18 22.50 1991 24.2 8.6
8190500 1.02 0.00 0.08 4.73 1203 17.3 4.8
8192000 4.48 0.40 3.49 22.99 1461 34.2 12.6
8204005 0.82 0.00 1.17 2.39 411 7.4 2.2

1 Mean daily flow (MDF) provides the upper limit for low flow indices [77]. 2 The flow duration curve (FDC)
70th percentile threshold is a commonly used low flow index [77]. 3 The 20th percentile is a threshold for high to
medium flows [78]. 4 The 2nd percentile is the threshold used for out of bank, high flows [78] in this study.
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Figure A1. FDC for 2 Frio River stations.
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Appendix C. Additional Kalman Filter Results

2017-10-01
2018-01-01

2018-07-01
2019-01-01

2019-07-01
2019-10-01

80

90

100

110

120

130

140

Vo
lu

m
e 

(M
m

3 )

95% CI, ±3
KF Integration

Forward Model
LSTM Measurement

Observed

Figure A3. Simulation Results for Buda #1 Aquifer Segment.
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Figure A4. Simulation Results for Leona Gravels Aquifer Segment.
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Figure A5. Simulation Results for Buda #2 Aquifer Segment.
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Figure A6. Pumping and Recharge Adjustments to Implement Forward Model Correction for the
Buda #1 Aquifer Segment.
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Figure A7. Pumping and Recharge Adjustments to Implement Forward Model Correction for the
Leona Gravels Aquifer Segment.
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Figure A8. Pumping and Recharge Adjustments to Implement Forward Model Correction for the
Buda #2 Aquifer Segment.

Appendix D. Model and Source Code Availability

Models and associated “new” source code are available from the project GitHub
repository. Available online at https://github.com/nmartin198/kfint_watbudg_lstm
(accessed on 9 May 2023).
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