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Abstract: The primary objective of this study was to examine the quality of volunteered geographic
information (VGI) data for flood mapping of Hurricane Harvey. As a crowdsourcing platform, the
U-Flood project mapped flooded streets in the Houston metro area. This research examines the
following: (1) If there are any significant differences in water depth (WD) among the hydraulic and
hydrologic (H&H) model, the Federal Emergency Management Agency (FEMA) reference floodplain
map, and the VGI? (2) Are there any significant differences in the inundated areas between the
floodplain modeled by the VGI and hydraulic simulation? This study used HEC-RAS to simulate
flood inundation maps and validated the results with high water marks (HWM) and the FEMA-
modeled floodplain after Hurricane Harvey. The statistical results showed that there were significant
differences in the WD, the inundated road count, and the length inside/outside of HEC-RAS-modeled
floodplain. The results also showed that a less consistent decreasing trend between the U-Flood data
and the modeled floodplain over time and space. This study empirically evaluated the data quality
of the VGI based on observed and modeled data in flood monitoring. The findings from this study
fill the gaps in the literature by assessing the uncertainty and data quality of VGI, providing insights
into using supplementary data in flood mapping research.

Keywords: flood analytics; big data fusion; riverine and floodplain; inundated streets; accuracy
assessment; uncertainties

1. Introduction

Enabled by the increasing penetration rate of mobile devices with internet connections,
citizens serve as sensors to crowdsource data, contribute volunteered geographic infor-
mation (VGI), and participate in citizen science projects [1–3]. To map flood inundation,
crowdsourced data emerged as alternative and supplementary data sources to augment
conventional geospatial datasets such as remotely sensed imagery and stream gauges.
For example, the inundation extent and water depth data could be extracted from social
media to support rapid flood inundation mapping in Dresden, Germany [4]. As a subset of
crowdsourced data, VGI requires the voluntary submission of geographic observations by
the users. Schnebele et al. [5] also utilized multi-sources of non-authoritative data, which
included both crowdsourced and volunteered aerial photos, to map the potential road
damage of Hurricane Sandy in the United States. These crowdsourced observations can
produce valuable hydraulic data to support flood modeling in France, Argentina, and New
Zealand [6].

Besides crowdsourced and VGI data, citizen science projects typically involve the
training of participants in collecting high-quality data for a specific project. For example,
trained citizens can actively collect in situ data at a high temporal resolution in near real
time for flood mapping [7,8]. Such citizen science projects can gather quantitative hydraulic
data, such as the flow rate and discharge, by crowdsourcing geotagged pictures and videos
for subsequent hydrologic and hydraulic modeling to simulate the flood process [6].
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Comparing to authoritative data acquired by government agencies, however, crowd-
sourced and VGI data often lack clear data standards and quality assurance/quality control
(QA/QC) procedures to ensure data quality [9]. Nevertheless, a small panel of crowd-
sourced flood observations from YouTube videos were integrated with a hydraulic model
and the results showed minor but persistent improvements to flood mapping in the down-
stream portion [10]. Based on the feedback of three projects across the continents, elements
of successful citizen science projects include “a clear and simple procedure, suitable tools
for data collecting and processing, an efficient communication plan, the support of local
stakeholders, and the public awareness of natural hazards” [6].

It is possible to filter and extract a data subset relevant to different aspects of a flood.
Disaster-specific terms, such as ”flood”, “inundation”, and “damage”, can be used to
filter social media posts related to a specific flood. Based on passive crowdsourced data,
such as taxi GPS or phone records, Kong et al. [11] classified roads by comparing delayed
human mobility with some baselines. Their study used logistic regression to identify
flood-affected roads and reported a 60% true positive rate as compared to the authoritative
flood report. However, the accuracy is very sensitive to data sampling frequency. Using
photos of stop signs, it is possible to train a deep neural network to estimate flood depth
by comparing the pole length during the flood with the dry pole from Google StreetView
Images [12]. The results showed a mean absolute error of 32.08 cm (equivalent of 12.63 in.)
in flood depth estimation. Compared to active crowdsourced data with a clear project
objective, these attempts can be regarded as using passive crowdsourced data as they
require the use of proxy data to infer the intended target. As a result, their reliability is
determined by the distribution of the proxy phenomenon (e.g., human mobility) instead
of the geographic phenomenon of interest (i.e., flooding). Nevertheless, any creative use
of passive crowdsourced data for flood modeling can provide valuable insights about the
dynamic landscape at a critical time.

Regardless of the active or passive approach, it is necessary to validate the quality of
crowdsourced data to explore its possible use in flood modeling beyond gathering discrete
observations about the flood extent and road damage. The primary objective of this study
was to examine the quality of VGI from the U-Flood project for flood mapping. This study
used HEC-RAS to model flood inundation maps in the Houston area affected by Hurricane
Harvey and compared the resulting maps with the volunteered dataset. The high temporal
resolution of U-Flood data also offered a unique lens to ascertain the impacts of dam release
as a flood management practice from Addick Reservoir and Barker reservoirs during the
floods. By simulating the flood extent during Hurricane Harvey (which included dam
release water from the Addick Reservoir and Barker Reservoir during the floods), this
study provides useful references for disaster management in urban areas for future risk
assessment and mitigation.

The research questions of this study include:

(1) Are there any significant differences in the water depth for the H&H model (i.e.,
HEC-RAS), authorized reference (i.e., FEMA), and VGI (i.e., U-Flood data)?

(2) Are there any significant differences in the inundated areas between the HEC-RAS-
modeled floodplain and U-Flood data observations?

To answer these research questions, this study validated the VGI with a modeled
floodplain to examine its effectiveness in supporting the flood inundation map of the
HEC-RAS model. This study also discussed possible ways of using VGI to improve the
model prediction.

To examine the quality of U-Flood data and its potential to improve the HEC-RAS
model prediction, the null hypothesis (HA0) states that there are no significant differences
in water depth (WD) among the HEC-RAS, FEMA, and U-Flood data (i.e., WDHEC-RAS =
WDFEMA = WDU-Flood). The alternative hypothesis (HA1) is that there would be significant
differences between these three data sources. To examine the agreement between the
HEC-RAS model and the U-Flood data, the null hypothesis (HB0) states that there are no
significant differences in the covered area between the HEC-RAS-modeled floodplain and
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the U-Flood data observations (i.e., Covered AreaHEC-RAS = Covered AreaU-Flood). The
alternative hypothesis (HB1) is that there would be significant differences between these
two data results.

2. Materials and Methods
2.1. Study Area and Data

The study area lies within the Buffalo Bayou watershed, which is primarily located in
west-central Harris County, downstream of the Addicks Reservoir and Barker Reservoir in
the Houston area (Figure 1). Buffalo Bayou, with a drainage area of 264.2 km2, is the primary
stream, which runs approximately 170.59 km through a high-density residential area in
Harris County, with a population of around 444,602. To examine the flood extent during
Hurricane Harvey, four United States Geological Survey (USGS) stream gauges (08073500,
08073600, 08073700, and 08074000) were used in the HEC-RAS model, starting from the
dam release of Addicks and Barker reservoirs upstream to the outflow downstream of
Houston downtown.
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Figure 1. The USGS stream gauges in the study area in Buffalo Bayou watershed [13].

Hurricane Harvey made landfall on 25 August 2017 and caused widespread flooding
in the study area. However, U-Flood could only launch pro-actively and started data
collection from 31 August to 6 September 2017. In this study, the input data for flood
modeling were acquired from authoritative GIS databases such as the Texas Natural Re-
sources Information System (TNRIS), the U.S. Geological Survey (USGS), and the Federal
Emergency Management Agency (FEMA). Harvey high water marks from USGS were used
for model validation. This study compiled the following geospatial data to examine the
quality of VGI and its potential for inundation mapping (Table 1).
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Table 1. Data used in this research.

Data Name Sources Year of Acquisition

County and city boundaries TNRIS, TxDOT, TPWD 2015
Roadways TNRIS, TxDOT 2015

Watershed boundaries TNRIS, USGS 2009
Rivers and waterbodies TNRIS, USGS, EPA 2009–2014

Gauge stations and discharges USGS 2017
National flood hazard layer (NFHL) FEMA 2015

National land cover data TNRIS, USGS 2011
High water marks USGS 2018
CIP storm sewer City of Houston 2018

1 m NAIP ortho-imagery TNRIS, USDA 2016
Lidar DEM Houston-Galveston Area Council (H-GAC) 2008

Flooded streets U-Flood 2017

The flooded streets data used in this study were crowdsourced by the public and
were acquired from the U-Flood project (map.u-flood.com).(The access date is 30 August
2017, and the full URL is https://u-flood.com/. The u-flood project, however, has been
deprecated after Harvey and the domain is now used by a company selling Sump Pumps.
You can see a blog about this website from here: https://wxshift.com/news/blog/were-
mapping-flooded-streets-in-real-time-heres-how-to-help) The data adopted the GeoJSON
format and were converted into shapefile for HEC-RAS modeling. The U-Flood data
were segregated into hourly intervals from 31 August to 6 September 2017. The resulting
polyline shapefile was visualized in GIS with a timestamp, road types, and flood types in
the attribute table (Figure 2).
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All GIS shapefiles and raster data used the state plate coordinate system of Texas
zone 4204 for spatial reference. The lidar-derived digital elevation model (DEM) data were
clipped, mosaicked, and converted to a TIN file within the Buffalo Bayou watershed for
further geometric data processing. The stream centerline, bank lines, flow path centerline,
and cross section cut lines were digitized to prepare the RAS layers needed (Figure 3).
This study digitized 80 cross section lines across the Buffalo Bayou watershed to capture
the places of hydraulic interest (e.g., change in geomorphological landforms) and USGS
gauges along the Buffalo Bayou stream. Based on the land cover data, Manning’s n values
(e.g., 0.04 for channels, 0.06 for developed areas, 0.08 for vegetated areas) were assigned
to the stream channel and floodplain. All RAS layers were prepared and exported from
HEC-geoRAS and then imported into the HEC-RAS model for the flood simulation.
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HEC-RAS [13].

2.2. Flood Simulation and Analysis

The workflow of the methodology involves the following steps: (1) the flood simula-
tion and inundation mapping using HEC-RAS; (2) model validation against authoritative
data of the FEMA flood inundated map; (3) comparison of the extent and WD among the
modeled flood inundation maps and U-Flood (Figure 4).

This study simulated a 7-day scenario of flood inundation maps to match the dates of
the U-Flood data crowdsourced from 31 August to 6 September 2017. The peak discharges
from the four USGS stream gauges were used as inflow data to conduct steady flow analysis
and simulate the flood routed through the Buffalo Bayou from the reservoirs to downtown
Houston. In addition, gauge heights over time were used to interpolate the water surface,
which was assumed to be evenly distributed for each cross-section along the main channel.
For example, Table 2 lists the input parameters of the four selected USGS stream gauges
along the Buffalo Bayou mainstream, which include gauge number, gauge name, date,
time, discharge (cms), and gauge height (m). In this research, the peak discharge of the
USGS stream gauge 08074000 on any given day from August 31 to September 6 was used
as the threshold to calibrate the model, because it holds the largest flow discharge value
compared to the other gauges, which represents the worst flood scenario. Therefore, the
time/date when the peak discharge occurred at gauge 08074000 was applied in the other
three gauges to simulate the worst flood situation.
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Table 2. Flow data input parameters of four USGS stream gauges on 31 August 2017 at 13:30.

Gauge Location Discharge (cms) Height (m)

08074000 Near Downtown 441.74 7.84
08073700 At Piney Point 413.43 19.12
08073600 At W Belt Dr 410.59 21.70
08073500 Near Addicks 368.12 23.55

The quality of the U-Flood data was examined by comparing (a) the water depth (WD)
among the HEC-RAS-modeled floodplain, the FEMA flood map, and the USGS HWM
and U-Flood data (RQ1), and (b) the extent of the modeled floodplain (RQ2). This study
compared various flood datasets to answer the research questions (Table 3).

Table 3. Comparison set among HEC-RAS model, FEMA flood map, and U-Flood data.

Set Data Flood Attribute Sample Size Date

1 HEC-RAS and FEMA Water Depth 1000 1 September
2 HEC-RAS and HWM Water Depth 29 31 August
3 U-Flood, HEC-RAS, and FEMA Water Depth 184 1 September
4 U-Flood and HEC-RAS Water Depth 188–303 * 31 August–6 September

Count and Length 490 31 August

* Sample size varies depending on available data.

To verify the quality of the HEC-RAS model, this research examined any significant
difference in the WD between the HEC-RAS-modeled floodplain and two authoritative
data sources, i.e., the FEMA floodplain and USGS HWM. The FEMA floodplain WD data,
however, were only available from 27 August 2017 to 1 September 2017 (but without
31 August). Thus, this study compared the modeled floodplain of HEC-RAS against the
FEMA floodplain on 1 September 2017, the only matching date in the two FEMA and
U-Flood datasets. This study examined the agreement in the WD between the baseline
HEC-RAS and FEMA floodplain at 1000 random points. The modeled floodplain (i.e.,
HEC-RAS or FEMA) was overlaid with the lidar-derived DEM, and a zonal maximum
value of the DEM was used to infer the water surface elevation (WSE). Assuming the WSE
is flat within the HEC-RAS or FEMA floodplain, the WD is simply the difference between
the WSE and DEM at random points (Figure 5).
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The USGS HWM points were measured at 1258 sites after Hurricane Harvey, recording
visual clues of the peak stream height reached by floodwaters during the storm. There were
29 points available to be used in the statistical comparison. Similar to previous operation,
the 29 HWM points with WSE were subtracted from the base DEM to derive the WD at
those locations. However, the HWM data did not reveal the date of the highest watermark
and, hence, there is uncertainty about its timing for comparison with the flood simulated
on 31 August.

The third comparison set was to examine any significant differences in the WD among
the HEC-RAS-modeled floodplain, the FEMA flood map, and the U-Flood data. While
there is no WD directly encoded in the U-Flood data, this study derived the WD from
the inundated street segment of the U-Flood data using a GIS approach. This study used
a 7.62 m (equivalent of 25 ft) buffer around the crowdsourced U-Flood centerline, based
on the standard width of a lane: 3.66 m (i.e., about 12 ft) (the American Association of
State Highway and Transportation Officials), and the typical width of a two-way road
segment in the US: nearly 7.62 m. Next, this study created random points and obtained
zonal maximum elevation by overlaying the buffered inundated street segments with the
lidar-derived DEM. There were 184 points available to be used in the statistical comparison.
Assuming a constant water surface across the inundated street segment, the 184 points
within the buffered street segment would represent WSE, which was again subtracted
from the DEM to estimate the WD along the U-Flood inundated street segment. Similarly,
the U-Flood WDs were compared with those extracted from the FEMA and HEC-RAS
floodplain on 1 September. In addition to comparing the WD of U-Flood, FEMA, and
HEC-RAS, this study also compared the WD of U-Flood and HEC-RAS over 7 days (from
31 August to 6 September 2017).

Besides the WD, this study also examined any significant differences in the flood
extent between the HEC-RAS-modeled floodplain and the U-Flood data in terms of the
U-Flood count and the length from 31 August to 6 September 2017. This study assessed
them based on count % and length % of U-Flood, inside and outside of the HEC-RAS-
modeled floodplain. All U-Flood data were intersected and constrained in the Buffalo
Bayou bounding polygon (which was generated based on the zone covered with cross
sections in HEC-RAS). The first assessment was to compute the percentage of the U-Flood
data counts inundated in the HEC-RAS-modeled floodplain over the total number of
U-Flood data. In this study, the street segments from U-Flood that intersected with the
HEC-RAS floodplain were selected to illustrate the inundated roads reported by the crowd.
The second assessment method was to compare the length of inundated street segments
reported in U-Flood and the HEC-RAS-modeled floodplain to the total length of U-Flood
data. The inundated length of the U-Flood road was then clipped within the HEC-RAS-
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modeled floodplain to be compared. All comparison sets were used to conduct a normality
test and either a parametric or non-parametric statistical analysis as appropriate.

3. Results

Based on the stream gauge data, flood maps were simulated from 31 August 2017 to
6 September 2017, in HEC-RAS (Figure 6). In general, the water receded (i.e., the WSE was
lower) and the flood inundation extent gradually decreased over time. The upstream area
of Buffalo Bayou had the largest flood extent and the biggest change across the 7 days.
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Figure 6. The time series flood inundation maps from 31 August to 6 September 2017 [13].

The WD difference map of one dataset subtracted from another (e.g., FEMA—HEC-
RAS) over the random points were visualized to represent the spatial distribution of WD
differences (Figure 7). There were five different point types to represent the WD difference
(WDD) level between each pair of dataset comparisons as follows: (1) ≤−2 m, (2) −2 m
< WDD ≤ −1 m, (3) −1 m < WDD ≤ 1 m, (4) 1 m < WDD ≤ 2 m, and (5) >2 m. Take
FEMA—HEC-RAS for example, the positive value indicates the overestimation of FEMA
over HEC-RAS, while the negative value indicates the underestimation of FEMA over
HEC-RAS (Figure 7A).

The following subsections present the statistical results from each comparison set
(Table 3).



Hydrology 2023, 10, 113 9 of 16Hydrology 2023, 10, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. WD difference maps between: (A) FEMA and HEC-RAS; (B) HEC-RAS and U-Flood; and 
(C) FEMA and U-Flood [13]. 

The following subsections present the statistical results from each comparison set 
(Table 3). 

3.1. WD Comparison Results of HEC-RAS and FEMA 
This study compared 1000 WD values between the FEMA and HEC-RAS models us-

ing the paired sample t-test. The mean the WD from FEMA was 0.38 m higher than the 
HEC-RAS counterpart. Despite the HEC-RAS WD being highly correlated with the FEMA 
WD (r = 0.878), there was a significant difference between the two sources (t = 8.239; p < 
0.0001; n = 1000). Based on Figure 7A, most WD differences were in the range −1 m–1 m 
(grey points), which indicated minor WD differences between the FEMA- and HEC-RAS-
modeled floodplain. However, the HEC-RAS model often overestimated the WD, with 
>−2 m (bright orange points) being observed in the upstream areas, and an opposite trend 
of underestimation with a >2 m (dark blue points) cluster along the downstream portion. 
One possible reason for the WD differences was that FEMA data did not indicate the time 
it used for the flood simulation. Therefore, the result of FEMA may be different from HEC-
RAS, which was modeled with the USGS gauge peak flow discharge on 1 September 2017. 

3.2. WD Comparison between HEC-RAS-Modeled Floodplain and HWMs 
Due to the small sample size (n = 29) and the results of the Shapiro–Wilk normality 

test, the Wilcoxon Signed-Rank test was used to compare the WD of HEC-RAS and HWMs 
on 31 August 2017. Using only the HEC-RAS and HWM WD values at 29 sample points, 
there was a significant difference at the 0.05 level (Z = −2.0001, p = 0.0455). 

Figure 7. WD difference maps between: (A) FEMA and HEC-RAS; (B) HEC-RAS and U-Flood; and
(C) FEMA and U-Flood [13].

3.1. WD Comparison Results of HEC-RAS and FEMA

This study compared 1000 WD values between the FEMA and HEC-RAS models
using the paired sample t-test. The mean the WD from FEMA was 0.38 m higher than
the HEC-RAS counterpart. Despite the HEC-RAS WD being highly correlated with the
FEMA WD (r = 0.878), there was a significant difference between the two sources (t = 8.239;
p < 0.0001; n = 1000). Based on Figure 7A, most WD differences were in the range −1 m–1 m
(grey points), which indicated minor WD differences between the FEMA- and HEC-RAS-
modeled floodplain. However, the HEC-RAS model often overestimated the WD, with
>−2 m (bright orange points) being observed in the upstream areas, and an opposite trend
of underestimation with a >2 m (dark blue points) cluster along the downstream portion.
One possible reason for the WD differences was that FEMA data did not indicate the time
it used for the flood simulation. Therefore, the result of FEMA may be different from HEC-
RAS, which was modeled with the USGS gauge peak flow discharge on 1 September 2017.

3.2. WD Comparison between HEC-RAS-Modeled Floodplain and HWMs

Due to the small sample size (n = 29) and the results of the Shapiro–Wilk normality
test, the Wilcoxon Signed-Rank test was used to compare the WD of HEC-RAS and HWMs
on 31 August 2017. Using only the HEC-RAS and HWM WD values at 29 sample points,
there was a significant difference at the 0.05 level (Z = −2.0001, p = 0.0455).
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3.3. WD Comparison among U-Flood, HEC-RAS, and FEMA

Similarly, the normality test revealed that the WD of U-Flood, HEC-RAS, and FEMA
were not normally distributed (p-value < 0.05). The WD on 1 September 2017 was selected
because it was the only date when these three data sources were available. The Friedman
(X2

r) statistics result rejected the research hypothesis, which indicated that there was a sig-
nificant difference among the three groups at the α = 0.01 significance level (p-value < 0.01).

3.3.1. U-Flood and HEC-RAS

Using the Wilcoxon Signed-Rank test, there were significant differences in the WD
between U-Flood and HEC-RAS from 31 August to 6 September 2017 at the 0.01 level
(Z = 10.732 to 15.087, p < 0.0001). Most WD differences were in the range −1 m–1 m (grey
points), which indicates that there was only a small WD difference between the HEC-RAS-
modeled floodplain and U-Flood (Figure 7B). However, there were some scattered WD
differences in the range 1 m–2 m (blue points) for the cluster near the upstream area of
Buffalo Bayou.

3.3.2. U-Flood and FEMA

The results of the Wilcoxon Signed-Rank test revealed a significant difference in the
WD between U-Flood and FEMA at the 0.05 level (Z = −2.4217, n = 190, p = 0.01552). Most
WD differences were in the range −1 m–1 m (grey points), suggesting only a small WD dif-
ference between FEMA and U-Flood (Figure 7C). However, some major WD differences in
the range 1 m–2 m (blue points) for the cluster near the upstream Buffalo Bayou. Moreover,
there were a couple red points indicating a >2 m WD difference in the mid-upper floodplain.

3.4. U-Flood Data and HEC-RAS-Modeled Flood Inundation Map Comparison

In terms of the flood extent, the U-Flood data and the HEC-RAS-modeled floodplain
were compared on 1 September 2017 (Figure 8). While the U-Flood street data outside of the
HEC-RAS floodplain (the grey lines) could not be examined, the majority of the U-Flood
street data (85.9%) had a WD difference less than 1 m from the HEC-RAS results. About
8.8% of the WD difference (solid line) fell between 1 to 2 m, and 5.3% of the WD difference
ranged between 2 and 8 m (thick solid line). Nevertheless, it is clear that those U-Flood
segments with a significant WD difference (2–8 m), represented by black bold lines, were
totally inside of the floodplain.

3.4.1. Count Comparison

The total number of U-Flood data points per day from 31 August 2017 to 6 September
2017 ranged between 399 and 479, while the number of U-Flood data points within the
modeled floodplain per day during the same period ranges from 188 to 295 (i.e., 44.13%–
61.59% of all U-Flood data). The reported U-Flood data count inside the modeled floodplain
consistently decreased, whereas the total U-Flood observations from 31 August 2017 to
September 6 changed at a slower rate and often rebounded, especially after 4 September
(Figure 9). While both the modeled floodplain and U-flood data shrank in extent (i.e.,
the receding flood), there were relatively less U-flood reported from inside the modeled
floodplain over time (i.e., there were more U-Flood data outside the floodplain). The
decreasing trend over time may indicate less U-Flood data being reported. It is important
to note that the HEC-RAS model only accounts for riverine flooding in the main channel,
whereas U-Flood observations may account for tributary flooding and other storm surges
(e.g., overland flow, stormwater backlash). In general, most of the intersected U-Flood data
were clustered near the reservoir discharge outlet and upstream area of Buffalo Bayou.
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3.4.2. Length Comparison

The total of U-Flood data length in the study area for 31 August 2017 to September
6 was about 107.83–132.87 km, and the of the U-Flood data length within the floodplain
was about 34.81–63.00 km, which represents 29.06%–47.43% of the total of the U-Flood data
length. Similar to the trend observed in the count comparison, there was a decreasing trend
for the reported U-Flood data length inside the floodplain over time (Figure 10).

In summary, the average agreement of the count was 55.52%, while the average
agreement of the length was 39.98%. Therefore, the length percentage agreement was too
low to indicate much agreement between the U-Flood data and HEC-RAS model results.
As explained earlier, such a difference could be attributed to the fact that HEC-RAS only
predicts riverine flooding in the main channel, whereas the U-Flood data have the potential
to act as supplementary data and bring the HEC-RAS model or FEMA up to full strength,
based on its real-time characteristic.
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4. Discussion

With regards to the first research question (RQ1), there were significant differences
among the H&H model (i.e., HEC-RAS), the authorized references (i.e., FEMA and USGS
HWM), and the crowdsourced U-Flood data. Nevertheless, the geographic pattern of WD
among U-Flood, FEMA, and HEC-RAS displayed high similarity in the floodplain, while
the degree of WD differences was higher along the river (Figure 7). For RQ2, which exam-
ined any significant differences in the inundated areas between the HEC-RAS-modeled
floodplain and U-Flood observations, the statistics comparison results indicate that there
was a significant difference between the HEC-RAS and U-Flood data (Figures 9 and 10).
Specifically, the percentages for the U-Flood data outside of the floodplain for the count
and length comparisons were 38.41–55.87% and 52.57–70.94% respectively.

Due to significant differences found among the U-Flood data, the HEC-RAS model and
the FEMA floodplain, it is recommended to exercise caution in interpreting U-Flood data
and using these data to calibrate the HEC-RAS model. However, U-Flood data still have the
potential to supplement real-time observations, especially outside of the floodway and the
immediate floodplain to the main channel, and even outside of the modeled floodplain area
(Figures 9 and 10). Floodplain modeling (e.g., HEC-RAS) is typically restricted to the main
channel, but not the tributaries and upstream floodplain due to the need and availability of
USGS gauge data for calibration. Thus, such a modeling approach is only as good (or as
comprehensive) as the gauge data that support it. Hence, non-riverine flooding in those
remote areas would go unrecorded and their impacts on the local communities could be
underestimated. At this time, U-Flood data could be potentially helpful as a supplementary
data source for HEC-RAS modeling by offering valuable observations in regions without
USGS stream gauges or authoritative data.

Moreover, U-Flood data would not fully represent the peak discharge reflected by the
water depth for several reasons. First, these crowdsourcing projects are often a response
to an urgent need (e.g., a natural disaster) that involves a time lag. This indicates that we
should learn from this and be proactive in the future. The data reported from the public
were only available from 31 August 2017 to 6 September. This was already far after the most
severe flooding, which happened around the 25 August 2017 to 28 August. In fact, the daily
peak flow discharge of USGS stream gauge 08074000 was observed when the dam released
floodwater on 28 August 2017. Second, some data may be reported by the public that do
not match the exact time and location of the flood. Some people reported inundated streets
or roads hours or even days after they had access to the internet, while the flood might
have already receded or flowed rapidly elsewhere. Thus, the time lag in the crowdsourced
report might not reflect the realistic flooding situation corresponding to the time stamp in
the U-Flood data. Third, U-Flood data have a lot of uncertainties. Some users might report
a flood when they were walking or traveling in a boat, so the WSE is uncertain. Moreover,
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U-Flood data do not provide attributes indicative of the context of local inundation, some
of them may come from dam-released flood water or direct stormwater runoff. Finally, the
U-Flood data do not contain the water depth, and any water depth extraction from U-Flood
would have errors as compared with the other flood datasets used in this study.

There were several reasons for the different underlying geographic patterns among
the HEC-RAS model, the FEMA flood data, and the U-Flood data. First, the HEC-RAS
and FEMA did not model the tributaries. Instead, the HEC-RAS model deployed in this
study only simulated the main channel of the Buffalo Bayou watershed with only four
USGS gauges. However, some U-Flood data could be observed near the tributaries or far
from the main channel. Second, the U-Flood data outside the floodplain may have been
caused by ineffective sewer drainage compounded with increased surface runoff from
overland flow. We overlaid the Houston storm sewer map with a kernel line density surface
produced from the U-Flood distribution (Figure 11) for illustration. The map reveals several
high-density clusters of the U-Flood distribution near the upstream areas and two dams.
As there were 45.34% (214 out of 472) U-Flood street segments that intersected with storm
sewers, this might suggest that areas with U-Flood data that did not intersect with the
storm sewer lines (54.64%) would suffer from flood inundation due to the absence of sewer
lines to drain overflows during Hurricane Harvey. Those areas without storm sewers may
need to build more storm sewers to cope with future flooding, e.g., during 500-year flood
levels and above. These U-Flood data were observed in the urban area, so it was possible
that the inundated streets were affected by the floodwater from multiple sources besides
riverine flooding (e.g., damaged pipelines).
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Third, the absence of U-Flood data in some areas (e.g., the HEC-RAS-modeled flood-
plain and the FEMA floodplain) could be attributed to sampling bias in which no or less
volunteers could observe or report the inundated streets [11]. The results showed a less
consistent decreasing trend for the U-Flood data and the modeled floodplain over time. It
could be a result of (a) fewer observations volunteered by the crowd, or (b) less flooding
across 7 days over a spatially heterogeneous inundation landscape. With regards to the for-
mer cause, people may not report flood information because they do not have good signals
or devices during or immediately after the flood, or some places where floods happened
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are sparsely populated. This phenomenon may be further compounded by the geographic
disparity of the digital divide. However, there was a decreasing reporting trend (about an
11% reduction) in the total number of U-Flood data observations during the study period
from 31 August 2017 to September 6, and there was about a 36% reduction in the U-Flood
data count inside the HEC-RAS-modeled floodplain (Figure 11). This indicates means
less observations volunteered by the crowd might be a partial cause of the inconsistency.
Moreover, the modeled flood inundation maps (Figure 6) and the USGS gauge records
showed that the flood receded gradually over the 7-day period.

In this study, the WD extraction method for U-Flood used a zonal maximum approach,
which assumed the street segments were entirely inundated and estimated the WD using the
maximum difference from underlaying the DEM. As a result, it tended to overestimate the
WD, especially when (1) the U-Flood road segment was long, and (2) the slope along those
segments was steep (i.e., large elevation change). This WD discrepancy was particularly
noticeable at the edge of the HEC-RAS floodplain (Figure 8) when the U-Flood streets were
not completely contained by the modeled floodplain (i.e., did not have at least one end
within the floodplain boundary). In this case, the base DEM could be extracted from a
location that was not suitable to derive the real water surface elevation (WSE). Therefore,
this study suggests that future VGI studies should exclude crowdsourced features that are
not “completely contained in the modeled floodplain” to mitigate WD discrepancy. It might
also be possible to investigate other WD extraction methods that avoid these assumptions.

Nevertheless, the quality of U-Flood is of vital importance to the accuracy and utility of
flood monitoring. Furthermore, it might be possible to reduce the uncertainties of U-Flood
data by setting gatekeepers to review reported observations from the public. For example,
Goodchild and Li [13] described a social approach that imitates the structure of traditional
authoritative mapping agencies, with “experts” who serve as gatekeepers to reconcile any
inconsistent observations and assure the quality of voluntary contributions. The crowd-
sourcing approach [13] leverages the power of the crowd to approximate the “ground truth”
and to validate the errors that can potentially improve the credibility of the U-Flood data.
For example, a single observation can be examined by nearby observations to flag any sam-
pling bias. Moreover, informing and educating the public to report scientific observations
can improve the data quality as a long-term strategy. For example, empowering the public
with clear instructions for a data collection protocol along with a user-friendly web/mobile
interface can enable effective citizen science and ensure the essential attributes for each
observation are recorded (i.e., GPS location, flood status, etc.). As a result, such instructions
may reduce the spatial and/or temporal uncertainties associated with this VGI.

In summary, this study provides some suggestions for “best practices” for crowd-
sourcing data on digital platforms (i.e., app or website) for future applications: (a) Provide
a form with a simple user interface designed to ease user input; (b) users should report
data with GPS turned on for accurate location of flood; (c) use existing media outlets
(e.g., radio stations, social media) to promote the app before storm season to raise public
awareness. Overall, the combination of the strategies stated above would improve the
quality of U-Flood data.

5. Conclusions

The primary purpose of this study was to evaluate the quality of crowdsourced data for
flood mapping of Hurricane Harvey in the Houston area. This study provides a preliminary
assessment of the data quality of VGI by comparing the WD among crowdsourced data,
authoritative data, and modeled output. This fills a gap in the literature concerning the
usefulness of crowdsourced data in floods, but also provides useful insights about their
spatio-temporal uncertainties. Being able to prove where and when these uncertainties are
with empirical data and visualize them in this study is a good start to understanding the
quality of big data analytics. In addition, learning to better plan crowdsourcing projects
ahead of time of the disaster (so there would be less time lag) and being aware of any spatial
sampling biases are of practical significance. The findings from this study also open a new
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research agenda for improving and assessing uncertainties regarding the crowdsourced
data quality, and crowdsourcing data supplements in flood mapping research.

The reasons for the significant differences and geographic distribution are worth
investigating in future studies and will help illustrate the appropriate caution necessary
when using crowdsourced data as supplementary data for data-driven geographic knowl-
edge discovery [14]. It is necessary to pay more attention to evaluating the accuracy of
crowdsourced data by checking their quality and improving the workflow when acquiring
such crowdsourced data. Despite the spatio-temporal uncertainties in the crowdsourced
U-Flood dataset (e.g., the lack of water depth, the reporting lag from the public), it may
present an opportunity to serve as supplementary observations to calibrate hydrologic
and hydraulic models, especially in areas without USGS stream gauges or that are not
covered by the FEMA floodplain maps. In particular, crowdsourced data available outside
the modeled floodplain could provide supplementary data from outside of observed USGS
stream gauge and HEC-RAS model. The emergence of such crowdsourced data presents
an opportunity to can be cautiously exploited in future citizen science projects.

While the availability of U-Flood data is unique to the Harvey event in the United
States, the findings from this research can be applicable to other VGI projects of a similar
nature elsewhere [15]. Understandably, the availability and usability of such VGI projects
in other parts of the world might depend on a list of factors, including, but not limited to,
hazard impacts, physical and social vulnerability, disaster preparation, the digital divide,
civil awareness, etc. Nevertheless, previous studies revealed some success in initiating and
implementing VGI projects for flood management [4,6,16–18]. Future work can examine
the quality of other crowdsourced data for flood modeling and other applications [19].
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