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Abstract: Having a complete hydrological time series is crucial for water-resources management
and modeling. However, this can pose a challenge in data-scarce environments where data gaps are
widespread. In such situations, recurring data gaps can lead to unfavorable outcomes such as loss
of critical information, ineffective model calibration, inaccurate timing of peak flows, and biased
statistical analysis in various applications. Despite its importance, predicting monthly streamflow
can be a complex task due to its connection to random dynamics and uncertain phenomena, posing
significant challenges. This study introduces an ensemble machine-learning regression framework
for modeling and predicting monthly streamflow time series with a high degree of accuracy. The
framework utilizes historical data from multiple monthly streamflow datasets in the same region to
predict missing monthly streamflow data. The framework selects the best features from all available
gap-free monthly streamflow time-series combinations and identifies the optimal model from a pool
of 12 machine-learning models, including random forest regression, gradient boosting regression, and
extra trees regressor, among others. The model selection is based on cross-validation train-and-test set
scores, as well as the coefficient of determination. We conducted modeling on 26 monthly streamflow
time series and found that the gradient boosting regressor with bagging regressor produced the
highest accuracy in 7 of the 26 instances. Across all instances, the models using this method exhibited
an overall accuracy range of 0.9737 to 0.9968. Additionally, the use of either a bagging regressor or
an AdaBoost regressor improved both the tree-based and gradient-based models, resulting in these
methods accounting for nearly 80% of the best models. Between January 1960 and December 2021,
an average of 40% of the monthly streamflow data was missing for each of the 26 stations. Notably,
two crucial stations located in the economically significant lower Athabasca Basin River in Alberta
province, Canada, had approximately 70% of their monthly streamflow data missing. To address this
issue, we employed our framework to accurately extend the missing data for all 26 stations. These
accurate extensions also allow for further analysis, including grouping stations with similar monthly
streamflow behavior using Pearson correlation.

Keywords: time-series modeling; time-series analysis; machine learning; streamflow time-series
reconstruction; ensemble modeling

1. Introduction

A common problem in streamflow records from different regions around the world
is the presence of gaps in the data that limit their usefulness for hydrological modeling,
water resources management, and engineering applications [1,2]. Various factors can
lead to missing discharge values in long-term flow-discharge datasets such as faulty or
broken monitoring equipment, harsh weather conditions that affect the measurements,
difficulty in accessing the measurement sites due to terrain or security issues, accidental
absence of observers who collect the data, errors caused by human mistakes or negligence,
budget limitations that constrain the data-collection and maintenance activities, and social
or political unrest that disrupts normal operations. These factors can result in missing
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discharge values in long-term flow-discharge datasets [2,3]. This can result in information
loss or misinterpretation of historical flow-regime changes and hydrological processes [3,4].

The reconstruction of historical streamflow data plays a vital role in water resource
management, providing information about past water supplies [5]. This knowledge is
critical for comprehending the long-term variability of streamflow, which is necessary for
sustainable water management. Historical streamflow data can also be used to evaluate the
impact of human activities, such as the construction of dams and water usage, on water
resources. Moreover, incorporating historical streamflow data into hydrological models can
improve the accuracy of predicting future streamflow patterns and water availability [6–8].
Therefore, accurately predicting the missing discharge values is crucial for dependable
water resource management at the basin level.

Forecasting and backcasting the streamflow in the medium to long term is a complex
task, owing to several factors such as human activities, changes in climate, and geographic
characteristics. This complexity can be further compounded when dealing with streamflow
data from gauges over a vast area, as the data may be sourced from rivers with regulated
and unregulated flow patterns. Consequently, filling in data gaps can be challenging [2,6,9].

Over the past few years, there has been a notable increase in research focused on
streamflow reconstruction, with numerous scholars contributing to a more comprehensive
understanding of this field. The utilization of a diverse range of methods and techniques
by these researchers has resulted in a wealth of knowledge and insights into the intricate
patterns and fluctuations of streamflow, as highlighted by recent studies [10–12]. In a recent
study by Thanh et al. [3], six different machine-learning models were employed to recon-
struct the daily average discharge in the Mekong River Basin and the Vietnamese Mekong
Delta from 1980 to 2015. The models included the random forest regressor, Gaussian process
regression, support vector regression, decision tree, least squares support vector machine,
and multivariate adaptive regression spline. The accuracy of each model was evaluated by
comparing it to stage-discharge rating curves. According to the authors, the decision tree
model was not recommended for their region of interest. However, they reported that the
Gaussian process regression and support vector regression models produced acceptable
results. Arriagada et al. [12] used the missforest method to address gaps in daily streamflow
time series in a region with significant climatic variability. Unlike the random forest re-
gression (RFR) method, missforest approached the problem of missing data as a prediction
problem. The results indicated that the reconstructed daily streamflow time series of rivers
with natural flow patterns were accurately simulated, though the performance was slightly
lower for rivers affected by urban runoff and water diversion for irrigation. However, in
cases of significant changes to the flow regime, such as hydropeaking, missforest was not
successful in filling gaps in the daily streamflow series. The reconstructed hydrographs
offer valuable information about the variability and changes in streamflow and their re-
lationship with important climatic variables. In a study by Xu et al. [11], a deep learning
model called CNN-GRU was tested on various watersheds globally. The findings indicated
that the model performed better in making monthly streamflow predictions in watersheds
with large drainage areas (over 3000 km2). The performance of the model improved as the
training period was extended, with a training period of 25–35 years being adequate for the
majority of watersheds.

Several studies have focused on developing predictive models for multiscale variables-
driven streamflow modeling. One such study by Sun et al. [13] proposed a framework that
aimed to enhance runoff forecasting accuracy and support decision making. This frame-
work, named RF-GPR-MV, utilized random forest (RF) and Gaussian process regression
(GPR) integrated with multiscale variables, including hydrometeorological and climate
predictors, as inputs. The RF component of the MVDSF framework improved forecasting
performance, contributing an average of around 25%, with greater improvements observed
for lead times exceeding three months. Szczepanek [14] made a significant contribution by
comparing the performance of three gradient-boosting models (XGBoost, LightGBM, and
CatBoost) in forecasting daily streamflow in a mountainous catchment. The study utilized
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daily precipitation, upstream gauge station runoff, and two-day preceding observations
as predictors, with a minimum of 12 years of training data required to achieve desirable
results. Surprisingly, XGBoost, which is the most popular model, did not yield the best per-
formance. The study found that when using default model parameters, CatBoost achieved
the best results. However, the optimization of hyperparameters led to LightGBM yielding
the best predicted results. Several other studies have investigated multivariable streamflow
forecasting [15–17].

The Athabasca River Basin (ARB) has been a vital contributor to the economy of
Alberta province since the advent of the oil and gas industry in 1967. In addition to
the oil and gas sector, the region is home to other important economic activities such as
agriculture, forestry, mining, and tourism [18]. The majority of the ARB, which spans
approximately 82% of its total land area, is covered by a dense boreal forest [19]. Despite
its significance, the ARB has undergone substantial changes in recent decades, primarily
due to human activities. Urban expansion and industrial commodity production, including
agriculture expansion, forest degradation, and coal and oil mining, have all played a
crucial role in transforming the region. These activities have led to rapid alterations in the
ARB’s landscape, which have been intensified by the presence of natural hazards such as
wildfires [18,20].

In many studies, a thirty-year baseline period covering the years 1961 to 1990 has
been utilized for a variety of analyses and calculations of anomalies [21–24]. The Intergov-
ernmental Panel on Climate Change (IPCC) [25] has recommended this thirty-year time
frame as a standard that can encompass a diverse range of climate variations, including
extreme droughts, floods, and fluctuations in temperature during different seasons. To
ensure comprehensive modeling and extension of the streamflow time series, the inclusion
of this baseline period was made within the considered time frame of January 1960 to
December 2021.

In this article, a machine-learning framework is introduced that has the ability to
predict missing or incomplete data in monthly streamflow records with high accuracy.
The framework achieves this by utilizing historical data from various monthly streamflow
datasets within the same region. The framework is designed to identify the most suitable
gap-free monthly streamflow datasets from multiple possible combinations. The perfor-
mance of the resulting models is evaluated using cross validation and the coefficient of
determination. Through this process, the streamflow time series for all hydrometric stations
in the study is extended with a high level of accuracy. The organization of the remainder of
this article is as follows: the study region, datasets, and framework for the reconstruction
of monthly streamflow, which involves the use of 12 ensemble machine-learning models,
are outlined in Section 2. Section 3 presents the results of the framework, accuracy metrics,
and correlation analyses. The findings are discussed in Section 4, and the paper concludes
in Section 5.

2. Materials and Methods
2.1. Study Region

The Athabasca River Basin (ARB) covers roughly 160,000 km2, which is nearly a
quarter of Alberta’s province [26]. It includes a number of named and unnamed rivers and
lakes. With a length of 1538 km, the Athabasca River stands out as the largest natural river
in the province of Alberta, having no obstructions such as dams. Moreover, the river’s
drainage basin extends beyond 150,000 square kilometers, making it a crucial waterbody
in the region [27]. The region has both cold and warm seasons. During the cold months,
a significant amount of precipitation comes in the form of snow, while during the warm
months, meltwater and rainfall merge to contribute to river streamflow. Water from smaller
basins also joins the main river as it flows towards Lake Athabasca [19,28]. The ARB
region is depicted in Figure 1, with the background gradient color generated using Shuttle
Radar Topography Mission (SRTM) data sampled at 30 m. Based on varying climatic,
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hydrologic, and topographic traits, the ARB was classified into three hydro-physiographic
areas, namely the lower ARB, middle ARB, and upper ARB [29].
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# ID Name Available Data Gross Drainage 
Area (km2) 

Elevation 
(m) 

1 07AA001 Miette River near Jasper June 1914–December 2021 629 1042 

2 07AA002 Athabasca River near Jasper September 1913–December 
2021 

3870 1041 

3 07AA004 Maligne River near Jasper July 1916–December 1997 908 1026 
4 07AA009 Whirlpool River near the Mouth May 1966–September 1996 598 1143 
5 07AC001 Wildhay River near Hinton March 1965–October 2021 960 1259 
6 07AC007 Berland River near the Mouth March 1986–October 2021 5660 865 

Figure 1. A map of the Athabasca River Basin (ARB) is presented, showing the topography of the area
through a gradient background color generated using shuttle radar topography mission (SRTM) data
sampled at 30 m. The location of the ARB within Canada is illustrated in the right-corner window.
The hydrometric stations designated for the reconstruction of streamflow data through modeling are
indicated by circles, and the stations selected for reference in the modeling process are represented
by stars. The numbers appearing on the map correspond to the custom IDs we have allocated to
the hydrometric stations. Table 1 contains a detailed inventory of the hydrometric stations we have
assigned IDs to, along with their corresponding names.

2.2. Streamflow Data

The streamflow data used in this study was acquired from the Water Survey of Canada
(WSC) (https://wateroffice.ec.gc.ca, accessed on 1 January 2023). The WSC collects concur-
rent hydrometric data, including streamflow and water level, from different hydrometric
gauging stations across Canada. The hydrometric stations listed in Table 1 were picked
based on their record period, availability of continuous monthly streamflow data, the size
of the drainage area (km2), and their correlation with the rest of the stations selected in
this study. The monthly streamflow time series for stations 07BE001 and 07CD001 were
found to be continuous between January 1960 and December 2021 with no gaps and were
used as the starting set for modeling the other monthly streamflow time series. WSC
and the regional aquatics monitoring program (RAMP) (http://www.ramp-alberta.org,
accessed on 1 January 2023) data were fused for four stations (07CD005/S42, 07CE002/S29,
07DA041/S49, and 07DD001/S46) to eliminate minor gaps in the WSC data for these
stations. Figure 1 displays the geographical positions of these stations.

https://wateroffice.ec.gc.ca
http://www.ramp-alberta.org
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Table 1. A list of hydrometric stations utilized in this study. Stations with continuous monthly stream-
flow data from 1960 to 2022 are highlighted in gray to indicate their completeness. The IDs we have
assigned to each hydrometric station in the maps used in this article are indicated by the symbol #.

# ID Name Available Data Gross Drainage
Area (km2)

Elevation
(m)

1 07AA001 Miette River near Jasper June 1914–December 2021 629 1042
2 07AA002 Athabasca River near Jasper September 1913–December 2021 3870 1041
3 07AA004 Maligne River near Jasper July 1916–December 1997 908 1026
4 07AA009 Whirlpool River near the Mouth May 1966–September 1996 598 1143
5 07AC001 Wildhay River near Hinton March 1965–October 2021 960 1259
6 07AC007 Berland River near the Mouth March 1986–October 2021 5660 865
7 07AD002 Athabasca River at Hinton April 1961–December 2021 9760 963
8 07AE001 Athabasca River near Windfall May 1960–September 2021 19,600 735
9 07AF002 Mcleod River above Embarras River November 1954–December 2021 2560 935
10 07AF013 Mcleod River near Cadomin May 1984–October 2021 330 1402
11 07AF014 Embarras River near Weald August 1984–October 2021 640 977
12 07AF015 Gregg River near the Mouth September 1985–October 2021 384 1225
13 07AG001 Mcleod River near Wolf Creek June 1914–March 1984 6310 841
14 07AG003 Wolf Creek at Highway No. 16A November 1954–December 2020 826 876
15 07AG004 Mcleod River near Whitecourt June 1968–October 2021 9110 732
16 07AG007 Mcleod River near Rosevear June 1984–December 2021 7140 827
17 07BA001 Pembina River below Paddy Creek April 1956–October 2021 2900 849
18 07BA002 Rat Creek near Cynthia April 1972–October 2020 606 874
19 07BB002 Pembina River near Entwistle June 1914–December 2020 4400 727
20 07BC002 Pembina River at Jarvie September 1957–December 2020 13,100 600
21 07BE001 Athabasca River at Athabasca May 1913–December 2021 74,600 513
22 07CB002 House River at Highway No. 63 June 1982–October 2021 781 632
23 07CD001 Clearwater River at Draper January 1931–December 2021 30,800 250
24 07CD005/S42 1 Clearwater River above Christina River September 1966–December 2021 17,000 264
25 07CE002/S29 1 Christina River near Chard June 1982–December 2021 4860 455
26 07DA001 Athabasca River below Fort Mcmurray October 1957–December 2021 133,000 246
27 07DA041/S49 1 Eymundson Creek near the Mouth June 2001–December 2021 319 238
28 07DD001/S46 1 Athabasca River at Embarras Airport May 1971–December 2021 155,000 221

1 WSC and RAMP data for this station were fused. For the remainder of the article, the stations will be referred to
by their WSC identification numbers.

2.3. Methods
2.3.1. Modeling and Reconstructing Streamflow Time Series

Ensemble techniques are a way to enhance the performance of a predictive system
by combining the predictions of multiple models. This is done through methods such as
bagging, boosting, and stacking [30]. A bagging method trains multiple models separately
and combines their predictions by taking the average. A boosting method trains a sequence
of models, with each model fixing the weaknesses of the previous model. A stacking
method trains several models independently and then feeds their predictions into a higher-
level model to make the final prediction [30]. The random forest regressor (RFR), gradient
boosting regressor (GBR), extra trees regressor (ETR), histogram-based gradient boosting
regressor (HGBR), bagging regressor (BR), AdaBoost regressor (ABR) are some of the
ensemble methods used for solving regression problems.

The RFR method involves the use of multiple decision-tree algorithms to generate
predictions. It trains each tree on a separate part of the data, and the final prediction is
made by taking the average of the predictions from all the trees in the forest. This method
is effective for dealing with large amounts of data in high-dimensional spaces and is less
susceptible to overfitting compared to a single decision tree [31,32].

The GBR is a regression method that employs the gradient-boosting algorithm, which
combines weaker predictors, such as decision trees, to generate accurate predictions [33,34].
It continually improves the predictions by incorporating new decision trees that correct the
errors of previous ones. GBR is acknowledged for its capacity to manage high-dimensional
data, versatility, and resistance to overfitting, however, the training process of the model
can be computationally intensive and take a considerable amount of time [33,34].
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The ETR method builds an ensemble of decision trees, each of which is trained on a
different part of the data. Unlike the random forest regressor, it chooses a random subset of
features instead of considering all features when dividing a node. The final prediction is
arrived at by taking the average of the predictions made by all the trees in the ensemble.
This method can effectively handle large data sets in high-dimensional spaces and is less
prone to overfitting than a standalone decision tree [35,36].

The HGBR is an adaptation of the gradient boosting regressor that uses histograms
in place of traditional splitting methods. It generates more precise and flexible partitions
by dividing the feature space into multiple bins through the use of histograms. HGBR
can handle both categorical and continuous variables and is less impacted by the selection
of hyperparameters, though the training process may be more demanding in terms of
computational resources compared to the standard GBR [35].

The BR is a method that utilizes multiple base models, each trained on a different part
of the data, to make predictions. The final prediction is obtained by either averaging or
taking a majority vote of the predictions from the base models. This technique helps to
reduce the variance of complex models such as decision trees by introducing randomness
in the training process and creating a combination of models [35,37].

The ABR is a technique for building a prediction model by training multiple versions
of the same regressor, each time changing the weight of the instances based on the accuracy
of the previous model. The final prediction is made by combining the predictions of all the
regressors, with a focus on the instances that were more challenging to predict in the earlier
models. This method helps to improve the accuracy of the model by iteratively adjusting
the weight of the instances [35,38].

The split between the sizes of the training and testing sets is not predetermined and
must be decided based on the amount of data available [39]. For a small dataset, a larger
proportion of the data should be designated for validation and testing, while for a larger
dataset, a smaller proportion should be reserved for testing [39]. To measure accuracy, the
coefficient of determination (R2) with 5-fold cross validation [40] was utilized to evaluate
the model’s performance on different portions of the data and detect any performance
fluctuations. Each fold was divided into 70% for training and 30% for testing.

The optimal parameters were used to fine-tune the models, resulting in the creation of
12 models. The selection of the model with the highest accuracy on the test set was then
performed. The development of the following 12 models took place at each step.

• Random Forest Regressor (RFR);
• Gradient Boosting Regressor (GBR);
• Extra Trees Regressor (ETR);
• Hist Gradient Boosting Regressor (HGBR);
• RFR boosted with AdaBoost Regressor: RFR (ABR);
• RFR boosted with Bagging Regressor: RFR (BR);
• GBR boosted with AdaBoost Regressor: GBR (ABR);
• GBR boosted with Bagging Regressor: GBR (BR);
• ETR boosted with AdaBoost Regressor: ETR (ABR);
• ETR boosted with Bagging Regressor: ETR (BR);
• HGBR boosted with AdaBoost Regressor: HGBR (ABR);
• HGBR boosted with Bagging Regressor: HGBR (BR).

Following a preliminary examination, it was discovered that the monthly streamflow
data sets for 07BE001 and 07CD001 obtained from WSC had no gaps between January
1960 and December 2021. The list, including hydrometric stations 07BE001 and 07CD001,
was referred to as the “non-gap list”, while the rest of the stations were in the “gap list”.
The most correlated stations to 07BE001 and 07CD001 were identified through Pearson
correlation, and initial modelings were performed using RFR for a streamflow time series
from the gap list. A new round of modeling was initiated, whereby the station that exhibited
the highest initial modeling score was chosen. For this station, a total of 12 models, as
previously listed, were developed. Each of these 12 models underwent testing of all feasible
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feature combinations drawn from the nongap list. The model that achieved the highest
test and train R2 scores was selected. The selected model was used to extend the available
data to the full period of interest, and quality checks were conducted on the predicted
values. If necessary, the number of features was adjusted based on Pearson correlation to
improve the model’s performance. Once the model was deemed successful, the station was
added to the nongap list and removed from the gap list. For every station in the gap list
that remained, the procedure was repeated. In each iteration, the process started with the
station having the best initial modeling score using the new nongap list.

A secondary iterative method was employed to improve the overall R2 accuracy of the
predictions. This involved using the original WSC/RAMP monthly streamflow time series,
which had gaps, for the already extended time series that had the lowest R2 test score.
This was done to enhance the level of modeling and precision of the predictions. If better
accuracy metrics were achieved, quality control checks were conducted and, if satisfactory,
the new extended time series replaced the previous one. The process of checking for
improved results using the remaining 27 gap-free streamflow time series was repeated
until no further improvements could be made. The workflow used for reconstructing each
streamflow time series is illustrated in Figure 2.
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Figure 2. Reconstruction of streamflow time-series data through an iterative procedure using 12
ensemble regression methods. Initial gap list; 07AA001, 07AA002, 07AA004, 07AA009, 07AC001,
07AC007, 07AD002, 07AE001, 07AF002, 07AF013, 07AF014, 07AF015, 07AG001, 07AG003, 07AG004,
07AG007, 07BA001, 07BA002, 07BB002, 07BC002, 07BE001, 07CB002, 07CD001, 07CD005, 07CE002,
07DA001, 07DA041, and 07DD001. Initial nongap list: 07BE001 and 07CD001. In the development of
models for each monthly streamflow time series, the optimal parameters were determined through a
separate iterative process, and these parameters were subsequently utilized.
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3. Results
3.1. Modeling and Reconstructing Streamflow Time Series

The historical monthly streamflow time series were reconstructed by following the
procedure outlined in Section 2.3.1 and in Figure 2. Through this procedure, 26 streamflow
time series were successfully reconstructed. R-squared (R2) was used to assess the accuracy
of the reconstructed streamflow time series.

The results of these metrics are summarized in Table 2. The performance of each model
was assessed using the coefficient of determination (R2) and fivefold cross validation as the
accuracy metric. The measured monthly streamflow data for each station was split into
five train and test pairs, with each fold using 70% for training and 30% for testing. This
process helped identify any fluctuations in the model’s performance. In Table 2, the train
and test scores are presented in the format of x.xx ± x.xx × 10x, with the first component,
x.xx, representing the mean of the R2 scores obtained from the fivefolds, and the second
component, x.xx × 10x, reflecting the standard deviation of these scores. Additionally,
Table 2 presents the overall R2 accuracy in its last column. This metric represents the R2

score for all monthly streamflow data points that were measured and their corresponding
predicted values across each streamflow time series and its associated predictive model.

Table 2. Comparison of R2 scores for regression models on train and test sets with cross validation.
Only the best model score, out of 12 models, is shown for each station. R2 is a measure of the
goodness of fit of the regression model and values closer to 1 indicate a better fit. The last column
represents the R2 score calculated between the measured monthly streamflow data and the predicted
data corresponding to it.

Station ID Best Model Train: R2 Test: R2 Overall: R2

07AA001 HGBR (BR) 0.92 ± 6.21 × 10−3 0.86 ± 2.47 × 10−2 0.9274
07AA002 ETR (BR) 0.99 ± 4.94 × 10−4 0.99 ± 6.53 × 10−3 0.9917
07AA004 ETR 0.94 ± 6.98 × 10−3 0.93 ± 2.33 × 10−2 0.9467
07AA009 ETR (BR) 0.95 ± 7.74 × 10−3 0.95 ± 2.42 × 10−2 0.9563
07AC001 GBR (BR) 0.98 ± 1.89 × 10−3 0.94 ± 6.61 × 10−3 0.9818
07AC007 ETR (ABR) 0.98 ± 3.10 × 10−3 0.91 ± 2.50 × 10−2 0.9752
07AD002 HGBR (BR) 0.98 ± 2.29 × 10−3 0.97 ± 5.40 × 10−3 0.9819
07AE001 GBR (BR) 1.00 ± 7.25 × 10−4 0.99 ± 4.66 × 10−3 0.9959
07AF002 RFR (BR) 0.97 ± 2.95 × 10−3 0.97 ± 6.73 × 10−3 0.9790
07AF013 GBR 0.99 ± 9.85 × 10−4 0.92 ± 2.71 × 10−2 0.9860
07AF014 RFR (ABR) 0.97 ± 1.67 × 10−3 0.90 ± 1.82 × 10−2 0.9798
07AF015 GBR (BR) 0.99 ± 2.70 × 10−3 0.94 ± 1.65 × 10−2 0.9846
07AG001 RFR 0.94 ± 1.43 × 10−2 0.93 ± 1.14 × 10−2 0.9497
07AG003 GBR (BR) 0.98 ± 1.80 × 10−3 0.91 ± 8.37 × 10−3 0.9737
07AG004 GBR (BR) 0.98 ± 2.29 × 10−3 0.94 ± 1.06 × 10−2 0.9840
07AG007 GBR (BR) 1.00 ± 4.87 × 10−4 0.99 ± 4.66 × 10−3 0.9968
07BA001 GBR 0.99 ± 1.11 × 10−3 0.95 ± 6.60 × 10−2 0.9911
07BA002 RFR (ABR) 0.98 ± 2.45 × 10−3 0.91 ± 1.89 × 10−2 0.9797
07BB002 GBR (BR) 1.00 ± 1.63 × 10−3 0.98 ± 7.20 × 10−3 0.9959
07BC002 GBR 0.98 ± 2.13 × 10−3 0.88 ± 1.86 × 10−2 0.9754
07CB002 HGBR (ABR) 0.93 ± 5.91 × 10−3 0.87 ± 2.85 × 10−2 0.9290
07CD005 RFR (BR) 0.92 ± 5.25 × 10−3 0.90 ± 1.85 × 10−2 0.9291
07CE002 GBR (ABR) 0.99 ± 9.35 × 10−4 0.94 ± 1.18 × 10−2 0.9904
07DA001 ETR (BR) 0.98 ± 2.86 × 10−3 0.97 ± 8.20 × 10−3 0.9792
07DA041 HGBR (ABR) 0.99 ± 1.86 × 10−3 0.97 ± 8.45 × 10−3 0.9901
07DD001 GBR (ABR) 1.00 ± 4.83 × 10−4 0.98 ± 7.92 × 10−3 0.9962
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The findings presented in Table 2 indicate that GBR (BR) achieved the highest accuracy
in seven out of the total instances, while ETR (BR) and GBR performed best in two cases.
Among the seven GBR (BR) models, the overall R2 score ranged from 0.9737 (for 07AG003)
to 0.9968 (for 07AG007). The overall R2 score for GBR models also had the lowest value
of 0.9563 (for 07AA009) and the highest value of 0.9917 (for 07AA002). Additionally, the
overall R2 score for GBR models ranged from 0.9754 (for 07AC001) to 0.9911 (for 07AA002).
The use of either BR or ABR improved the models, resulting in nearly 80% of the best models
being based on these methods, with almost 73% of the models relying on gradient-boosted
regression techniques such as GBR and HGBR.

The monthly streamflow (m3/s) time series, both measured and reconstructed, for
each hydrometric station, are illustrated in Figures 3 and 4. These figures provide a visual
representation of reconstructed (extended) and measured monthly streamflow data. Sixteen
of the 26 monthly streamflow time series contained more than 40% missing data during
the period of interest. Notably, stations 07AF013, 07AG001, 07AF014, 07AF015, 07AC007,
07DD001, 07AA009, and 07DA041 had missing data exceeding 60% before the modeling
process. Furthermore, stations 07DA001, 07DA041, and 07DD001 were positioned in the
lower ARB region. Additionally, for each station, Figure 5 demonstrates the discrepancy
between the predicted and measured monthly streamflow time series. The closeness of the
blue dots to the red dashed line indicated the accuracy of the predictions, with the most
accurate predictions located on the red dashed line. The accuracy of the predictions was
measured using R2 and displayed in the last column of Table 2 and Figure 5, indicating
that the models with the highest overall R2 scores also had more blue dots on or close to
the red dashed line.

3.2. Analysis of Reconstructed Streamflow Time Series

A Pearson correlation estimates the linear association between two variables, denoted
by the correlation coefficient, which ranges from −1 to 1. A positive correlation means that
as one variable increases, the other variable also increases; a negative correlation means that
as one variable increases, the other decreases. The magnitude of the correlation coefficient
indicates the strength of the relationship, with values closer to 1 or −1 signifying a strong
relationship, and values closer to 0 indicating a weak or no relationship [41].

The extended monthly streamflow from Section 3.1 was utilized to determine the
most-correlated monthly streamflow time series. The Pearson correlation scores between
28 measured/extended monthly streamflow time series are displayed in Figure 6. Accord-
ing to Figure 6, the minimum calculated correlation score between two distinct monthly
streamflow time series was 0.40, and the top-five stations with the highest sum of Pearson
correlations with the remaining stations were 07BE001, 07DA001, 07DA041, 07DD001, and
07AG007. These stations were all situated along the Athabasca River, the primary river in
the ARB, except 07AG007 which was located along the McLeod River. Station 07BE001 was
distinguished as a unique station in the ARB region due to its strong correlations (at least
0.60) with the other 27 stations analyzed. The station was located near the center of the
ARB and was in close proximity to the Athabasca River.
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The map in Figure 7 presents four groups of hydrometric stations, categorized based
on their Pearson correlation of monthly streamflow. Group one contains five stations,
07AA002, 07AA004, 07AA009, 07AD002, and 07AE001, which were located in the vicinity
of the Athabasca River and situated in the upper ARB region. Out of these, 07AA002,
07AA004, and 07AA009 had elevations in the range of 1000–1200 m, while 07AD002 had
an elevation of 963 m and 07AE001 had an elevation of 735 m. Group two includes two
stations, 07AC001 and 07AC007, which are located, respectively, on the northwest and
north side of the upper ARB. Group three encompasses nine stations, 07AF002, 07AF015,
07AG001, 07AG003, 07AG004, 07AG007, 07BA001, 07BA002, and 07BB002. All were located
in the middle ARB region. The stations 07BA001, 07BA002, and 07BB002 were situated
along the Pembina River while the rest were located along the McLeod River. Group four
includes three stations, 07BE001, 07DA001, and 07DA041, situated along the Athabasca
River. Station 07BE001 was in the middle ARB, while the other two were in the lower part
of the ARB.
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Figure 7. Three groups were determined using the monthly streamflow correlations shown in
Figure 6. Each group consisted of monthly streamflows with a correlation of 0.95 or higher. Group
1: 07AA002, 07AA004, 07AA009, 07AD002, and 07AE001; Group 2: 07AC001 and 07AC007; Group
3: 07AF002, 07AF015, 07AG001, 07AG003, 07AG004, 07AG007, 07BA001, 07BA002, and 07BB002;
Group 4: 07BE001, 07DA001, 07DA041, and 07DD001. The names and supplementary details of these
stations are available in Table 1. The numbers appearing on the map correspond to the custom IDs we
have allocated to the hydrometric stations. Table 1 contains a detailed inventory of the hydrometric
stations we have assigned IDs to, along with their corresponding names.

4. Discussion

Our framework used for monthly streamflow reconstructions examined all possible
combinations of gap-free historical data to choose the optimal model from 12 ensemble
regression models to reconstruct monthly streamflow data for each station. Following this,
the framework further refined the reconstructed streamflow time series by remodeling
monthly streamflows for stations that had lower overall R2 scores. This iterative modeling
was performed using the best models and feature combinations, provided there was
room for improvement in the newly reconstructed streamflow time series. The task was
challenging due to the complexity of the streamflow dynamics. The monthly streamflow
for 07DA041 from January 2017 to December 2021 was very low (mostly less than 1 m3/s),
which differed significantly from previous years’ records. This part of the 07DA041 dataset
was treated as missing. The rest of the station data was used as it was available from the
WSC website. On the other hand, the daily streamflow datasets for all stations were also
acquired. In a few cases, minor differences were noted between the calculated monthly
average through the daily streamflow data and the available monthly streamflow values.
As the modelings were dependent on data quality, the monthly streamflow from WSC was
utilized to ensure that any potential postprocessing done by the WSC data engineers was
taken into consideration.

The monthly streamflow time series were reconstructed in this study following the
procedure outlined in Section 2.3. The accuracy of the reconstructed streamflow was
assessed using the R2 metric and fivefold cross validation. In general, stations that had
higher Pearson correlations with other stations resulted in a higher R2 accuracy on the
test set for their best-performing model. Extreme sudden changes in some streamflow
behavior resulted in lower accuracy for the models associated with these streamflows. For
instance, 07AA001 showed a substantial discrepancy between the predicted (47.59 m3/s)
and measured (74.0 m3/s) monthly streamflow values at one instance (June 2016). This
large discrepancy led to a slightly lower R2 value for the best-fit model using both the
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training and testing datasets. In June 2016, the recorded data was approximately 30%
greater than the next-highest value (57.30 m3/s) among all recorded data, while the median
of all recorded data was 4.08 m3/s. For 07CB002, except for the four months of July 1996
(24.30 m3/s), May 2013 (26.30 m3/s), June 2013 (25.90 m3/s), and June 2020 (31.90 m3/s),
the majority of the recorded data were below 19 m3/s with a median value of 3 m3/s. This
lower monthly streamflow made modeling for this station more challenging compared to
other stations with higher R2 scores. Regarding 07CD005, the monthly streamflow showed
significant fluctuations, as demonstrated in Figure 4. Despite these fluctuations, a great
accuracy of 92.91% was achieved overall.

Unlike some of the modeling approaches used to reconstruct monthly stream flow,
our approach was based on an iterative framework that involved two distinct sets of
iterations. This allowed us to ensure that we selected the most effective features and
achieved the highest possible performance. Additionally, by selecting from among 12 fine-
tuned ensemble models, each with its own unique strengths and weaknesses, we were able
to explore a variety of ensemble regression methods and identify the one with the highest
degree of accuracy. We were able to create a highly accurate and reliable model that can be
used to inform a range of important environmental-management decisions.

The five stations with the highest sum of Pearson correlations with the remaining
stations were 07BE001, 07DA001, 07DA041, 07DD001, and 07AG007. With the exception of
07AG007, they were all located along the Athabasca River, the primary river in the ARB.
Station 07AG007 was situated along the McLeod River. Furthermore, hydrometric stations
were categorized into four groups based on their Pearson correlation of monthly streamflow.
Group one contained five stations (07AA002, 07AA004, 07AA009, 07AD002, and 07AE001)
located in the upper ARB region in the vicinity of the Athabasca River. Among them,
07AA002, 07AA004, and 07AA009 had elevations between 1000–1200 m, while 07AD002
and 07AE001 had elevations of 963 m and 735 m, respectively. Additionally, 07AA001,
with an elevation of 1042 m and was also located in the vicinity of the Athabasca River,
was highly correlated with the rest of the stations in Group One, though these correlations
(0.86–0.92) were lower than those of the other stations in the group (around 0.95). Group
Three included all middle ARB stations considered for the study, except for 07AF013,
07AF014, 07BC002, 07BE001, and 07CB002. We identified 07BE001 as a unique station
in the entire ARB region due to its high correlations with most other stations considered
in the study. While 07AF013 and 07AF014 had high correlation scores with the rest of
the middle ARB stations (and some from the upper ARB), their correlations were not as
high as those between stations in Group B (around 0.95). Group Four stations had the
highest correlations with each other (at least 0.96), and the monthly streamflow for these
stations could significantly influence each other. The monthly streamflow time series of
07DA001, 07DA041, and 07DD001, situated in the lower Athabasca River Basin, exhibited
strong correlation (greater than 0.88) with 07AE001, which is located in the upper ARB
subregion adjacent to the Athabasca River. The availability of reconstructed streamflow
data facilitated the preceding analysis. Prior to reconstruction, a significant percentage
of data from each time series was missing, making it impossible to calculate the Pearson
correlation between a single station and all other stations in the study.

5. Conclusions

The framework for reconstructing monthly streamflow through various ensemble
regression algorithms was presented in this article. The framework used for monthly
streamflow reconstructions examined all possible combinations of gap-free historical data
to choose the optimal model from 12 ensemble regression models to reconstruct monthly
streamflow data for each station. Following this, the framework further refined the re-
constructed streamflow time series by remodeling monthly streamflows for stations that
had lower overall R2 scores. This iterative modeling was performed using the best mod-
els and feature combinations, provided there was scope for improvement in the newly
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reconstructed streamflow time series. The accuracy of the reconstructed streamflow was
assessed using the R2 metric and fivefold cross validation.

Twenty-six monthly streamflow time series from different locations in the ARB region
were analyzed. Out of the 26 time series that were analyzed, 16 of them had over 40%
missing data during the relevant period. Notably, stations 07AF013, 07AG001, 07AF014,
07AF015, 07AC007, 07DD001, 07AA009, and 07DA041 had over 60 of their data missing be-
fore modeling. Additionally, the lower ARB region was where stations 07DA001, 07DA041,
and 07DD001 were located.

According to the analysis of the 26 monthly streamflow, GBR (BR) achieved the highest
accuracy in seven cases, while ETR (BR) and GBR performed the best in two cases. Among
the seven GBR (BR) models, the lowest and highest overall R2 scores were 0.9737 (for
07AG003) and 0.9968 (for 07AG007), respectively. The overall R2 score for the GBR models
ranged from the lowest score of 0.9563 (for 07AA009) to the highest score of 0.9917 (for
07AA002). Moreover, the overall R2 score for the GBR models also had the lowest score of
0.9754 (for 07AC001) and the highest score of 0.9911 (for 07AA002). The models improved
when using either BR or ABR, with these methods accounting for nearly 80% of the best
models, and gradient-boosted regression techniques such as GBR and HGBR were used
in almost 73% of the models. Among the 12 models, stations 07AA002, 07AD002, and
07AE001 had a maximum difference of approximately 0.01 in their R2 accuracy scores at
the iteration with the highest R2 accuracy score. Conversely, the stations 07CE002, 07BC002,
07BA002, 07AF014, 07CB002, and 07BA001 had a maximum difference of more than 0.1 in
their R2 accuracy scores between their 12 models. In general, stations with higher Pearson
correlations with other stations resulted in higher R2 accuracy on the test set for their
best-performing model. Upon successfully reconstructing the monthly streamflow time
series for the period of interest, January 1960–December 2021, the framework could be
applied to other datasets in other regions.

The hydrometric stations were grouped into four categories based on their Pearson cor-
relation of monthly streamflow. Group One consisted of five stations, 07AA002, 07AA004,
07AA009, 07AD002, and 07AE001, which were situated in the upper ARB region and in
the vicinity of the Athabasca River. Among them, 07AA002, 07AA004, and 07AA009 were
located at elevations ranging from 1000–1200 m, while 07AD002 and 07AE001 were at
elevations of 963 m and 735 m, respectively. Group Two included two stations, 07AC001
and 07AC007, located on the northwest and north side of the upper ARB. Group Three
comprised of nine stations, 07AF002, 07AF015, 07AG001, 07AG003, 07AG004, 07AG007,
07BA001, 07BA002, and 07BB002, all located in the middle ARB region. Among them,
07BA001, 07BA002, and 07BB002 were situated along the Pembina River, while the remain-
ing stations were situated along the McLeod River. Group Four included three stations,
07BE001, 07DA001, and 07DA041, situated along the Athabasca River. Among them,
07BE001 was located in the middle ARB, while the other two were situated in the lower
part of the ARB.
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Abbreviations

Athabasca River Basin ARB
Shuttle Radar Topography Mission SRTM
Water Survey of Canada WSC
The Regional Aquatics Monitoring Program RAMP
Random Forest Regressor RFR
Gradient Boosting Regressor GBR
Extra Trees Regressor ETR
Hist Gradient Boosting Regressor HGBR
RFR boosted with AdaBoost Regressor RFR (ABR)
RFR boosted with Bagging Regressor RFR (BR)
GBR boosted with AdaBoost Regressor GBR (ABR)
GBR boosted with Bagging Regressor GBR (BR)
ETR boosted with AdaBoost Regressor ETR (ABR)
ETR boosted with Bagging Regressor ETR (BR)
HGBR boosted with AdaBoost Regressor HGBR (ABR)
HGBR boosted with Bagging Regressor HGBR (BR)
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