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Abstract: This study examines the impact of upstream structures on the bulk drag coefficient of
vegetation through experimental means, which has not been previously conducted. An embankment
model was placed upstream of the vegetation, both with and without a moat/depression. The results
showed that the presence of an upstream structure reduced the bulk drag coefficient of vegetation
as the structure shared the drag. When only the embankment was placed upstream, a maximum
decrease of 11% in the bulk drag coefficient was observed. However, when both the embankment
and moat models were placed upstream, a 20% decrease in the bulk drag coefficient was observed.
Regression models and artificial neural network (ANN) models were developed to predict the bulk
drag coefficient based on the variables affecting it. Five ANN models with different training functions
were compared to find the best possible training function, with performance indicators such as
coefficient of determination (R?), root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE),
sum of square error (SSE), mean absolute error (MAE), and Taylor’s diagrams used to evaluate
the model performance. The ANN model with nine neurons in each hidden layer performed the
best, achieving the highest R? and NSE values and the lowest RMSE, SSE, and MAE values. Finally,
the comparison between the regression model and the ANN model showed that the best ANN
model outperformed the regression models, achieving R? values of 0.99 and 0.98 for the training and
validation subsets, respectively.

Keywords: drag coefficient; vegetation; resistance; ANN; Taylor’s diagram; regression

1. Introduction

The vegetation along the bank of a river can affect many physical processes of flow
in an open channel [1,2]. The presence of vegetation may induce resistance [3,4], re-
duce flow [5,6], modify velocity profiles [7], and decrease flow energy [8,9]. The effect
of vegetation on flow hydraulics is mainly determined by the resistance induced by the
vegetation [10,11], as experimental and numerical investigations by various researchers
have demonstrated [12,13]. The drag coefficient is commonly used as a quantifying param-
eter to represent the drag force induced by the vegetation. Likewise, researchers usually
consider experimental studies focusing on the effect of vegetation in open-channel flows,
employing rigid cylinders made of wood or steel to achieve geometrical similarity [14-16].
Researchers have defined natural vegetation varying in density in different ways in the
past. For instance, some studies defined the density of vegetation by the ratio of the spacing
between the two cylinders in the cross-stream direction of the channel to the diameter of
cylinders [8,17], and others calculated it by the formula A = 77/(2./3) d " 2/s, where A is
the density of vegetation, d is the diameter of the cylinder, and s is the center-to-center
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spacing between two cylinders [3,15]. Previously, drag force has been represented by the
drag coefficient of isolated cylinders [15,18,19] or bulk drag coefficient of vegetation patch
rather than by isolated cylinders [20-22].

The computation of vegetation resistance is challenging due to the variation in density
and geometric characteristics of rigid natural vegetation in the flood plain. For modeling
purposes, rigid cylinders enable an accurate representation of the geometric characteristics
of natural vegetation [23]. The relationships between the drag coefficient of vegetation
and other related parameters, i.e., the density of vegetation, vegetation pattern, and depth-
averaged flow velocity, were analyzed theoretically in the past [24]. The drag force on
isolated rigid vegetation models placed in an open-channel flume has been analyzed,
finding a decreasing trend of the drag coefficient with the square of the flow velocity [25].
Furthermore, the effects of the Reynolds number have been studied, finding a direct
proportionality with the drag coefficient [26]. Wu [27] suggested that, based on flume
experiments, the drag coefficient increased with the increase in the relative water depth
under different densities of vegetation. Previously, the drag coefficient was calculated by
considering force equilibrium, and it was found that the submergence ratio of vegetation
greatly affects the vegetation elements” hydrodynamic drag [28]. A similar approach is
adopted in the current study.

Composite defense structures have been recently introduced as resilient means to
prevent the loss of human life and property due to catastrophic floods and tsunamis. For
example, the composite/hybrid defense system comprising of embankment and vege-
tation [29], embankment, moat, and vegetation [8,30], and backward-facing steps with
vegetation [31] have been investigated previously. Therefore, there is an immense need to
examine the effect of an upstream structure on the drag coefficient of vegetation, which
is currently missing in the literature. Moreover, the regression models utilized to develop
mathematical equations in estimating hydraulic variables, such as drag coefficient, in veg-
etated channels are found to either over- or underestimate the hydraulic variables [32].
Nevertheless, in the modern world, soft-computing techniques such as artificial neural
networks (ANN) are gaining popularity among researchers because of their ability to
model complex nonlinear interactions between input and output parameters [32]. ANN
models have been widely used in the fields of hydraulics, hydrology, and water-resource
engineering to predict physical variables, e.g., water levels, velocity, discharge coefficient,
the drag coefficient of vegetated flow, and hydraulic jump [33-35].

The objective of the current study is to investigate the effect of an upstream structure
on the bulk drag coefficient of vegetation and to develop regression and artificial neural
network (ANN) models to predict the bulk drag coefficient. The paper also aims to compare
the performance of the ANN models with different training functions and to compare
the ANN models with the regression models. The study seeks to determine the optimal
upstream structure to decrease the bulk drag coefficient of vegetation and to evaluate the
performance of the developed models using various performance indicators such as R?,
RMSE, NSE, SSE, MAE, and Taylor’s diagrams.

In the current study, the drag coefficient of rigid vegetation was determined by experi-
mentally computing the bulk drag coefficient of rigid emergent vegetation in the laboratory
flume. Then, regression models were developed based on the variables affecting the drag
coefficient to predict Cpp. Experimentally, the drag force (Fp) exerted by the flow on rigid
vegetation was calculated by calculating the force of the water on the upstream (F;) and
downstream (F;) faces of the emergent rigid vegetation patch and inside the vegetation
patch (F3). The resultant drag force was further used to calculate the bulk drag coeffi-
cient (Cpp). The effect of an upstream defense structure on Cpp was examined against
the composite defense structure comprising an embankment and vegetation (EV) and the
combination of an embankment, moat/depression, and vegetation (EMV).
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2. Materials and Methods
2.1. Flow Resistance of Vegetation

In order to estimate flow resistance for a steady subcritical flow through an emergent
vegetation patch, the summation of all the forces on the upstream (F;), downstream (F),
and inside the vegetation patch (F3) can be found. In a two-dimensional flow, the forces
Fj and F; are the hydrodynamic forces acting on the upstream and downstream faces of
vegetation, respectively, while F3 is the product of the mass of water flowing per second and
change in velocity, which is the vegetation resistance force acting in the opposite direction
to Fj in the control volume section. Figure 1a,b show an example of this process. Authors
Liu et al. [36] used a similar method to calculate the drag force acting on rigid vegetation
under subcritical conditions. Equations (1) and (2) were used to express the force-balance
equation along the x direction in their study, neglecting the side wall and bottom effect, as
previous studies have [36]:

YXF=Fp=F —F,—F; 1)

and 1 1
Fp=n Evh% - Evhﬁ —pq(Va—V1)|, @)

where Fp = Net resistive force caused by the number of stems (1) in staggered strip 1 (SS51
in Figure 1c). The first two rows make the staggered arrangement (strip 1), and the other
two are behind the first strip [37]. Hence, maximum force and corresponding velocity are
applied on the first strip of the vegetation arrangement, and the vegetation in other strips
has a lower velocity and drag force, as also observed in previous studies [38]. Therefore, the
number of vegetation elements (1) in strip 1 is multiplied by Fj, F», and F3 (Equation (2)),
7 = specific volume of water (0.001 m>/kg), p = density of water (1000 kg/m?), q = specific
discharge (m?/s), i.e., the discharge per unit width, h; and h; are the water depths on the
upstream and downstream side of vegetation, respectively, yi is the water depth inside
the vegetation patch of the ith row, and V; and V) are the velocities on the upstream and
downstream side of the vegetation patch, respectively. The drag force in the stream-wise
direction for the vegetation stem can be calculated by Equation (3), which was also used

previously [12,14].
2

V.
Fp = CBDPAfTUr 3)

Replacing the drag force in Equation (3) with that from Equation (2), Equation (4) is
obtained, for calculating Cpp as shown:

1 2 1 2
37h — 37h3 | — [pq(v2 —v1)]
Cpp = [ } " , 4)
pAf7

where V,, is the average pore velocity is close to the actual approach velocity, calculated

from the measured flow discharges and A, i.e.; V, = 1%\ and A = % Z—;, where Q = flow
discharge, B = channel width, & = flow depth, s = center-to-center distance between the
vegetation stems (Figure 1c), A = average solid fraction defined as the fraction of the
stem-occupied bed area, which represents the density of vegetation [3,15], and Ay = the
frontal area of each row of vegetation. Equation (4) is used to calculate Cpp for all the cases
presented in Table 1.
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Figure 1. (a,b) offer distinct conceptual illustrations of the theoretical model for deriving the bulk
vegetation drag coefficient, Cpp; (c) is the theoretical arrangement of vegetation in strips.
Table 1. Presentation of the hydraulic parameters for the conducted experiments.
Initial Froude Initial Water Depth () Densi Vegetation
Case ID Pt o ty Width (Wo) d s Re Range
(Fro) [em] \)
[em]
0.40, 0.44, 0.50, 0.57, 45,53,68,71,
OVAl 0.60, 0.63, 0.65 77 82,85 0.025 18.4 0.3 1.25 553-996
0.40, 0.44, 0.50, 0.57, 45,53,68,71,
OVA2 0.60, 0.63, 0.65 7.7 82,85 0.062 8.2 0.3 1.88 524-1004
0.40, 0.44, 0.50, 0.57, 45,53,6.8,7.1,
EVAl 0.60, 0.63, 0.65 77,82, 85 0.025 18.4 0.3 1.25 524-1029
0.40, 0.44, 0.50, 0.57, 45,53,68,71,
EVA2 0.60, 0.63, 0.65 77 82,85 0.062 8.2 0.3 1.88 599-1064
0.40, 0.44, 0.50, 0.57, 45,53,68,71,
EMVA1 0.60, 0.63, 0.65 77,82 85 0.025 18.4 0.3 1.25 524-1037
EMVA2 0.40, 0.44, 0.50, 0.57, 45,53,6.8,7.1, 0.062 8.2 03 1.88 559_1073

0.60, 0.63, 0.65

77,82,85
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2.2. Dimensional Analysis

In this study, some basic physical quantities affecting the bulk drag coefficient were
determined as (Equation (5))

CBD :fl (hOI VO/ hl/ Vl/ h2/ VZ/ Af/ d/ U/ Re/ W’U/ /\) (5)

where &, = the depth of flow without any model placed in the channel, V, = the depth
average velocity without any model placed in the channel, Wov = the width of the vegetation
patch, Re = V;, d/v is the Reynolds number, where V, is the average flow velocity through
the vegetation, d is the diameter of each cylinder used to simulate the vegetation, and v is
the kinematic viscosity of water (1.004 x 107% m?/s), which is the ratio of the viscosity of
water to the density of water, and A = density of vegetation.

2.3. Flow Conditions

The paper utilized Equation (4) to calculate the bulk drag coefficient (Cpp) for different
flood defense systems. The experimental setup involved two steps. In the first step,
the flume was run without any model to record the initial conditions of flow depth (k)
and depth-averaged velocity (V,). In the second step, the models were placed in the
flume, and different cases were tested to calculate Cgp. These cases included embankment
with vegetation of density A1 (EVA1), embankment with vegetation of density A2 (EVA2),
embankment and moat with vegetation of density A1 (EMVA1), and embankment and
moat with vegetation of density A2 (EMVA2). Moreover, the flow structure of OV, EV,
and EMV are shown in Figures la—c and 2a,b, and the experimental setup is shown in
Figure 3a—c. The study considered two densities of vegetation, i.e., 0.025 (OVA1) and 0.062
(OVA2). The Froude numbers considered were 0.40, 0.44, 0.50, 0.57, 0.60, 0.63, and 0.65, with
corresponding depths of flow of 4.5 cm, 5.3 cm, 6.8 cm, 7.1 cm, 7.7 cm, 8.2 cm, and 8.5 cm,
respectively. The paper measured flow (Q) with an electromagnetic flow meter attached to
the channel, and depth-average velocity (V) was calculated by the relation Q = AV. The
depth was measured using a rail-mounted adjustable point gauge with the least count of
1 mm. The bed slope of the channel was considered negligible, and the physical modeling
scale of 1:100 was used for all the cases mentioned in Table 1.

2.4. Vegetation Conditions

Previously, the drag coefficient was calculated by placing flood defense models in an open
channel flume of various dimensions (length x width) e.g., 15m x 0.3 m [39], 3m x 0.1 m[1],
43m x 03m [40] and 10 m x 041 m [41]. The rectangular glass flume used in the current
study was 10 m long, 0.5 m deep, and 0.31 m wide. The rigid vegetation was modeled as steel
rods embedded in a wooden bed, which was placed inside the flume at a right angle to the
flow direction, covering almost the full width of the channel. Two different values of vegetation
density (A) were used to examine their effects, with densities of 0.025 and 0.062, and the spacing
between vegetation elements in the cross-stream direction of the flume was 1.88 cm and 1.25 cm,
respectively. The diameter of vegetation used for all cases is 0.3 cm. Previous studies have used
open-channel flumes of various dimensions to calculate the drag coefficient by placing flood
defense models. The width of vegetation (W,) was calculated by considering the thickness of

vegetation dn = 180 No.cm, where dn = ﬁwv x s x 102, which is the cumulative diameter

of trees and is defined as the product of the diameter of trees and the number of trees in a
rectangle with a frontage of unit length along the bank of the river and depth equal to the width
of vegetation (W,); the same formula has been used in the past [37]. The selected vegetation
pattern, Eucalyptus trees in a staggered arrangement, was based on their average height and
diameter in the ecological zone of Punjab province, Pakistan [42], and the use of steel rods as
a model is consistent with the 1:100 scale used in the study. Previous research has shown that
the drag force behavior is different in grid and staggered vegetation patterns, with some studies
finding that staggered arrangements result in higher drag forces and greater effectiveness than
grid arrangements [43,44]. Therefore, the staggered arrangement was chosen for the current study:



Hydrology 2023, 10, 73 60f17

v, V; v
» 4
h —
Flow mmm) I_ET | m;; d|
Bl & — ) B —
v, h,,Ivﬂ'l hs—=—""" Critical depth il 1 7 h,
20cm | <« T W
Embankment Ly, Vegetgtion
(a)

3 N 40cm_,
Embankment | g Fﬁ}Moat/ T w "
75} —> V.
v 4.5an, Vegetation
L,;=70cm :
(b)

Figure 2. Illustration of free-water surface characteristic profiles for the cases of: (a) embankment
and vegetation (EV) model; (b) embankment, moat, and vegetation (EMV) model.

Figure 3. Tllustration of the test section of the different experiments assessed herein: (a) only vegetation
(OV); (b) embankment and vegetation (EV) model; (c) embankment, moat, and vegetation (EMV) model.
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2.5. Frontal Area of Trees (Ay)

To calculate the frontal area of trees, the current study followed the approach used by
Liu et al. [36], which involves considering the diameter of stems, the frontal area of stems,
and the number of stems. The frontal area is defined as the sum of all the areas covered by
the water depth in front of each row of vegetation patches. The equation used to calculate
the frontal area of trees is:

Af =d [(71] X h]) + (g X hk)] 6)

where 7 and 7y are the number of vegetation elements in odd and even rows, h; and
are the depths of flow in front of odd and even rows, respectively, and d is the diameter
(0.3 cm) which is kept constant for all the cases mentioned in Table 1. The water depth Af
and hy were measured by a rail-mounted point gauge, and the flow depths in front of each
row inside the vegetation patch were calculated by interpolation. Due to the staggered
arrangement of the vegetation, the number of vegetation elements in even rows (1y) is
T’Zj — 1.

2.6. Artificial Neural Network (ANN)

Artificial neural networks (ANNSs) are a type of artificial intelligence that simulates the
function of human neurons [45]. ANNs have become increasingly popular for hydrologic
modeling and solving problems in engineering and other applied sciences [46]. In this study,
five ANN models were tested to determine the best model for predicting Cpp, with the
input and output values presented in Table 2. While some previous studies have used only
training and validation sections for processing ANN models [47,48], others have included
training, testing, and validation sections [49,50]. For this study, 67% of the experimentally
obtained data were used for validation, while the remaining 33% were used for training the
ANN models. The results of the best model are discussed in the parametric study section
below. The multilayer perceptron (MLP) is a feed-forward network with layers of neurons
that include input, hidden, and output layers. Neurons in the input layer buffer input
signals to allocate to neurons in the hidden layer. The flow chart of the feed-forward ANN
model is shown in Figure 4.

Table 2. Presentation of ANN model inputs and outputs.

No. of Neurons in

ANN Model ID Input Variables No. of Hidden Layers Each Layer Output
ANN3 Ahfho, AV/V, Ag, Re, Wo, A 2 3 Cap
ANNG6 Ahfho, AV/V, Ag, Re, Wo, A 2 6 Csp
ANN9 Alifhg, AV/Vs, As, Re, Wo, A 2 9 Cap
ANN12 Ah/ho, AV/V,, Af, Re, Wy, A 2 12 Csp
ANN15 Ah/ho, AV/V,, Af, Re, Wy, A 2 15 Csp

2.7. Model Performance Evaluation Criteria

The performance of the developed ANN models was tested by statistical error mea-
sures, including the coefficient of determination (R?), root mean square error (RMSE),
the sum of square error (SSE), the Nash—Sutcliffe model efficiency (NSE), and the mean
absolute error (MAE). The formulae of R%2, RMSE, SSE, NSE, and MAE are given in
Equations (7)—(11).

(Z1(G - O~ )

R* =
p— 2 p— 2/
Y (G =) X (¢ = C)

@)

The literature indicates that the value of R? ranges from 0 to 1, where the value 0
implies no correlation and a value of 1 suggests that the model can explain all of the
observed variance [48].
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Figure 4. Depiction of the architecture of the feed-forward ANN model.

n e AYA
RMSEZ”M, (8)

The root mean square error, RMSE, evaluates how closely the predictions match
experimental observations; values may range from 0 (perfect fit) to +co (no fit) based on the
relative range of the data [48].

SSE=Y" (G+C), )

The sum of squares error (SSE) is a statistical metric used to identify the dispersion of
data and how well the data can fit the model. The value of SSE should be a minimum [51].

1(Ci—C)?

NSEzl_ — 2
i1 (G —C)

(10)

The Nash-Sutcliffe efficiency, NSE, measures the model’s ability to predict variables
different from the mean and gives the proportion of the initial variance accounted for by
the model, where NSE ranges from 1 (perfect fit) to —co. Values less than zero indicate
that the observation means would be a better predictor than the model [48]. An NSE value
ranging from 0.75 to 1.0 can be categorized as “very good” [52].

Y=y erye]
= sl i

MAE (11)

The mean absolute error, MAE, measures the difference between observed and moﬂ-
eled results [48_], where C; and C'; represent the experimental Cpp and computed Cpp, C,
(by the ANN) C' represents the average experimental Cpp and average computed Cpp, and
n = no. of observations.

3. Results
3.1. Experimental Results of Bulk Drag Coefficient (Cpp)

The experimental bulk drag coefficient was calculated using Equation (4). In the
current study, two variables, i.e., density and Reynold’s number, were considered as previ-
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ously described. Based on these two variables, Equation (12) was developed by regression
analysis to calculate Cpp within the selected range of A and R; for OVA1 and OVA2.

Cpp= 232.75[A]" ¥ [R,] OB, (12)

The results of Equation (4) show that the calculated average values of Cpp for OVAl
and OVA2 were 1.41 and 1.61, respectively, whereas the computed average values of Cpp for
OVAl and OVA2 were 1.45 and 1.65, respectively. The relation between the calculated values
(by Equation (4)) and computed values (by Equation (12)) of Cpp is shown in Figure 5a.
The R? values for OVA1 and OVA2 were 0.80 and 0.87, respectively, as shown in Figure 5b.

5% = OVl
-] e OV
204 o A EVM
] . v EVi2
=¥ w Ve * * EMVM
E 1.6 : <« " . <4 EMVR2
v
51'4' * A <n 4 .‘
] 3 A
g1 . A: w
< 0] A a
a 10 o
8 08
0.6 -
0.4 -
02
0'0 T T T T T
500 600 700 800 900 1000 1100
Re
(a)
25
o
2.0
e}
815 a0
B S ;
£ LY j
2 -‘#’ o ®O0Vil R:=0.8032
10 o e 00Vi2 R?=0.8785
3! =EVAM  R*=0.974
os AEVR2 R:=09779
’ =EMVAR? = 0.9628
®EMVi2 R?=0.9574
0.0

0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20
CBD computed (Regression analysis)

(b)

Figure 5. (a) Experimental Cpp vs. Re and (b) relation between experimental and computed Cpp.

The bulk drag coefficient of vegetation (Cpp) usually represents the resistance to flow.
Cgp can be varied in the case of any structure on the upstream or downstream side of the
vegetation. Equation (13) was developed by means of regression analysis to calculate the
bulk drag coefficient for EVA1 and EVA2 within the selected range of A and Rj.

Cpp = 247.151[A]*18[R,] 777, (13)

By using Equation (4), Cpp was calculated against the composite defense system’s differ-
ent values of A and R;. Two cases of composite defense systems was tested, i.e., embankment
with vegetation of density 0.025 (EVAl) and embankment with vegetation of density 0.062
(EVA2). It was found that the calculated value of Cpp was decreased by increasing Reynold’s
number and increased by increasing A, as shown in Figure 5a. As a result, the calculated
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average values of Cpp for EVA1 and EVA2 were 1.26 and 1.46, respectively. The drag
coefficient values for EVA1 and EVA2 were also calculated using Equation (4).

The comparison between the calculated values (Equation (4)) and the computed values
(Equation (13)) of Cpp showed a close relationship, as the value of R? was 0.97 in both cases,
as shown in Figure 5b. The computed average values of Cpp for EVA1 and EVA2 were 1.41
and 1.65, respectively.

Similarly, the drag coefficient of vegetation (Cpp) was calculated using Equation (4)
for the composite defense system in the sequence of the embankment, moat/depression,
and the vegetation of variable densities. The calculated average values of Cpp for EMVA1
and EMVA2 were 1.16 and 1.29, respectively, based on these two variables, i.e., density and
Reynolds number. Finally, Equation (14) was developed by regression analysis to compute
the bulk drag coefficient for the EMVA1 and EMVA2 cases within the selected range of
variables. The computed average values of Cpp for EMVAL and EMVA2 were 1.16 and
1.30, respectively.

Cpp = 174.164[A]*120[R ;] ~068 (14)

The graphical representation between the calculated values (Equation (4)) and the
computed values (Equation (14)) showed a close relationship, as the R? values were 0.96
and 0.95 for EMVA1 and EMVA2, respectively, as shown in Figure 5b. A summary of Cpp
values calculated (Equation (4)) and computed (Equations (12)—(14)) is presented in Table 3.

Table 3. Presentation of the hydraulic parameters for the conducted experiments.

C BD CBD

Case Equation Used Equation Used Average Cpp Average Cpp
St. No. R R
r. No Name (Calculated) (Computed) (Calcal?lgfe d) (Corsgﬁfe d) (Calculated) (Computed)
. Cpp =
1 OVAl Equation (4) 232 75A101 R 08 1.10-1.74 1.24-1.84 1.41 145
. BD =
2 OV A2 Equation (4) 232 75(A 017 [ 058 1.31-1.96 1.40-2.18 1.61 1.65
: Cpp =
3 EV Al Equation (4) 24715 /\30_168 (R0 1-1.63 1.18-1.80 1.26 141
. BD =
4 EV A2 Equation (4) 247 1520165 070 1.2-1.79 1.41-2.12 1.46 1.65
. BD =
5 EMV Al Equation (4) 174.164[00126[R |05 0.9-1.50 0.96-1.48 1.16 116
. BD =
6 EMV A1l Equation (4) 174.164[/\]0‘126 [Rd]70‘68 1.11-1.61 1.10-1.65 1.29 1.30
3.2. Computed Results of Bulk Drag Coefficient (Cpp) by ANN Model
To predict Cpp, five different ANN models were tested to optimize the best model.
Each ANN model contained two layers, which were kept constant for all models. However,
the number of neurons in each layer varied. The result shows that the performance of
the ANNO9 model, i.e., with nine neurons in each layer, was the best among all models.
As discussed previously, the performance of models was judged by various performance
indicators. Therefore, the value of R? and NSE of the ANN9 model (for testing and
validation) was the highest, showing the best performance, as presented in Table 4 and
Figure 6a,b.
Table 4. Performance evaluation of the assessed ANN models.
ANN3 ANNG6 ANN9 ANN12 ANN15
T \'% T v T A\ T v T A\
R? 0.999 0.976 0.999 0.981 0.999 0.988 0.980 0.970 0.980 0.970
RMSE 0.007 0.047 0.027 0.030 0.005 0.029 0.040 0.039 0.047 0.026
SSE 0.002 0.042 0.018 0.027 0.001 0.017 0.030 0.061 0.013 0.084
NSE 0.999 0.976 0.990 0.982 1.000 0.988 0.974 0.974 0.968 0.985
MAE 0.005 0.032 0.018 0.025 0.003 0.020 0.030 0.032 0.035 0.023
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Figure 6. Performance indicators for ANN models: (a) R?; (b) NSE; (c) RMSE; (d) SSE; (e) MAE; and
(f) comparison b/w experimental and computed Cpp.
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Moreover, the values of SSE, RMSE, and MAE of the ANN9 model (for testing and
validation) were the lowest among all models, as shown in Table 4 and presented in
Figure 6¢c—e. The relationship between experimental and computed values (from the ANN9
model) is shown in Figure 6f, showing a good relationship as the value of R? was 0.99,
which is close to unity. In Figure 6a—e, “T” and “V” represent testing and validation,
respectively. Previously, the performance of various prediction models was also tested
by various authors by constructing Taylor’s diagram [53,54], which was also adopted in
the current study. Taylor’s diagram shows the relationship between standard deviation,
correlation coefficient (R?), and root mean square error (RMSE), as shown in Figure 7a,b. Tt
was observed that the standard deviation and RMSE values of ANN9 were performed at
least as well as or better than the other ANN models, as well as the regression model (RM)
for both training and validation sections. On the other hand, the values of R? of all the
ANN models were in the range of 0.970-0.999, which is higher than 0.920 for the regression
model. Therefore, the ANN models, including ANNDY, had a better overall performance
compared to the regression model, as they had higher R? values and lower RMSE and
standard deviation values.
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Figure 7. Taylor’s diagram showing the relationship between standard deviation, correlation coeffi-
cient, and root mean square error (represented with blue lines) for Cpp; (a) Training and (b) Validation.

3.3. Prediction Results of Cpp against Various Parameters

The predicted values of the bulk drag coefficient against all variables are shown in
Figure 8 (generated by the software). The prediction results show that Cpp increased by
increasing the variables Ah/ho and A; however, the reverse relation is observed for AV/V,,
Ay, Re, and Wy. Maximum variation in Cpp is observed against Al/h, and minimum against
Wv. Hence, the variables AV/V,, Af, R., and W, should decrease the bulk drag coefficient.
The drag coefficient of vegetation may lead to tree breakage. Implementing this study’s
analysis framework and results in hydraulic engineering practice can help the planning and
management divisions avoid tree breakage and efficiently slow the flow during extreme
hydrologic events and floods.
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Figure 8. Predicted values of the bulk drag coefficient against variables; (a) Al/ho, (b) AV/Vo, (c) Ay,
(d) Re, (€) Wy and (f) A.

4. Discussion

In previous studies, drag force has been investigated in terms of drag coefficient, using
various methods such as the energy-slope method [1], water-surface-slope method [39],
and strain gauges [55]. Researchers have experimentally calculated the drag coefficient
of vegetation with variable densities (A) and various configuration patterns. For instance,
Ishikawa [39] and James [1] used a staggered pattern of vegetation with densities ranging
from 0.00314 to 0.0126 [39] and 0.0035 to 0.0314, respectively. Meanwhile, Tanino and
Nepf [14] and Coscarella [56] considered random vegetation patterns with densities ranging
from 0.15 to 0.35 and 0.022 to 0.038, respectively.

The study conducted experiments to calculate the bulk drag coefficient (Cpp) under
subcritical steady-flow conditions for two cases of only vegetation (OV), i.e., OVAl and
OVA2 (where A1 =0.025 and A2 = 0.062), placed in a staggered pattern. The calculated values
of Cpp showed a direct relation with density (A) and an inverse relation with Reynolds
number (R;), consistent with previous studies [3,5], which also found a similar relationship
between drag coefficient and either Froude number [39] or Reynolds number [57]. Various
methods have been explored in previous studies to calculate drag force in terms of drag
coefficient, with calculated ranges of bulk drag coefficient against different variables of
1.22-1.39 [22], 1.5-4.0 [58], 1.19-1.26 [59], 1.33-2.0 [14], and 1.13-2.05 [60]. The calculated
range of Cpp in the present study was 1.24-2.18, which agrees well with the results of
previous studies.

The study also applied the same method to calculate Cpp for a composite defense
system comprising four parts, i.e., EVA1, EVA2, EMVA1, and EMVA2, respectively. The
calculated results showed that the combination of an upstream structure reduces the drag
coefficient of vegetation because the drag coefficient is shared by both the embankment and
vegetation in the composite structure. By placing the embankment upstream of vegetation,
the average Cpp for EVA1 and EVA2 decreased by 10.6% and 11%, respectively.

In a similar vein, the Cpp was reduced by 17.73% and 20% for the EMVA1 and EMVA2
cases, respectively, when compared to only vegetation. Like previous researchers, we
employed regression analysis to develop equations for computing the Cpp, taking into
account variables such as A and R;. The comparison between the computed and calculated
results indicates a high level of agreement, as evidenced by an R? value close to unity.
The present study investigated the impact of upstream structures, which has been studied
previously. Contemporary engineering practices and research can employ artificial neural
networks to forecast various hydraulic parameters.

Previous studies have employed ANN models and gene-expression programming
(GEP) to predict the flow resistance of flexible vegetation in laboratory channels and
compared the results with regression models. The ANN model was found to perform better
than GEP and regression analysis [61]. In the present study, similar results were obtained,
where the performance of the ANN model was superior to that of the regression models.
Five ANN models were evaluated with different hidden layers and varying numbers of
neurons, and the best-performing model was found to be the one with two hidden layers
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and nine neurons (ANNDY) in each layer. The performance of the ANN models was assessed
using five performance indicators, and ANN9 was found to have the highest R? and NSE
values and the lowest RMSE, SSE, and MAE values for both training and validation. The
comparison between regression models and the ANN9 model showed that the R? value for
ANNDY was 0.99 and 0.98 for training and validation, respectively, while the maximum R? for
regression analysis was 0.97 for both EVA1 and EVA2. The regression model performance
for EMVA1 and EMVA2 was also satisfactory with R? values of 0.96 and 0.95, respectively.
The regression model performance for OVA1 and OVA2 was acceptable, with R? values of
0.80 and 0.87, respectively. Nonetheless, the ANN9 model was found to be the best among
all the models.

To evaluate the performance of the ANN models and compare them with regression
models, Taylor’s diagram was constructed, which has been previously adopted by other
researchers. The diagram confirms that the ANN9 model outperformed both other ANN
and regression models. The parametric study conducted shows that Cpp increases with
variables such as Ah/h, and A, while variables such as AV/V,, Ag R,, and W, decrease the
bulk drag coefficient, with the minimum variation observed for W,. The study highlights
the potential risk of tree breakage due to the drag coefficient of vegetation, and planning
and management divisions should consider the parametric study results to prevent tree
breakage during high floods. It is important to note that the experimental setup used
in the study, with an embankment model and moat/depression models upstream of
the vegetation, may not be representative of all natural environments where vegetation
and upstream structures exist. Therefore, the findings of the study may have limited
applicability to other environments. However, the study can serve as a baseline to analyze
drag force on vegetation in composite defense systems that incorporate hard and soft
solutions. As such, the effect of upstream structures should be considered in a composite
defense system, and future research should also investigate the effect of downstream
structures on the drag coefficient of vegetation.

5. Conclusions

Based on the results of the bulk drag coefficient through vegetation and the effect of
an upstream structure, the following conclusions were drawn:

a. The calculated Cpp for OVAL and OVA2 showed a direct relationship with vegetation
density (A) and an inverse relationship with Reynolds number (R;). The calculated
ranges of Cpp for OVAl and OVA2 were 1.24-1.84 and 1.40-2.18, respectively, with
average Cpp values of 1.41 and 1.61, respectively.

b.  The average Cpp values for EVA1 and EVA2, which represent composite defense
cases, were decreased by 10.6% and 11% compared to OVAl and OVA2, respectively.
As a result, the calculated average Cpp values for EVA1 and EVA2 were 1.26 and
1.41, respectively.

C. The average Cpp values for EMVA1 and EMVA2, which also represent composite
defense cases, were decreased by 17.73% and 20% compared to OVA1l and OVA2,
respectively. The calculated average Cpp values for EMVAL and EMVA2 were 1.16
and 1.29, respectively.

d.  The ANN9 model provided the best performance among the five ANN models, with
the highest R? and NSE values and the lowest RMSE, SSE, and MAE values.

e. When compared to the prediction of Cpp, the ANN9 model outperformed the regres-
sion models tested using Taylor’s diagram.

The results of the current study provide insights into the performance comparison of
different models, including ANN models and regression models, in predicting a certain
variable. This information can be used by researchers to select the appropriate model for
their own research based on the performance criteria of the model. The current study high-
lights the superiority of ANN models, particularly the ANN9 model, over the regression
model in terms of standard deviation, correlation coefficient (R?), and root mean square
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error (RMSE). This information can be used by researchers who are working on similar
problems and can benefit from the use of ANN models.
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