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Abstract: In the context of climate change, this article tries to answer the question of whether a
correlation exists between the precipitation and temperature series at a regional scale in Dobrogea,
Romania. Six sets of time series are used for this aim, each of them containing ten series—precipitation
and temperatures—recorded at the same period at the same hydro-meteorological stations. The
existence of a monotonic trend was first assessed for each individual series. Then, the Regional time
series (RTS) (one for a set of series) were built and the Mann–Kendall test was employed to test
the existence of a monotonic trend for RTSs. In an affirmative case, Sen’s method was employed to
determine the slope of the linear trend. Finally, nonparametric trend tests were utilized to verify
if there was a correlation between the six RTSs. This study resulted in the fact that the only RTS
presenting an increasing trend was that of minimum temperatures, and there was a weak correlation
between the RTS of minimum precipitations and maximum temperatures.

Keywords: MPPM; correlation; Regional series; precipitation; temperature

1. Introduction

The 2021 UN’s Intergovernmental Panel on Climate Change (IPCC) report [1] warned
that the effects of climate change were already widespread, rapid, and in continuous
augmentation, with human activity as the dominant cause for these changes, calling urgent
and ambitious action in order to limit further damage to the planet.

Climate change is a global phenomenon that affects various aspects of the Earth’s
climate system [2]. Influencing other variables, precipitation and temperature are two of
the most critical variables with complex patterns that depend on climate zones, topography,
soil, lithology, vegetation, and land use [3–5]. Moreover, their connection makes the analysis
and forecasting of climate change difficult, followed by the mitigation of its effects [6].

Researchers have found that global warming has led to a change in the precipitation
pattern in many regions of the world [7–10]. Since the extreme precipitation and temper-
ature events and their composed action may result in disasters affecting human lives
and the economy, understanding the correlations between precipitation and temperature
variations at a regional scale is an essential step in preventing the disasters’ catastrophic
effects [11–13]. In this context, studying the precipitation-temperature dependence is
essential for understanding long-term climate evolution due to the fact that the variation in
any factor can also influence other variables [14].

Starting from the remark that the relationship between extreme rainfall and temper-
ature is still unclear, Utsumi et al. [15] studied this topic based on the data recorded in
various geographical zones. Nicholls et al. [16] found a strong negative correlation between
maximum temperature variations and those of the precipitations in New South Wales. At
the same time, such an effect was not noticed in the rest of Australia. They hypothesized
that the greenhouse effect might influence the temperature-precipitation dependence be-
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cause no simultaneity in the diminishing temperature and precipitation augmentation was
notified for the 20th century in most of the studied areas.

The correlation between seasonal temperatures and precipitations has also drawn
the attention of researchers. Such a study was conducted for Italy by Ferrari et al. [17]
and Europe by Lhotka and Kyselý [18] using the CORDEX models. Isaac and Stuart [19]
showed that in the north of Canada and its eastern and western coasts, warm periods in the
winter and cold summer are accompanied by increased rainfall. In the mountains, rainfall
appears when temperatures decrease. In this context, Vrac et al. [20] raised the question
of the climate models’ reliability. Rajeevan et al. [21] found a positive correlation between
precipitation and temperature in January and May and a negative one in July in India.
Huang et al. [22] remarked on a negative correlation between both variables for the basin
of Huanghe River during 1957–2006.

In an attempt to explain the interdependence between heat waves and other meteo-
rological phenomena, Hafez [23] showed that the temperature increase was followed by
evaporation rate augmentation, leading to changes in precipitation patterns. This may
result in more intense rainfall in some regions or more severe droughts in others [24].
Additionally, changes in patterns can affect temperature through modifications in the
surface energy balance. For example, increased cloud cover can reduce the amount of solar
radiation absorbed by the Earth’s surface, leading to lower temperatures [25].

The Most Probable Precipitation Method (MPPM) was introduced in [26] to model
the spatial evolution of precipitation series on a regional scale. Since this method does
not rely on the rainfall’s characteristics, an algorithm was applied to model the regional
distribution of dust aerosol in the UAE [27] and pollution in Europe [28]. Case studies
proved the algorithm’s performance compared to other classical methods [26,27,29]. It
has the advantage of avoiding a high computation time, a deep knowledge of spatial
statistics, and restrictions related to the set’s characteristics. This article aligns with the
actual research trend to clarify interdependences between temperature and precipitation. It
is the continuation of the authors’ works, analyzing the relationship between the Regional
Series of Temperature—RTST—and the Regional Series of Precipitation—RTSP—built by a
version of MPPM. Moreover, such a correlation has not been investigated for Dobrogea,
Romania, to which this study refers.

2. Study Area and Data Series

Romania is situated between some zones of different influences: in the north—
Scandinavian-Baltic; in the east—continental; in the west and center—oceanic; in the
southwest—Mediterranean. These influences manifest through floods, landslides, and
rapid snow melting. The Carpathians form an orographic barrier between the oceanic
influence from the west and continental in the east [30].

The Dobrogea region (Figure 1), Romania, is delimited by the Danube River to the
west, the Danube Delta to the north, and the Black Sea to the east. More than 80.75% of this
territory has altitudes lower than 150 m, and the average height is 70 m. More than 80% of
the soil is formed by cernisoils and loamy soils that favor water infiltration [31]. Ielenicz and
Săndulache [32] indicated that its climate was excessively continental. During the period
1965–2010, the multiannual average temperature varied from 10.8 ◦C to 11.8 ◦C [33], with
variations in the intervals [−1.2; 2] and [19; 22.5] ◦C in winter and summer, respectively.
Lower precipitation was recorded in January, February, and October, while the most
significant was at the end of spring and the beginning of summer or winter. Dobrogea is
the part of Romania that is most affected by drought [34–39].

The data series subject to analysis contains six sets, each formed by ten series recorded
at the same period and at the same hydro-meteorological stations. They do not present
gaps and are reliable and verified, being provided by the National Administration of
Meteorology, Romania.
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Figure 1. Location of Dobrogea in Romania [40].

The sets consist of the minimum, maximum, and total annual precipitation and
minimum, maximum, and average annual temperature series recorded for 41 years at the
main meteorological series (whose names are on the map from Figure 1) in Dobrogea. The
maximum and total annual precipitation series (PrecMax and PrecTot) are represented in
Figure 2.
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The minimum, maximum, and average annual temperature series (TempMin, Temp-
Max, TempAv) are shown in Figure 3. The minimum annual precipitation series is denoted
in the following by PrecMin.
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Figure 3. (a) TempMin (b) TempAv (c) TempMax series.

3. Methodology

The procedure steps are the following.

1. Determine the change points (breakpoints) of the data series. Remember that a change
point (breakpoint) is a point where there is a change in the mean, variance, or both, or,
alternatively, there is a change in the probability law followed by the time series. To
test the null hypothesis where the time series has no breakpoint against the existence
of a breakpoint, the Pettitt [41], Buishand [42], and Lee and Heghinian [43] tests were
used. These were implemented in Khronostat [44]. The first test works for any series,
while for the last two, series normality is required. The reader may see [41–44] for
details on these procedures.

2. Test the null hypothesis that a series does not have a monotonic trend versus the
existence of such a trend at a significance level of 5%, using the Mann–Kendall
test [45,46] and Sen’s slope [47].

3. Determine the RTS of the minimum, maximum, and total precipitation series, denoted
by RTSPmin, RTSPmax, and RTSPtot, respectively.

4. Determine the RTS of the minimum, maximum, and average temperature series,
denoted by RTSTmin, RTSTmax, and RTSTav, respectively.

5. Test hypothesis H0 that RTS does not present a monotonic trend against H1 and that
such a trend exists for the RTSs of precipitations.
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6. Test H0 that RTS does not present a monotonic trend against H1 and that such a trend
exists for the RTSs of temperatures.

7. Test the hypothesis that there is a correlation between different RTSPs and RTSTs (for
example RTSPmin—RTSTmin, RTSPmin—RTSTmax and so on) using the Spearman
rho coefficient [48] and Kendall tau test [49].

These nonparametric tests were chosen because they do not rely on the series ho-
moscedasticity or Gaussian distribution, and their sensitivity to outliers’ existence is lower
than that of parametric tests [50].

The chart flow of the study is presented in Figure 4.
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The method used to determine the regional series (at the third and fourth steps)
was a version of the Most Probable Precipitation Method (MPPM) introduced by the
authors [26,27]. To build an RTS, it can be supposed that the time series (precipitation,
temperature, in this study) is recorded for T consecutive periods at m locations [26–29].
This is denoted by:

- (xtj) (t = 1, T) the series collected at jth station (j = 1, m),
- X = (xtj) (t = 1, T, j = 1, m) the matrix whose line t is formed by the values recorded at

the moment t in all stations.

Then, the following procedure can be performed:
Select the number of clusters, k, to be used to run the k-means algorithm or hierarchical

clustering to group the series recorded at different locations.
The optimum k must be found because its value impacts the Regional series fitting

quality. Different methods have been proposed to solve this problem. Thirty are imple-
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mented in the R software in the package NbClust [51]. Some of the most known algorithms
implemented are Friedmann [52], gap [53], Hartigan [54], Hubert [55], Scott [56], and
Silhouette [57].

Given that the methods on which the algorithms rely are different, the output was,
therefore, sometimes different. Therefore, the majority rule was usually employed to decide
the optimum number of clusters, meaning that the ‘best’ k was the one that resulted in the
highest number of methods.

From the clusters built in the previous step, we chose the one that contained the
highest number of series. This was denoted by Clmax. Then, a new matrix can be built, XCl,
with the elements of the series (on the column) from Clmax. If there are two or more clusters
with the same number of elements, Clmax is the cluster with the highest separation distance
between the groups and the lowest inside them [58].

• RTS can then be built by computing the average values from each row of XCl. Thus,
the RTS value at the moment t is the average of the tth row of XCl (t = 1, T).

• The modeling errors for each station can then be estimated by computing the difference
between the recorded values and those of RTS.

• The fitting quality of RTS can then be evaluated by calculating the mean absolute
error (MAE) and mean standard error (MSE) from the errors determined in the
previous step.

• The RTS chart can be drawn.

Applications of this method or some version to different series are presented in [27,29].
Statistical analysis and modeling were performed with the R 4.3.2 software (https://www.
r-project.org/).

4. Results and Discussion

The results of the break tests are presented in Tables 1 and 2 for all the series. The
Buishand, Pettitt, and Lee and Heghinian tests provide different change points because they
relied on different methodologies. All the tests were able to detect the existence of a single
breakpoint (the most important one). The first and last tests worked in the hypothesis
that the series was Gaussian. When the series is not Gaussian, Khronostat searched for a
transformation to be applied for the series to reach the normality; if such a transformation
could not be found, the tests could not be performed, as in the situation of the Jurilovca
TempMin series. Some total precipitation series had breakpoints in the period 1994–1997,
according to the Lee and Heghinian test.

Table 1. The break points of the precipitation series.

PrecTot PrecMin PrecMax

Series Buishand Pettitt Lee and
Heghinian Buishand Pettitt Lee and

Heghinian Buishand Pettitt Lee and
Heghinian

Adamclisi - - 1994 - - 2004 - - 1972
Cernavoda - - 2004 - - 2004 - - 1972
Constanta - 1994 2001 - - 1982 - - 2003
Corugea - - 2003 - - 2004 - - 2004
Harsova - - 2003 - - 2004 - - 1966
Jurilovca - 1994 1994 - - 2004 reject - 1973
Mangalia - 1997 1997 - - 2004 - - 2004
Medgidia - - 1998 - - 2004 - - 2001
Sulina reject 1994 1996 - - 1966 - - 1980
Tulcea - - 2004 - - 1995 - - 1995

https://www.r-project.org/
https://www.r-project.org/
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Table 2. The break points of the temperature series.

TempAv TempMin TempMax

Series Buishand Pettitt Lee and
Heghinian Buishand Pettitt Lee and

Heghinian Buishand Pettitt Lee and
Heghinian

Adamclisi rejected 1988 1988 reject 1988 1997 reject - 1997
Cernavoda - - 1972 reject 1988 1988 - - 1997
Constanta - - 2003 reject 1988 1998 reject - 1997
Corugea - - 1972 reject 1988 1998 reject - 1997
Harsova - - 1972 reject 1988 1988 - - 1998
Jurilovca rejected 1979 1979 not run 1988 not run - - 1998
Mangalia - - 2004 reject 1988 1993 reject - 1997
Medgidia - - 2001 reject 1988 1987 reject - 1997
Sulina - 1970 1969 - - 1998 - - 1997
Tulcea - - 1995 - - 1971 - - 1988

Table 1 shows that the Buishand test rejected the null hypotheses only for the Sulina
PrecTot and PrecMax series. The Pettitt test rejected it for all but Constanta, Jurilovca,
Mangalia, and Sulina PrecTot (for which the breakpoints were 1997 or 1994). The Lee and
Heghinian test found change points in 2003–2004 for most series. However, one should
ignore these, given that there are only one or two records after the mentioned years, so the
result cannot be validated.

The results of the same tests for the temperature series are presented in Table 2. The
Buishand test rejected the null hypothesis mainly for the TempMin and TempMax series.
Most of the change points found by the Pettitt and Lee and Heghinian test were in 1997–
1998 for the TempMin and TempMax series. It can be remarked that no concordance existed
between the change point moment in the precipitation and temperature series.

The results of the Mann–Kendall test at different significance levels are given in Table 3.
Among the precipitation series, only Sulina PrecTot and PrecMax experienced decreasing
trends (at a significance level of 0.001).

Table 3. Results of the Mann–Kendall test.

Adamclisi Cernavoda Constanta Corugea Harsova Jurilovca Mangalia Medgidia Sulina Tulcea

Tmin + *** * *** *** *** * * +
Tmax * * ** * *
Tav + + +
PrecMin
PrecMax ***
PrecTot ***

Note: The significance level of 0.1%, 1%, 5%, and 10% are represented in the table by ***, **, *, and +, respectively.

All but the Tulcea Tmin series presented trends at different confidence levels, the most
significant (positive) corresponding to Corugea, Constanta, Harsova, and Jurilovca. At a
significance level of 0.05, the hypothesis that the Jurilovca Tmax series had an increasing
trend could not be rejected. These results did not indicate a significant relationship between
the precipitation and temperature series when recorded in the same place.

To compute RTSs, first, the optimum number of clusters was determined to be k = 2.
Then, the algorithm was run with k = 2 for each series set—PrecTot, PrecMax, PrecAv,
TempTot, TempMax, and TempAv. The charts of the RTSs can be seen in Figure 5.

The modeling errors for each hydro-meteorological station were calculated by the
difference between the recorded values at a specific location and the values of the Regional
series. The RTS goodness of fit was evaluated using the mean absolute error (MAE) and
mean standard error (MSE).
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Figure 5. The RTS for (a) Precipitation and (b) Temperature series.

A comparison of the RTSP with IDW is provided in Table 4. The validation of the
RTSTs was performed using the ROCADA database [19]. Additionally, a comparison with
the IDW results for the temperature series is provided in Table 5. IDW was chosen for
comparisons because as one of the most utilized spatial interpolation methods implemented
in different GIS software, among which ArcGIS (and its freeware versions) was the most
used and well-known [59–64]. Since the RTS model explored precipitation and temperature
evolution in a zone, the average values of MAE and MSE are of interest (last rows in
Tables 4 and 5).

Table 4. Comparison between the goodness of fit of the RTS and IDW for precipitation series.

Min Max Total

MAE MSE MAE MSE MAE MSE

Site No. RTS IDW RTS IDW RTS IDW RTS IDW RTS IDW RTS IDW

Adamclisi 2.1 3.5 2.6 3.4 23.8 24.5 31.1 31.9 67.9 60.1 83.5 70.2
Cernavoda 2.3 2.2 3.7 3.3 14.0 18.5 19.1 23.3 64.3 53.8 76.8 71.0
Constanta 1.7 2.1 2.4 3.1 17.1 20.0 26.4 30.5 37.1 48.2 45.8 57.9
Corugea 1.5 1.7 2.2 2.4 14.6 16.7 19.3 22.4 42.2 49.2 55.4 62.4
Harsova 2.7 2 3.2 3.4 24.5 26.1 37.1 35.6 99.2 61.7 147.2 84.3
Jurilovca 2.2 2.4 2.8 3.1 17.7 19.9 21.1 24.8 64.3 69.9 86.1 88.1
Mangalia 2.0 2.6 3.4 3.6 24.7 26.9 32.6 42.2 53.2 56.9 72.7 72.6
Medgidia 1.8 2.2 2.8 3.1 19.3 18.9 23.8 22.4 48.0 47.2 55.6 57.1
Sulina 2.1 2.8 4.0 3.9 37.0 36.2 45.2 43.5 116.7 92.9 131.4 111.5
Tulcea 2.8 2.6 3.6 3.8 22.4 26.3 29.3 33.3 58.2 171.2 74.5 182.9

Average 2.6 3.4 3.1 3.3 21.5 23.3 28.5 31.0 65.1 71.1 82.9 85.81

The lower the MAE and MSE were, the better the model was. In the present case, all
the MAEs from the proposed algorithm were lower than those from IDW. The same was
true for the MSEs. Therefore, IDW performed the worst in all cases.

The MAEs and MSEs obtained after fitting the regional series are presented in Figure 6.
It can be remarked that the MAE and MSE for each RTS did not significantly differ or have
the same shapes. As expected, the highest MAE and MSE corresponded to PrecTot in the
case of the precipitation series case and TempMin for the temperature series. Given the
high range of values for the time series belonging to the sets of total annual precipitation
and minimum temperatures (the brown curves in Figure 2 and the curves in Figure 3a),
this result was expected.
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Table 5. Comparison between the fitting results from this approach (RTS) [19] and IDW for tempera-
ture series.

Min Average Max

MAE MSE MAE MSE MAE MSE

Site no. RTS IDW RTS IDW RTS IDW RTS IDW RTS IDW RTS IDW

Adamclisi 0.84 0.58 1.00 0.68 0.19 0.27 0.22 0.29 0.31 0.37 0.44 0.40
Cernavoda 0.50 1.00 0.58 1.25 0.13 0.16 0.16 0.20 0.53 0.95 0.60 1.04
Constanta 2.61 2.06 2.65 2.10 0.71 0.71 0.74 0.73 1.07 0.75 1.13 0.80
Corugea 1.34 1.62 1.40 1.66 1.10 1.18 1.11 1.19 0.98 0.91 1.03 0.95
Harsova 2.32 2.62 2.38 2.69 0.53 0.78 0.60 0.71 1.28 1.39 1.33 1.54
Jurilovca 0.69 0.91 0.83 1.10 0.08 0.18 0.10 0.33 0.32 0.55 0.42 0.67
Mangalia 0.70 1.31 0.81 1.35 0.11 0.83 0.12 0.87 0.55 0.85 0.63 0.91
Medgidia 0.56 0.35 0.64 0.41 0.17 0.12 0.27 0.14 0.63 0.29 0.76 0.39
Sulina 3.42 3.00 3.47 3.04 0.46 0.47 0.51 0.50 2.46 2.11 2.51 2.14
Tulcea 0.94 0.80 1.18 0.89 0.19 0.23 0.22 0.26 0.31 0.52 0.44 0.58

Average 1.39 1.42 1.49 1.52 0.37 0.49 0.41 0.52 0.84 0.87 0.93 0.94
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Figure 6. The average MAEs and MSEs at each station with respect to RTSs for (a) Precipitation, and
(b) Temperature.

The Mann–Kendall test rejected the null hypothesis, at a significance level of 0.05, only
for RTSTmin. Applying Sen’s procedure to the mentioned series, a slope of the linear trend
equal to 0.053 was found. The graphical representation of the RTSTmin (the black dots),
the regression line (black), the limits of the confidence interval (dotted lines, blue and red),
and the residual in the linear model is represented in Figure 7.
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The causes of the observed trend cannot be assessed by the statistical methods for
testing the null hypothesis in the Mann–Kendall test. Moreover, when working with annual
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data, such an attempt is not realistic. The regional time series emphasizes the tendency in
the entire region that covers different sub-zones with different climate influences (continen-
tal or oceanic), including variate relief and different altitudes. Therefore, RTS summarizes
all these aspects. If the majority of the local series exhibits a monotonic trend in the same
direction (positive or negative), the regional trend can be expected to be the same. If the
tendencies at different stations are opposite, the regional trend is either absent or has the
same sign (positive or negative) as the predominant individual series trends.

Table 6, which contains the p-values of the Spearman and Kendall tau tests, results in
the hypothesis that there is a correlation between the RTSPs and RTSTs being rejected for
all pairs but RTSPmin—RTSTmax.

Table 6. Comparison of the Spearman and Kendall tau tests.

Spearman RTSTav RTSTmax RTSTmin

RTSPtot 0.7468 0.5341 0.5353
RTSPmax 0.7215 0.7793 0.6431
RTSPmin 0.4697 0.0537 0.7488

Kendall tau RTSTav RTSTmax RTSTmin

RTSPtot 0.6613 0.4651 0.5293
RTSPmax 0.7109 0.6131 0.6531
RTSPmin 0.4252 0.0420 0.7531

For the mentioned pairs, the Kendall tau test did not reject the correlation hypothesis,
whereas the Spearman test rejected it. Still, in the last test, the p-value was slightly higher
than 0.05 (the standard significance level to which the tests are usually performed). Based
on these findings, one can conclude that at a significance level of 0.06, none of these
tests rejected the correlation hypothesis. Still, the correlation coefficient (ρ) was very low
(ρ = − 0.3035 − Spearmann, ρ = −0.2217 − Kendall test). Our results are concordant with
those from different parts of the world [10–12].

In this study, complete and verified data series were utilized. Therefore, no supple-
mentary bias was introduced. As a consequence, the evaluation of the model’s quality was
conducted by residual values. The lower the MAEs and MSEs, the better the model quality
was. When the data series were not complete, a detailed discussion had to be conducted
since errors would be introduced in building the regional series, affecting the correlation
between the RTSP and RTST. The following situations should be treated:

(a) Only a set of initial data series had missing values (for example, only two missing
values were found in the average temperature series recorded at Adamclisi),

(b) Both sets of data series had missing values that were not recorded in the same station
or period (for example, there were missing values for the minimum temperature series
at Adamclisi in 1970 and 1981 and missing values for the minimum precipitation
series at Corugea in 1969, 1992, and 2003),

(c) Both sets of data series had missing values recorded at the same time at the same
station (for example, there are missing values of the minimum temperature and
precipitation series recorded at Constanta in 1971, 1983, and 1994).

Different interpolation methods for replacing the missing values had to be applied
in each case; the entire study had to be performed, and the results were compared. These
analyses deserve a separate study that permits drawing correct conclusions, which is
beyond this article.

5. Conclusions

This article aimed to determine the regional precipitation and temperature series in
Dobrogea, Romania, and answer whether precipitation and temperature are correlated.
Even if this topic has been studied, this is the only approach using a built Regional series
employing a new method introduced by the authors, MPPM, and not the individual series
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recorded at different locations. Most breakpoints for the minimum temperature series were
found in 1988, and for the maximum, in 1997, whereas, for the precipitation series, the
most frequent change point was 2004. Moreover, no common breakpoint was found for the
temperature and precipitation series when recorded at specific points.

The Mann–Kendall test from each series emphasized the existence of significant
monotonic trends at a 99% confidence level only for Sulina PrecMax and PrecTot, Ju-
rilovca Tmin and Tmax, Cernavoda and Corugea Tmax. Additionally, no concordance
between the existence of an increasing/decreasing trend of precipitations/temperature
series was emphasized.

The correlation study emphasized only a slight negative correlation coefficient between
the RTSPmin and RTSTmax. Further studies should be performed using more series to
confirm the above findings. Moreover, the most recent data series (the last 16 years) should
be used, which are, unfortunately, publically unavailable at this moment. Additionally,
research should be developed on monthly data to emphasize the seasonal characteris-
tics/correlation of such series, in which case the mechanism of interaction between the
temperature and precipitation series should also be investigated.
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