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Abstract: Water quality degradation of freshwater bodies is a concern worldwide, particularly in
Africa, where data are scarce and standard water quality monitoring is expensive. This study explored
the use of remote sensing imagery and machine learning (ML) algorithms as an alternative to standard
field measuring for monitoring water quality in large and remote areas constrained by logistics and
finance. Six machine learning (ML) algorithms integrated with Landsat 8 imagery were evaluated for
their accuracy in predicting three optically active water quality indicators observed monthly in the
period from August 2016 to April 2022: turbidity (TUR), total dissolved solids (TDS) and Chlorophyll
a (Chl-a). The six ML algorithms studied were the artificial neural network (ANN), support vector
machine regression (SVM), random forest regression (RF), XGBoost regression (XGB), AdaBoost
regression (AB), and gradient boosting regression (GB) algorithms. XGB performed best at predicting
Chl-a, with an R2 of 0.78, Nash–Sutcliffe efficiency (NSE) of 0.78, mean absolute relative error (MARE)
of 0.082 and root mean squared error (RMSE) of 9.79 µg/L. RF performed best at predicting TDS
(with an R2 of 0.79, NSE of 0.80, MARE of 0.082, and RMSE of 12.30 mg/L) and TUR (with an R2 of
0.80, NSE of 0.81, and MARE of 0.072 and RMSE of 7.82 NTU). The main challenges were data size,
sampling frequency, and sampling resolution. To overcome the data limitation, we used a K-fold
cross validation technique that could obtain the most out of the limited data to build a robust model.
Furthermore, we also employed stratified sampling techniques to improve the ML modeling for
turbidity. Thus, this study shows the possibility of monitoring water quality in large freshwater
bodies with limited observed data using remote sensing integrated with ML algorithms, potentially
enhancing decision making.

Keywords: water quality; Landsat; machine learning; Lake Tana

1. Introduction

As populations increase and agriculture intensifies, eutrophication of freshwater
bodies around the globe, particularly in Africa, is becoming a major challenge [1]. Water
quality monitoring is essential to identify water contamination sources and implement best
management practices for healthy ecosystems [2]. It is standard practice to monitor various
water quality parameters through field observation, i.e., collecting water samples from
various spatial locations at various temporal resolutions. However, data collection in the
field is labor-intensive, time-consuming, and expensive. Moreover, data obtained by field
observation are intermittent in space and time, and it is almost impossible to predict water
quality trends in large waterbodies from such data [3]. Consequently, monitoring water
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quality using a combination of remote sensing and machine learning (ML) is seen as an
increasingly attractive alternative to standard field monitoring.

Remote sensing techniques enable monitoring water quality issues more effectively and
efficiently in large-scale regions and water bodies. They are widely used for water quality
assessment in the contemporary world [2,4]. Kallio [4] demonstrated the advantages of
applying remote sensing, including its synoptic view of an entire water body and its ability
to provide historical water quality data at larger spatial and various temporal scales. Kibena
et al. [5] identified various techniques for retrieving water quality parameters from remote
sensing imagery, including empirical, semi-empirical, and analytical methods. Recently,
the potential application of ML algorithms to monitor water quality parameters in inland
water from various sensors has been tested by different researchers [6–10] and has shown a
promising result. The use of ML in retrieving water quality parameters from remote sensing
images is still in its early stage and several challenges exist that affect its accuracy.

The major concern Is the optical complexity of waterbodies, which affects the accu-
racy of ML algorithms [9,10]. Another major setback is the lack of continuous long-term
spatiotemporal data representing the underlying dynamic of the water quality parameter
in the waterbody system to be used for model training and testing [6,7]. The frequency,
depth, and spatial resolution of sampling are also important issues affecting ML models’
accuracy [8,9]. Overall, integrating ML with remote sensing would potentially provide
additional benefits in retrieving water quality parameters [11].

Chen et al. [7] compared the water quality prediction performance of 10 machine
learning models (seven traditional and three ensemble models) using big data from the
major rivers and lakes. Their results indicated decision trees (DT), random forest (RF)
and deep cascade forest (DCF) could be prioritized for future water quality monitoring
and providing timely water quality information. Bui et al. [9] introduced novel hybrid
data-mining algorithms (combinations of standalones with bagging (BA), CV parameter
selection (CVPS) and randomizable filtered classification (RFC)) to perform water quality
predictions. They found that hybrid algorithms improved several standalone models’
prediction power, but not all. An important step in machine learning is identifying input
variables that predict the selected water quality parameter. Sudher et al. [11] proposed
an analytical approach to identify the appropriate combination of input variables (remote
sensing band data). This approach could significantly reduce the effort and computational
time required to develop a water quality model.

The most commonly used machine learning models for optical water quality parame-
ters are RF, SVR, and ANN. Kim et al. [12], for example, attempted to estimate two optical
water quality indicators, chlorophyll-a (chl-a) and suspended particulate matter (SPM)
concentrations, in coastal environments using random forest and support vector regression
(SVR) and showed that SVR outperformed the other two machine learning approaches.
Park et al. [13] used an artificial neural network (ANN) and a support vector machine
(SVM) to predict Chl-a concentration. Their study revealed that the two models reproduced
the temporal variation of Chl-a well, based on the weekly input variables. In particular, the
SVM model performed better than the ANN model, displaying higher prediction accuracy
in the validation step. All these ML prediction attempts were tested in a temperate climate.

Water quality prediction using ML in the monsoonal climates of Ethiopia has not been
widely investigated. Recent research has focused more on retrieving water quality parame-
ters via remote sensing, identifying the sources of water quality parameters, mapping the
distribution of certain water quality parameters, and trying to understand the transport
mechanisms of certain water quality parameters of Lake Tana, the largest freshwater body
in Ethiopia. Moges et al. [14] retrieved current and previous trends in the water quality
parameters Chlorophyll a (Chl-a), turbidity (TUR), Secchi disc transparency depth (STD),
and dissolved phosphorus concentration (DPC) from remote sensing using the regression
method. Dersseh et al. [3,15] assessed spatial distributions of total phosphorus (TP), total
nitrogen (TN), water surface temperature (T), total dissolved solids (TDS), and pH using
geostatistical analysis in ArcGIS. Additionally, Goshu et al. [16] assessed the seasonality
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and sources of dissolved inorganic nitrogen (DIN) inputs into Lake Tana of the upper Blue
Nile River basin. Some of these studies [3,14–16] indicate that the water quality of Lake
Tana is degrading with time, suggesting that immediate implementation of best manage-
ment practices is necessary, as well as continuous water quality monitoring to evaluate the
effectiveness of such practices.

Continuous field monitoring of various water quality parameters is impractical and
costly in large lakes such as Lake Tana. Moges et al. [14] showed that the retrieval algorithm
based on a non-linear regression model was unreliable, particularly for Chl-a monitoring.
However, prior studies in the upper Blue Nile River basin have found the use of remote
sensing and ML to be effective in stream flow forecasting [17], precipitation evaporation
index [18], and soil moisture monitoring [19]. It is, therefore, worth investigating the
potential applications of this approach for water quality monitoring. This approach would
likely prove more practical and effective than continuous field monitoring of water quality
in large lakes and similar water bodies.

Chl-a, TDS, and TUR are the most common water quality indicators for water bodies
with agricultural upland watersheds. They could potentially be retrieved via remote sensing
due to their optical properties [20]. Chl-a is a major optical water quality parameter because
it links nutrient concentration (particularly phosphorus) and algal production. Another
optical property of water, TUR, scatters and absorbs light rather than transmitting it. Total
dissolved and suspended solids are responsible for most of the scattering, whereas absorption
is controlled by Chl-a and colored dissolved or particulate matter [1]. TUR and total suspended
solids are important variables in many studies due to their linkage with incoming sunlight,
affecting photosynthesis for the growth of algae and plankton in water bodies [1].

Thus, the main objective of this study was to evaluate the performance of various
ML models in monitoring TDS, TUR, and Chl-a when combined with LANDSAT-derived
imagery in a data-scarce area of Ethiopia. The study selected six ML algorithms for
monitoring these parameters in Lake Tana: the artificial neural network (ANN), support
vector machine regression (SVM), random forest regression (RF), XGBoost regression (XGB),
AdaBoost regression (AB), and gradient boosting regression (GB). Unlike previous studies,
here we presented a large set of features as inputs to the ML models, and the models would
select the best features that give the model the highest performance based on its internal
structure and its ability to extract useful information from the features. Furthermore, to
overcome the data limitation, we used a K-fold cross validation technique that could obtain
the most out of the limited data to build robust models. We also employed a stratified
sampling technique to improve the ML modeling for the most data-limited parameter.
Hence, even with limited data, the study demonstrated that a reliable model could be built
to help monitor important water quality variables through researching various available
options in the ML modeling.

2. Materials and Methods
2.1. Study Area

Lake Tana is Ethiopia’s largest freshwater lake and the outlet of the Lake Tana sub-
basin of the upper Blue Nile (Abbay) River Basin. The lake is located at latitude 12◦00′ N
and longitude 37◦15′ E, at an elevation of 1786 m above sea level (Figure 1). Its surface area
varies from approximately 3050 km2 during the dry season to approximately 3600 km2

near the end of the rainy season. It runs 68 km east to west and 73 km north to south,
with a maximum depth of 14 m and an average depth of 9 m [21]. The United Nations
Educational, Scientific and Cultural Organization (UNESCO) has designated the lake as a
biosphere reserve [22].
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Figure 1. Map of Ethiopia (a), Blue Nile Basin (b), and Lake Tana with water quality sampling point
locations (c). Black dots represented sampling periods of August 2016, December 2016, March 2017,
October 2021, and March 2022. The red dots represented sampling periods of June 2019, July 2019,
August 2019, September 2019, December 2019, and March 2020.

The climate of the Lake Tana sub-basin is a warm-temperate tropical highland mon-
soon climate with large diurnal temperature variation between daytime highs of 30 ◦C
and nighttime lows of 6 ◦C; a mean temperature of 21.7 ◦C; seasonal variation of only
about 5 ◦C, and two annual peaks in temperature; one in May/June and one in Octo-
ber/November [21]. Between October/November and May/June, there is a dry season;
between July and September, there is a distinct rainy season (kiremt) [23]. The average
annual rainfall on the lake varies from 1600 mm in the southern part to 1200 mm in the
northern part [24].

The Lake Tana sub-basin has a drainage area of 15,054 km2, of which the lake accounts
for 20%. Over 60 rivers and streams drain from the watershed into Lake Tana. The six main
tributary rivers are the Gilgel Abay, Gumera, Ribb, Gelda, Megech, and Dirma Rivers. The
lake receives the majority of agricultural and urban runoff and domestic waste effluents
from the three major cities of Bahir Dar, Gonder, and Debre Tabor [25]. Seventy-five percent
of the sub-basin land is agricultural land planted with rainfed teff, maize, and sorghum
crops and irrigated crops of onion, tomato, maize, and wheat [26,27].

2.2. Water Samples Collection and Laboratory Analysis

A monthly dataset used to conduct this research was acquired from previous research [15],
and primary data were collected in 2021 and 2022. The data include three optically active
water quality indicators (Table 1): TUR, TDS, and Chl-a. The number of samples collected
and analyzed for Chl-a, TDS, and TUR were 931, 796, and 286, respectively. The dataset
included data gathered from 143 sampling locations across the lake at a 5 km resolution
from the top water surface at a depth of 50 cm in August 2016, December 2016, March
2017, October 2021, and March 2022 (Figure 1: sampling_locations1). A second dataset
included data gathered from 27 sampling locations in June 2019, July 2019, August 2019,
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September 2019, December 2019, and March 2020 (Figure 1: sampling_locations2). The
sampling dates for Chl-a were chosen to represent the main rainy season (July–September),
the dry season (December–April), and the pre-rainy season (May–June) to understand how
seasonality influences the water quality parameters. The water quality parameters TUR, TDS,
and Chl-a were analyzed in the Bahir Dar Institute of Technology water quality laboratory.

Table 1. Descriptive statistics of each water quality parameter measured in the field campaign and
laboratory analysis. Statistical metrics used were: maximum value (Max), minimum value (Min),
mean, standard deviation (SD).

Water Quality
Parameter Metrics Aug.

2016
Dec.
2016

Mar.
2017

Dec.
2019

Jun.
2019

Jul.
2019

Aug.
2019

Mar.
2020

Oct.
2021

Apr.
2022

N. Sample 170 170 170 27 27 27 27 27 143 143

Chl-a
(µg/L)

SD 0.1 0.1 0.10 1.1 4.0 3.3 2.0 1.8 0.76 16.8
Max 19.4 191.6 191.6 7.2 19.5 14.2 11.4 12.0 185.8 125.0
Min 0.05 0.05 0.05 3.7 0.8 1.1 1.5 6.2 0.01 0.01

Mean 2.2 17.1 20.6 5.4 4.4 5.7 6.3 8.8 6.7 8.6

TUR
(NTU)

SD - - - - - - - - 19.0 19.7
Max - - - - - - - - 344 104.0
Min - - - - - - - - 0.27 5.0

Mean - - - - - - - - 41.7 23.7

TDS
(mg L−1)

SD 2.8 26.4 25.7 - - - - - 34.0 5.7
Max 113.3 107.3 107.3 - - - - - 99.0 78.0
Min 50.7 34.7 34.7 - - - - - 30.0 7.30

Mean 90.1 87.0 99.4 - - - - - 58.6 68.2

A TDS meter, also known as an electrical conductivity meter, was used to measure
TUR and TDS. Chl-a concentrations were measured using the acetone extraction method
after sample filtration on a 0.47 m glass fiber filter (Whatman GF/C) utilizing Gellman
polycarbonate filtration towers at low-to-moderate vacuum (10–40 cm Hg). Centrifugation
at 4000 rpm for 20 min cleared the extracts. Before acidification (750b and 664b) and after
acidification (750 and 665 nm), sample and standard absorbance were measured at 750 and
664 nm (750a and 665a). The concentration of Chl-a in the extract was evaluated using a
spectrophotometer equipped with a Perkin-Elmer Lambda 35 UV/VIS spectrophotometer
with a 1 nm spectral bandwidth and optically matched 4 cm plastic micro-cuvettes, as per
the standard method. The descriptive statistics of the three selected optical water quality
parameters of Lake Tana are shown in Table 1.

The measured values of Chl-a, TDS, and TUR in the laboratory analysis have had an
outlier that prompted us to use an outlier detection and removal techniques. This study
used a density-based technique called the local outlier factor (LOF) algorithm because of
its simplicity and ease of use, without considering data distribution.

2.3. Landsat 8 OLI Image Acquisition and Pre-Processing

Landsat 8 Operational Land Imager (OLI) images were used in this study. NASA
successfully launched Landsat 8 on 11 February, 2013. Even though new sensors such as the
Landsat 8 OLI lack certain band centers useful for inland water remote sensing, they have
improved signal-to-noise ratios, radiometric and temporal resolution, and aerosol-specific
bands, making them better equipped to handle the size and complexity of inland waters [28].
The Landsat 8 OLI images were collected from “USGS Landsat 8 Surface Reflectance Tier 1”
of the Google Earth Engine (GEE) dataset with 30 m spatial resolution. Tier 1 data were
corrected for atmospheric and geometric errors (http://earthexplorer.usgs.gov, accessed
11 December 2021). With the help of GEE, the spectral band reflectance values were
extracted at each sampling point for the sampling months of August 2016, December 2016,
March 2017, June 2019, July 2019, August 2019, September 2019, December 2019, March
2020, October 2021, and March 2022.

http://earthexplorer.usgs.gov
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Explanatory variables used to train the ML models were extracted from these Landsat
8 OLI bands and derived spectral indices based on image differentiating (DI), ratio remote
sensing index (RI), and different types of normalized remote sensing indices (NDI). As
shown in Table S1, in addition to nine bands (B1, B2, B3, B4, B5, B6, B7, B11, B12) of Landsat
8 OLI imagery, the study identified 78 spectral indices, including NDWI of McFeeters [29],
NDWI of Rogers and Kearney [30], MNDWI of Xu [31], AWEInsh and AWEIsh of Feyisa
et al. [32], FAI (Floating Algae Index) [33], different normalized difference vegetation
indices, and several other water vegetation indices as proposed explanatory variables.
These variables are listed by index name and a short description of each can be found
in Table S1 of the Supplementary Material. Before the features were used directly in the
modeling, a MinMax Scaling was applied to rescale the data in a fixed range of 0 and 1.
The method subtracts the minimum value in the feature and then divides it by the range.

2.4. Model Description and Approach

This study selected six ML models frequently used in water quality assessment and
monitoring: RF, XGB, AB, GB, SVM, and ANN. The selected ML models were trained using
three optical water quality parameters as target variables: TUR, TDS, and Chl-a. As shown
in Figure 2, the explanatory selected feature variables outlined in Section 2.4.1 were used as
input, and the models were evaluated using different metrics, as discussed in Section 2.5
below. Model hyperparameters were tuned using the grid search method [34,35] with
K-fold cross validation (CV), with the number of folds K set to five, as recommended by
other studies [36–38]. Figures S1–S36 in the Supplementary Material showed the optimiza-
tion results for the ML models from the grid search method. The ML model parameters
with the lowest MSE and the selected features were used to construct the ML models.
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The study used a predefined ANN model, as outlined in Section 2.4.6. A wrapper
technique called recursive feature elimination with cross-validation (RFECV) was used
for feature selection to speed up the learning algorithm, improve predicted accuracy, and
make learning results more intelligible [37,38]. Eighty percent of the dataset was used for
training and twenty percent for testing. We used the traditional random sampling approach
(TRSA) to split data for all water quality parameters. As the prediction with this sampling
approach was poor for TUR, we applied an additional approach, a spatiotemporal block
partitioning technique (STBPT), to carry out the split [39].

After training and testing the ML models, the best model for each water quality
parameter was selected based on its performance metrics and used to predict the monthly
spatial distribution and a spatial monthly average of Chl-a for the year 2020, and TUR and
TDS for the year 2017. The target years were chosen to coincide with the available studies
of the various parameters. These predictions were based on Landsat 8 (OLI) images and
the selected features for each model, as extracted on 3065 points at a 1 km resolution and
monthly intervals for selected years. The spatial mapping was conducted by interpolating
the 3065 predicted water quality parameters using the inverse distance weightage method.
The mean monthly spatial average was calculated by averaging the predicted monthly
values for these 3065 points. These predictions were used to compare the predictive abilities
of ML models with other methods in the literature [40–42] and to assess the water quality
of Lake Tana.

2.4.1. Adaboost (AB)

AB is a typically boosting type ensemble ML algorithm introduced by Freund [43].
It trains the weak learners and then integrates the trained weak learners to obtain a final
model [44]. AB assigns different weights (called “amount of say”) to the prediction error
rate of the learner, then adjusts the weight of the sample, and finally, accumulates and
weights the prediction results of all learners to generate a predicted value.

2.4.2. Random Forest (RF)

RF is a tree-based ensemble technique proposed by Breiman [45]. A regression tree
is a non-linear regression model where samples are partitioned at each binary tree node
based on the value of one selected input feature. It is a classification model that uses
multiple base models independently, typically decision trees, on a given subset of data,
and makes decisions based on all models [46]. The bootstrap sampling for each regression
tree generation and the random selection of features considered for partitioning at each
node reduces the correlation between the generated regression trees, thus averaging their
prediction responses to reduce the variance of the error is expected [45]. RF carries all the
advantages of a decision tree with the added effectiveness of using several models [47,48].
RF is appropriate for modeling the non-linear effect of variables. The fact that RFR is
nonparametric, and thus data do not need to come from a specific distribution, is not
affected by multicollinearity and works well with many predictors [46,48,49]. According
to Nolan et al. [50], RF is relatively robust to outliers. It can overcome ANN’s black-box
limitations by assessing the explanatory variables’ relative importance and selecting the
most important features.

2.4.3. Gradient Boost (GB)

Friedman [44] created the GB algorithm, one of the common ensemble boosting
algorithms in which weak learners are trained iteratively and stage by stage to find a
model that decreases prediction bias and variance. Like other boosting techniques, it
assembles the model stage-wise and generalizes the model by optimizing a suitable cost
function. In gradient boosting techniques, decision trees are utilized as weak learners.
Each predictor in gradient boosting corrects the error of its predecessor. In contrast to
AB, the training instance weights are not lowered; instead, each predictor is trained using
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preceding residual errors as labels. In the GB algorithm, incorrectly classified cases for a
step are given increased weight during the next step.

2.4.4. Support Vector Machine (SVM)

SVM is a vector-based statistical learning technique with proven predictive capabil-
ity [12]. It is a machine learning tool for classification and regression. SVM is implemented
using a kernel function, a non-linear mapping function. The kernel function and a hyper-
plane linearly separate and transform the input data points into a high-dimensional space.
As a result, the choice of kernel function significantly impacts model accuracy [51]. The
best way to choose the kernel function is to change the hyperplanes and reduce the errors
associated with them iteratively [12].

2.4.5. Extreme Gradient Boost (XGB)

XGB, proposed by Chen and Guestrin [52], is a scalable artificial intelligence algorithm
for tree boosting. XGB is one of the implementations of the technique of GB, which is
one of the best performing algorithms for supervised learning. XGB can be used to solve
problems involving regression and classification. XGB improves prediction performance
by modifying the objective function of the GB algorithm to reduce model bias.

2.4.6. ANN

The ANN model is a non-linear regression model that uses a set of feed-forward neural
networks to conduct an input–output mapping. It comprises three layers: an input layer,
one or more hidden levels of computation nodes, and a computation node output layer.
The highly linked framework of ANN models is recognized for transmitting information
from the input layer through weighted connections and functional nodes known as transfer
functions. These transfer functions make non-linear data mapping to high-dimensional
hyperplanes easier, allowing for the separation of data patterns and the formulation of
model output. ANN has been found to be fast and efficient and used to handle a wide
range of problems [37]. We used one of the most common ANN structures utilized by
many researchers: MLP architecture. MLP architecture has the advantage of being easy
to use. It can approximate any relationship between input and output through the typical
three layers [53], the input, hidden, and output layers. In this study, the most common
transfer function, the sigmoid transfer function, was used in the hidden layer, while a linear
activation function was used at the input and output layers.

2.5. Model Performance

For a comprehensive examination of model performance, the study employed statis-
tical metrics, such as the determination coefficient (R2), root mean square error (RMSE)
Nash–Sutcliff efficiency (NSE), Mean Absolute Error (MAE), and mean absolute relative
error (MARE) [54].

R2 = 1− ∑n
i=1(Y− yi)

2√
∑n

i=1(y− yi)
2

(1)

RMSE =

√
∑n

i=1(yi − y)2

n
(2)

MARE =
1
n

n

∑
i=1

∣∣∣∣yi − y
yi

∣∣∣∣ (3)

NSE = 1− ∑n
i=1(yi − y)2

∑n
i=1

(
y− ∑n

i=1 yi
n

)2 (4)
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MAE =
∑n

i=1

∣∣∣yi −
−
y
∣∣∣

n
(5)

where (Y, yi, y, n) are mean true value, truth value, predicted value, and the number of
data, respectively.

3. Results
3.1. Feature Selection for Data Input

Various visual spectral bands and their ratios are widely used to quantify water quality
parameters [20]. This study originally proposed 78 spectral bands and their ratios, as in
Table S1 of the Supplementary Material. Using the base algorithms of each of the selected
ML models and the RFECV technique, the features were reduced for the three water quality
parameters to speed up the learning algorithm, improve predicted accuracy, and make
the learning results more intelligible. In the process of feature dimension reduction, the
characteristic bands and band combinations for the three water quality parameters were
found. The results of the feature selection analysis are presented in Table 2. The number of
selected features for each model except ANN was greatly reduced (from 87 to a number
ranging from 10 to 20) since many features were found to have little effect on these models’
performances. ANN used all features as input due to the difficulty of automatic feature
selection. Next, RF used a greater number of features; 20, 18, and 15 for Chl-a, TDS, and
TUR, respectively. The selected features for each water quality parameter were not the same
for different ML models. This implies that the correlation of the water quality parameter
with the remote sensing image is not only affected by the relationship of the water quality
parameter with features extracted from the image but also the ML models used. Chl-a
were, for example, correlated with a few individual bands of the Landsat 8 OLI image
in most of the models except in the SVM model, in which it was correlated with six of
the individual bands. The selected features are also listed with their influence, from most
important to least important, in Table 2. For example, the first most influential band is B1
for XGB algorithm to predict Chl-a. The second and third most influential features were
found to be B2 and B10.

3.2. Comparision of ML Models’ Performances Metrics

The performance metrics using Equations (1)–(4) for each model are shown in Table 3
for Chl-a, TDS, and TUR. Although XGB, RF, and AB had a very close value of R2, their
NSE values vary slightly. Figures 3–5 are scatter plots of the measured and predicted
water quality parameters of Chl-a, TDS, and TUR, respectively, for the test dataset. The
performance metrics result of the ML models for Chl-a with the test dataset showed good
performance except for ANN (Figure 3). Although XGB, RF, and AB had a very close value
of R2, their NSE values vary slightly. XGB performed best at capturing the relationship
of Chl-a and the remote sensing image, with an R2 of 0.78, NSE of 0.78, MARE of 0.082,
and RMSE of 9.79 µg/L. GB was the second-best performing algorithm, with an R2 of 0.77,
NSE of 0.78, MARE of 0.091, and RMSE of 5.85 mg/L. RF’s performance was third best
with similar performance metrics, followed by AB and SVM. The lowest performing ML
algorithm for predicting Chl-a was ANN, with an R2 of 0.55, NSE of 0.056, MARE of 0.124,
and RMSE of 7.14 µg/L.
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Table 2. Selected features for the different algorithms.

Water Quality
Parameter Models Number of Features

Selected Selected Features

Chl-a

AB 12 B6, B7, B11, CI, GNDVI_4, TWI_2, Norm R, NDSI,
SRSWIR1/NIR, ABI, B4/B3, (B3 + B4 + B5)/3

RF 20

B1, B3, B4, B10, CI, GDVI, EVI, TWI_2, GARI, NormR, NDSI,
SRSWIR1/NIR, SRSWIR2/NIR, ABI, FAI, (B4 + B2)/2,

(B4 + B5)/2, (B2 + B3 + B5)/3, (B3 + B4 + B5)/3,
(B5 − B4)/(B2 + B3)

GB 10 B2, B3, B6, B11, GNDVI_4, TWI_1, GARI, ABI, (B4 + B5)/2,
(B2 − B4)/B3

SVM 15
B2, B3, B4, B6, B7, B11, CI, GNDVI_1, GNDVI_4, PPR,

MSRNir/Red, RGR, (B4 + B5)/2, (B3 + B4 + B5)/3,
(B2 − B4)/B3

XGB 12 B1, B2, B10, CI, GNDVI_3, GNDVI_5, TWI_1, TWI_2,
Laterite, H, IF, SRSWIR1/NIR, SRSWIR2/NIR, FAI

ANN 87 See Table S1

TDS

AB 15 B3, B4, B7, B10, B11, TWI_1, BNDVI, GARI, Laterite,
mCRIG, NDSI, B4/B3, (B3 + B5)/2, (B2 + B5)/2, (B4 + B5)/2

RF 18
B1, B3, B4, B6, B10, B11, GNDVI_3, GNDVI_4, MNDWI_2,

TWI_2, Gossan, I, MVI, AWEInsh, (B4 + B3)/2, (B4 + B2)/2,
(B3 + B2)/2, (B2 + B3 + B4)/3

GB 10 B2, B3, CI, TWI_1, GARI, PPR, Laterite, ABI, (B4 + B3)/2,
(B2 + B3 + B5)/3

SVM 13
B10, B11, TWI_1, BNDVI, GARI, Laterite, mCRIG, ABI, FAI,

(B4 + B2)/2, (B2 + B3 + B5)/3, (B3 + B4 + B5)/3,
(B2 − B4)/B3

XGB 10 B2, B3, B7, B10, B11, CI, GNDVI_4, GNDVI_6, TWI_2,
Gossan

ANN 87 See Table S1

Turbidity

AB 15 B3, B4, B7, B10, B11, TWI_1, BNDVI, GARI, Laterite,
mCRIG, NDSI, B4/B3, (B3 + B5)/2, (B2 + B5)/2, (B4 + B5)/2

RF 15
B3, B4, B10, CI, GNDVI_3, TWI_1, TWI_2, Gossan, GARI,

PVR, I, MVI, IF, SR550/670, SRSWIR1/NIR, SRSWIR2/NIR,
RGR, FAI, (B4 + B3)/2, (B2 + B3 + B4)/3

GB 10 B2, B3, CI, TWI_1, GARI, PPR, Laterite, ABI, (B4 + B3)/2,
(B2 + B3 + B5)/3

SVM 13
B10, B11, TWI_1, BNDVI, GARI, Laterite, mCRIG, ABI, FAI,

(B4 + B2)/2, (B2 + B3 + B5)/3, (B3 + B4 + B5)/3,
(B2 − B4)/B3

XGB 10 B2, B3, B7, B10, B11, CI, GNDVI_4, GNDVI_6, TWI_2,
Gossan

ANN 87 See Table S1
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Table 3. Optical water quality parameters model prediction performance measure results using six
ML algorithms; R2, MARE, RMSE, and NSE are shown for Chl-a, TDS, and TUR.

Water Quality
Parameter Algorithm R2

(TRST)
R2

(STBPT)
MARE
(TRST)

MARE
(STBPT)

RMSE
(TRST)

RMSE
(STBPT)

NSE
(TRST)

NSE
(STBPT)

ANN 0.55 0.124 7.14 0.56
XGB 0.78 0.082 9.79 0.78

Chl-a SVM 0.67 0.120 8.27 0.65
(µg/L) GB 0.77 0.091 5.85 0.78

AB 0.74 0.095 7.32 0.71
RF 0.77 0.093 6.81 0.77

ANN 0.60 0.133 17.04 0.58
XGB 0.78 0.085 12.51 0.78

TDS SVM 0.61 0.112 16.86 0.62
(mg/L) GB 0.79 0.096 12.40 0.78

AB 0.77 0.095 12.99 0.77
RF 0.79 0.082 12.30 0.80

ANN 0.22 0.60 0.33 0.132 30.1 10.97 0.34 0.61
XGB 0.53 0.79 0.20 0.076 24.5 8.05 0.55 0.80

TUR SVM 0.23 0.64 0.24 0.122 15.6 10.17 0.35 0.64
(NTU) GB 0.45 0.77 0.22 0.085 21.5 8.26 0.46 0.77

AB 0.44 0.74 0.21 0.092 13.5 8.60 0.45 0.75
RF 0.48 0.80 0.26 0.072 18.4 7.82 0.48 0.81

TRST refers to traditional random sampling techniques, and STBPT refers to spatiotemporal block
partition techniques.
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The performances of the ML models for TDS were similar to Chl-a (Table 3,
Figures 3 and 4). Although ANN was more accurate at capturing the relationship of TDS
and remote sensing images than Chl-a, it was still the poorest performing model, with an
R2 of 0.60, NSE of 0.58, MARE of 0.133 and RMSE of 17.04 mg/L. ANN has the largest
error (MARE of 0.133 and RMSE of 17.04). RF was the best performing method, with an R2
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of 0.79, NSE of 0.80, MARE of 0.082, and RMSE of 12.30 mg/L. XGB also performed well
with an R2 of 0.78, NSE of 0.78, MARE of 0.085, and RMSE of 12.51 mg/L. GB, AB, and
SVM were third, fourth, and fifth best, respectively, with slight variations in performance
metrics. Although RF and XGB could be used for TDS retrieval, we selected RF for further
prediction analysis.

TUR data used for training and testing was the smallest (only two months). At first, the
sampling technique employed for data splitting into training and test set using traditional
random sampling techniques (TRST) had resulted in very poor performances of ML models
(Table 3). We then improved the models’ performances by applying a different sampling
technique: the spatiotemporal block partition technique (SPBPT) sampling technique. The
result was shown under the SPBPT column for each metric in Table 3 and Figure 5. The best
performing algorithm using this technique was RF, with an R2 of 0.80, NSE of 0.80, MARE
of 0.072, and RMSE of 7.82 NTU. The second-best performing algorithm was XGB, with an
R2 of 0.79, NSE of 0.80, MARE of 0.076, and RMSE of 8.05 NTU. GB was third best, with an
R2 of 0.77, NSE of 0.77, MARE of 0.085, and RMSE of 8.26 NTU. AB, SVM, and ANN all
performed at lower accuracy in capturing the relationship between TUR and the remote
sensing image, with ANN being the worst. RF and AB have the best fitting accuracy (R2

and NSE), and XGB has the lowest error (MARE). Thus, RF, AB or XGB could be used for
TUR prediction.

4. Discussions

In this section, we first discussed the observed data in Table 1. Then, to validate the
ML models’ applicability, we predicted monthly water quality parameters in 2017 and 2020.
For Cla-a, 2020 was chosen, and for TDS and TUR, 2017 was selected. These years were
selected to compare our predictions with previous studies by Dersseh et al. [15], Worqlul
et al. [40], and Mucheye et al. [41]. In addition, we compared the prediction with the
observed data in Table 1. The comparison is to check how the models capture the spatial
and seasonal trends and order of magnitude.

4.1. Chl-a Distribution of Lake Tana

The mean Chl-a concentration of the lake from the observed data was below 20.6 µg/L
in all years (Table 1). The most recent Chl-a concentrations were 7 µg/L in October, 2021,
and 9 µg/L in April, 2022. These observed Chl-a were similar to measurements by Dersseh
et al. [15] in order of magnitude; however, the observed Chl-a concentration in December,
2016 (17 µg/L) and March, 2017 (21 µg/L) were different from the measurements by
Dersseh et al. [15] in 2019 and 2020.

This study used the best-trained and validated ML models XGB to retrieve Chl-a for
the year 2020 from Landsat 8 OLI images. Based on the feature selection, the bands and
band combinations used for the prediction were B1, B2, B10, CI, GNDVI_3, GNDVI_5,
TWI_1, TWI_2, Laterite, H, IF, SRSWIR1/NIR, SRSWIR2/NIR, and FAI (Table 2). Figure 6
shows the monthly retrieved Chl-a distribution in Lake Tana. The results showed a high
spatiotemporal variation of Chl-a concentration over Lake Tana in certain months. From
March to June, the highest concentration predicted was in the western and central parts of
the lake, possibly due to the effects of wind [10]. From observed data by Dersseh et al. [15],
a similar spatial pattern of higher concentration in the west and lower concentration in
the east was observed. From July to September, the predicted Chl-a concentration looks
spatially uniform. This could have been due to the increased mixing of lake water during
the rainy season, as suggested by Wondie et al. [42].
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Temporally, for the year 2020, the maximum predicted Chl-a concentration was in
February (58.5 µg/L), and the minimum predicted Chl-a concentration (4.2 µg/L) was in
June (Figure 6). The range in the predicted Chl-a was smaller as opposed to the observed
high range (Table 1). The range was smaller in the predicted Cla-a concentrations across
the months in Lake Tana. Hence, it can be noticed that the XGB model under-predicted the
maximum observed Chl-a concentration (191.6 µg/L) in December and March and over-
predicted the minimum observed Chl-a concentration (0.05 µg/L) in August. These could
be due to the outlier removal technique we applied to the model during training to improve
the model’s accuracy. Predictions by Mucheye et al. [41] from sentinel indicated that the
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maximum Chl-a concentration was 40.0 µg/L by the end of August, and the minimum
Chl-a concentration was 4.41 µg/L in June. The highest predicted spatial coverage of Chl-a
concentration from observation was after the rainy season and not during the main rainy
period [42]. Therefore, our predictions of Chl-a concentration appear to be more accurate
than those of Mucheye et al. [41], who predicted the highest Chl-a coverage during the
rainy period.

In general, Lake Tana underwent major water quality changes over time. Accurate
predictions help decisionmakers to understand the full extent of water quality degradation
in the lake. For example, since 2003, the average spatial Chl-a concentration has increased
from 4.8 µg/L, according to Wondie et al. [42], to 32.7 µg/L in 2020. Thus, there has been
an eight-fold increase in Chl-a within just two decades.

4.2. TDS Distribution of Lake Tana

The average TDS of the lake in Table 1 were just below 100 mg/L in 2016 and 2017 but
lower (59 mg/L and 68 mg/L, respectively) when measured in October, 2021 and April,
2022. Previous studies did not attempt to predict the spatiotemporal distribution of TDS in
the Lake. Of the six algorithms considered in this study, RF performed best at predicting
TDS. This algorithm predicted the monthly TDS content across Lake Tana for 2017, as
shown in Figure 7.

It used the following features, B1, B3, B4, B6, B10, B11, GNDVI_3, GNDVI_4, MNDWI_2,
TWI_2, Gossan, I, MVI, AWEInsh, (B4 + B3)/2, (B4 + B2)/2, (B3 + B2)/2, (B2 + B3 + B4)/3,
to perform the prediction (Table 2). Spatial monthly variations of TDS concentrations were
highest in the main rainy season of July, August, and September. The predictions showed high
concentrations of TDS in the green-colored areas, especially around the Gilgel Abay River in
the southwest. These predicted spatial patterns seem to accurately reflect Gilgel Abay’s role
as a major source of sediment in the lake [15].

The predicted maximum TDS content was 87.5 mg/L in July, August, and September
of 2017, around the major river tributaries of Gilgel Abay, Gumera, and Ribb rivers. The
predicted minimum TDS content was 49.3 mg/L in the same months of July and August
around the lake’s center. RF prediction showed that the predicted TDS content was within
the observed maximum TDS content, 113.3 mg/L, observed in August, and the observed
minimum TDS content, 7.3 mg/L. The spatial variability of TDS along the season has
no such great variation. This is because incoming solids from the rivers settle on the
lake bottom during the rainy period and mix during the dry period as the lake is shallow,
elevating the TDS concentration in the water column. The area of the lake coverage with the
highest TDS concentration is observed in September and October, while the concentration
of the area at river inlets is elevated in July and August. There is a delay compared to the
rivers, and the same pattern from observation data were reported by Dersseh et al. [15].

Figure 7 shows that the monthly TDS content increased when entering the month of June
in the rainy season, peaked in October, and then decreased in the following months. Therefore,
the model’s predictions are consistent with observed TDS content in Table 1. The observed
maximum TDS content was 113.3 mg/L in December, 2016 and March, 2017, higher than
the predicted maximum of 87.5 mg/L in July, August, and September, 2017. The observed
minimum TDS content was 7.3 mg/L in April, 2022, less than the predicted minimum of
48.3 mg/L in July, 2017. Hence, the predicted TDS values were within the observed range
but showed inconsistency with the months. RF fails to predict outside the range of observed
values used for its training [55]. Compared to the observed TDS content, RF under-predicted
maximum TDS by 22% and over-predicted minimum TDS by a factor of 5.
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4.3. TUR Distribution of Lake Tana

The observed TUR was, on average, close to 40 NTU, and these mean values were
within the range measured by Zelalem et al. [56]. Additionally, using the RF algorithm,
TUR was predicted for the year 2017 on a monthly basis, using B3, B4, B10, CI, GNDVI_3,
TWI_1, TWI_2, Gossan, GARI, PVR, I, MVI, IF, SR550/670, SRSWIR1/NIR, SRSWIR2/NIR,
RGR, FAI, (B4 + B3)/2, (B2 + B3 + B4)/3 bands and band combinations, as shown in Figure 8.
The maximum predicted monthly TUR was 145.2 nephelometric turbidity units (NTU) in
July and August (in the main rainy season), and the minimum predicted monthly TUR was
39.5 NTU in November.
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The spatiotemporal distribution pattern of predicted TUR in this study was similar
to that shown in Worqlul et al. [40]; however, the difference in the magnitudes of the two
studies was very large, indicating the need for further modeling with a more temporally
and spatially extensive dataset. The average annual TUR of the lake reported in [40] was
348 NTU, greater than 10 times the observed average annual TUR listed in Table 1. This
estimate by Worqlul et al. [40] was based on the relationship between in situ measurements
of TUR (NTU) and reflectance of MODIS near-infrared channel (NIR) developed more than
six years prior. This relationship may vary with time and might need to be modified. It is
also worth noting that vegetation cover (such as water hyacinth) [6] and summer cloud
cover could affect spectral characteristics and the algorithms’ predictions. The impacts
of environmental factors such as wind speed, vegetation cover offshore, and sediment
nutrient released on the spatiotemporal distribution of Chl-a, TDS, and TUR also merit
further investigation.
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4.4. Models Performances and Their Limitations

Data sizes of 931 and 796 spanning over several months and years were used to develop
the Chl-a and TDS retrieval model. For TUR, a smaller data size of 286 was collected for
two months in two years. There was an apparent limitation of data size, frequency of data
sampling and sampling resolution. Despite these challenges, the result indicated that the
ML algorithms generally performed well for Chl-a, TDS, and TUR modeling. In the case
of the Chl-a retrieval model building, XGB performed best. It did not only have the best
fitting accuracy (R2 and NSE) but also the lowest error rates (MARE and RMSE). In the case
of TDS and TUR, RF performed well with slightly higher model fitting accuracy metrics R2

and NSE. It also had the lowest error rates in both MARE and RMSE metrics.
Despite the overall good performances of the ML models, the presence of data imbal-

ance and differences in the number of features used in the ML models has had the main
impact on the accuracy of the models. Chl-a had relatively longer data, but it also had a
larger data imbalance than TDS and TUR due to measurements from offshore for some of
the months. On the other hand, RF used more features than the other ML models and has
the ability to extract more information from large features (Table 2). As proved in previous
studies, XGB performed well in the presence of high data imbalance [53,57] situations,
while RF worked well in high-dimensional data [47,48]. Thus, the ML model performance
result could have described the differences in the data imbalance and dimensionality used
by these ML models. Moreover, in the case of TUR retrieval model building, again, RF
performed best. That could be due to its stability with the variation of sampling size [49].

To further evaluate the performance of the best models in this study, we retrieved Chl-a
using XGB and TDS and TUR using RF from remote sensing, as presented in Figures 6–8.
The ML models in all cases did not fully capture the temporal variability and spatial
distributions of the water quality parameters. This could likely be due to ML models’
large uncertainties associated with their unique structures, hyper-parameter adjustment
requirements, and data inputs [6,7]. The data imbalance and spatial heterogeneity that
is in embedded in our spatiotemporal data may have introduced bias into our modeling.
Additionally, ML was known to be affected by sampling frequencies [8,58,59]. Our data’s
monthly time step and 5 km spatial resolution might have a limited representation of the
underlying water quality dynamics and its relation with remote sensing images. Collecting
enough data at high temporal and spatial frequencies can improve these predictive models.

In the case of TUR modeling, we initially applied the same training and test data
split technique (i.e., spatiotemporal data partitioning using traditional random sampling
techniques (TRST)) that we applied for Chl-a and TDS modeling. However, five times more
data were collected for Chl-a and TDS than for TUR. All TUR data may have been used
for training in certain locations, with none left for testing using the TRST method. This
could lead to loss of information or data leakage [39]. Additionally, significant variations
in the sizes of collected data samples may have caused biased learning, which can result
in the poor performance of predictive models, as noted in Weiss and Provost, 2003 [58].
To improve the performances of the algorithms for TUR modeling, we subsequently em-
ployed an STBPT or stratified sampling to address the issues of imbalanced data and the
limitations of the traditional random sampling technique with respect to spatiotemporal
data. Following the change in the sampling technique, it was managed to improve the
models’ performances for TUR.

Overall, the ensemble-type algorithms (RF, XGB, AB, and GB) produced higher pre-
diction accuracy than SVM and ANN in all three water quality parameters. They have
proven to be robust algorithms with better generalization abilities and are less affected by
overfitting than the ANN and SVM algorithms. The strength of the ensemble methods
could also relate to their advantage in handling imbalanced datasets, as demonstrated by
Leevy et al. [57]. Of the ensemble methods, the RF and XGB algorithms performed best,
and thus proved to be the most robust algorithms, as indicated in prior studies [49,50]. The
AB algorithm also performed well, but, as others noted, the efficiency of the technique is
highly affected by outliers and easily overwhelmed by noisy data [59].
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The inefficiencies of this model could cause the poor performance of ANN. A trial-and-
error method to determine the ANN structure does not fundamentally promote the further
development of the model [60], making it difficult to improve the model’s performance. It
could also be that the optimization of model parameters in a neural network is unstable,
such that the model’s accuracy is remarkably affected by non-linear disturbances [13].
Furthermore, the “black box” nature of neural networks means that the relationships
between the response and predictor variables may be unclear [61]. In addition, the training
process in ANN takes longer; overfitting problems may occur if there are too many layers,
while prediction accuracy may be affected if there are not enough layers [62]. ANN can
be obstructed if the training data are imbalanced and when all initial parameter weights
have the same value. Although ANN models are the most broadly used ML models, their
predictive power is weakened if they are used with a small dataset and the testing data are
outside the range of the training data [9].

Moreover, our data were not considered continuous monthly data. Chl-a and TDS are
collected for more than 6 months and can capture the seasonal variation before and after
rainy and dry periods. The major limitation of the data was for TUR, which was collected
only for two months. Due to the larger size of the lake, the data collection took more than
two weeks, which did not exactly coincide with the date of the satellite overpass of the
lake. In addition, our approach did not consider the effect of wind and precipitation on the
spatiotemporal distribution of the water quality parameters and hence the remote sensing
images. With such data limitation, we studied the ML models known to perform well in
similar situations. Thus, despite some drawbacks, with limited data, our effort has shown
these models can do well in tropical Ethiopia. Additionally, our findings have shown that
not all ML models work well, but RF and XGB worked well for Chl-a and TDS, while only
RF worked well for TUR.

4.5. Significance of ML in Lake Water Quality Management

The lake water quality has degraded slowly with time [15]. The explanation for this is
that the amount of cultivated land in the Lake Tana area has increased by 20% and covers
68% of the basin in the last 30 years [63]. The soil erosion from these areas ranges from
5 tons per hectare per year to 50 tons per hectare per year, indicating a doubling of the
sediment transport to the lake from 1980s to 2020s [64]. With the expansion of irrigated
land from 540 km2 in 1980s to 1200 km2 in 2020s, agrochemical uses are expanded. With
further water resource development and watershed management in the basin, the lake
needs special strategy in monitoring the water quality.

Though traditional environmental monitoring methods are widely applied by different
environmental agencies in the globe and are still useful, this is not even happening by
responsible agencies in Ethiopia. Most of the water quality data for the lake have been
made available by researchers. Conventional models have also been applied to carry out
predictions in the absence of in situ data [65]. However, their temporal and spatial data
demand limited calibration and reliable prediction. This research showed that data-driven
models based on machine learning can efficiently solve more complex nonlinear problems.
The data were obtained from researchers with some strategic in situ observation. This
implies that agencies can plan cost effective in situ data collection and combine these data
with remote sensing information to close the data gaps.

In this study, we showed that remote sensing information can meet the needs of
data input and large-scale water quality monitoring, and can also be used to reveal the
success of watershed management in improving quality. In Lake Tana basin, there are
currently watershed management practices in the upland, rehabilitating wetlands by
creating buffering zones and reforesting degraded land through the green legacy program
since 2019, which could lead to the reduction of pollutant load to the lake. The prediction
with ML can support finding the most effective best management practices in the area.
In future work, with some additional in situ measurements, the impact of different best
management practices could be studied with ML models identified in this study. While



Hydrology 2023, 10, 110 20 of 23

this study does not exhaustively explore all ML models, the relationship established with
remote sensing variables would provide insight into the factors affecting each water quality
variable. These models have also the potential to be applied to other lakes in the same
climate such as Victoria Lake in the east Africa region.

Finally, with future deployed real-time monitoring sensors and satellite data, there is a
potential to forecast water quality and learn from natural processes in the region, as well as
assess anthropogenic impacts on the lake’s ecosystem.

5. Conclusions

This study applied six ML algorithms (AB, RF, GB, SVM, XGB, and ANN) to build
retrieval models for three optical water quality parameters (Chl-a, TUR, and TDS) in an area
where data are scarce and standard monitoring is very expensive (Lake Tana). It was found
possible to develop reasonably accurate ML models that could be used to monitor Chl-a,
TUR, and TDS in the absence of high-resolution field monitoring techniques. Monthly
water quality maps were also retrieved using the best performing ML models. Despite
the limitation of data for ML model training, the result of the study suggests that certain
ensemble ML methods with satellite data have a staggering promising potential for regular
water quality monitoring over large complex inland tropical lakes and other water bodies
such as reservoirs. At this level, we recommend that the XGB algorithm (or the AB) could be
used to retrieve Chl-a, and RF algorithm (or the XGB algorithms) could be used to retrieve
TDS and TUR from Landsat 8 OLI imagery quickly and with reasonable accuracy. Such
quickly produced and relatively accurate water quality maps (Chl-a, TDS, and TUR) could
be used to identify sources of pollution, the water quality status of water bodies, the water
quality trend, and the factors affecting their distribution in the water body. Subsequently,
the retrieved maps could be used by different research institutes and policymakers to
develop management and policy scenarios to protect the lake’s water resources.

In the future, efforts would focus on improving the accuracy of the estimation of
the overall water quality status of the lake, developing new methods to fit, retrieve, and
monitor more factors that can represent the water quality status of the Lake and other water
bodies in the region. Simultaneously, long-term spatiotemporal data management should
be planned and implemented so that the data could be used to develop more accurate
retrieval ML algorithms. In that case, ML models, such as convolutional neural networks
(CNN) and long short-term memory (LSTM), that would provide better accuracy with time
series spatiotemporal data could also be evaluated.
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https://www.mdpi.com/article/10.3390/hydrology10050110/s1, Figure S1: AdaBoost number of
estimator tuning for Chl-atitle; Figure S2: AdaBoost learning rate tuning for Chl-a; Figure S3: Random
Forest maximum depth tuning for Chl-a; Figure S4: Random Forest number of estimator tuning for
Chl-a; Figure S5: SVR c regularization tuning for Chl-a; Figure S6: SVR gamma tuning for Chl-a;
Figure S7: XGBoost learning rate tuning for Chl-a; Figure S8: XGBoost maximum depth tuning for
Chl-a; Figure S9: GradBoost number of estimator tuning result for Chl-a; Figure S10: XGBoost learn-
ing rate tuning for Chl-a; Figure S11: GradBoost number of estimator tuning for Chl-a; Figure S12:
GradBoost maximum depth tuning for Chl-a; Figure S13: AdaBoost learning rate tuning for TDS;
Figure S14: AdaBoost number of estimator tuning for TDS; Figure S15: GradBoost learning rate
tuning for TDS; Figure S16: GradBoost maximum depth tuning for TDS; Figure S17: GradBoost
number of estimator tuning for TDS; Figure S18: Random Forest maximum depth tuning for TDS;
Figure S19: Random Forest number of estimator tuning for TDS; Figure S20: SVR c regularization
tuning for TDS; Figure S21: SVR gamma tuning for TDS; Figure S22: XGBoost learning rate tuning
for TDS; Figure S23: XGBoost maximum depth tuning for TDS; Figure S24: XGBoost number of
estimator tuning for TDS; Figure S25: AdaBoost learning rate tuning for TUR; Figure S26: GradBoost
number of estimator tuning for TUR; Figure S27: Random Forest number of estimator tuning for TUR;
Figure S28: Random Forest maximum depth tuning for TUR; Figure S29: SVR c regularization tuning
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