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Abstract: The Ping River, located in northern Thailand, is facing various challenges due to the impacts
of climate change, dam operations, and sand mining, leading to riverbank erosion and deposition. To
monitor the riverbank erosion and accretion, this study employs remote sensing and GIS technology,
utilizing five water indices: the Normalized Difference Water Index (NDWI), Modified Normalized
Difference Water Index (MNDWI), Soil-Adjusted Vegetation Index (SAVI), Water Ratio Index (WRI),
and Automated Water Extraction Index (AWEI). The results from each water index were comparable,
with an accuracy ranging from 79.10 to 94.53 percent and analytical precision between 96.05 and
100 percent. The AWEI and WRI streams showed the highest precision out of the five indices due
to their larger total surface water area. Between 2015 and 2022, the riverbank of the Ping River
saw 5.18 km2 of erosion. Conversely, the morphological analysis revealed 5.55 km2 of accretion in
low-lying river areas. The presence of riverbank stabilizing structures has resulted in accretion being
greater than erosion, leading to the formation of riverbars along the Ping River. The presence of water
hyacinth, narrow river width, and different water levels between the given periods may impact the
accuracy of retrieved river areas.

Keywords: riverbank; erosion; accretion; remote sensing; river morphology; water indices

1. Introduction

The vulnerability of southeast Asia to climate change and its variability, including
rising sea levels, shifting climatic zones, and extreme weather events such as droughts
and floods, has been well documented [1–4]. The impact of global warming, with its
higher rainfall and sea level rise, is likely to result in significant changes in sedimentation
and flood regimes [5,6]. As a result, due to riverbank erosion and accretion, rivers dis-
play high spatial and temporal variability in their shapes and sizes. Tropical storms and
monsoon runoff also play a role in bank erosion rates [7]. Understanding the processes
behind channel migration, erosion, and sediment deposition is critical for managing river
behavior [8]. The study of river channel form and dynamics is a significant area of interest
in geomorphology [9]. Channel form has been classified into three basic types: straight,
meandering, and braided [10,11]. Meandering is a typical river feature that results from
the gradual migration of the river course and erosion of the banks. Most rivers around the
world exhibit meandering patterns due to natural and human causes [12]. Braided rivers
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are channels with multiple branches. Braided rivers are rare but can arise when bedload
sediment exceeds the suspended load in a certain climate and geology [13].

In recent years, satellite imagery and Geographical Information Systems (GIS) have
proven to be effective tools for monitoring and predicting river morphology [14,15]. Spec-
tral indices, which are combinations of surface reflectance at different wavelengths, can
be used to analyze temporal satellite images and show changes in river and floodplain
dynamics [16]. Remote Sensing (RS) and GIS techniques also allow for a synoptic view of
the data, encompassing both spatial and temporal aspects, and can be further optimized
using ground information and other geographical data.

Thailand is grappling with a multitude of challenges regarding its water resources,
encompassing matters such as water quality, drought, flooding, and riverbank erosion [17].
The latter is brought about by various factors, such as the curvature of the river, its discharge,
wind speed near the surface, and waves [18]. Braided rivers are common in Thailand due
to the country’s high relief and heavy monsoon rainfall, which lead to high sediment
loads and frequent changes in the channel configuration. Efforts have been made to
manage and control the braided rivers in Thailand, including the construction of dams,
embankments, and flood retention basins, but these interventions have also raised concerns
about their impacts on the natural environment and local communities. Deforestation
and unsustainable land use practices, such as overgrazing and intensive agriculture, can
heighten soil erosion and riverbank erosion risks.

Additionally, floods can bring geographical transformations, such as riverbank erosion,
when the river’s force exceeds the riverbank’s resistance capacity [19,20]. Human activities,
such as sand mining and transportation, also contribute to bank erosion [21]. No example
of the complex interplay of these factors is seen in the Ping River, a tributary of the Chao
Phraya River, located in northern Thailand. This river is influenced by the Bhumibol
Dam, built for various socially useful purposes such as water storage, hydroelectric power
production, flood control, and saltwater intrusion management. However, constructing
artificial structures such as dams and embankments can alter water flow patterns and
heighten the risk of riverbank erosion [22]. Sand vacuuming is another activity that leads to
riverbank collapse and changes in river flow [23]. These factors often interact and amplify
each other, making riverbank erosion in Thailand a complex issue to address.

The aforementioned problems in the Ping River are of utmost importance and require
prompt resolution. They could have serious, long-lasting effects on natural resources and
human communities, including the well-being and necessities of those residing along the
river. Therefore, this study aims to use satellite imagery to analyze spatial trends in erosion
and accretion rates in the Ping River catchment in Thailand over seven years (2015–2022).
Data from Landsat-8 and Sentinel-2A satellite imagery were utilized, and various spectral
indices, which are combinations of surface reflectance at multiple wavelengths, were
extracted. Digital image processing techniques, such as image rectification, layer stacking,
sub-setting, and classification, were used to quantify annual changes. Five water indices,
including the Normalized Difference Water Index (NDWI), Modified Normalized Difference
Water Index (MNDWI), Soil-Adjusted Vegetation Index (SAVI), Water Ratio Index (WRI),
and Automated Water Extraction Index (AWEI), were employed. Remote Sensing and GIS
techniques were used to develop river shapes at specific times and quantify erosion and
accretion rates. This research builds on previous studies and aims to answer the following
questions: (1) What is the most appropriate water index for extracting information on
the Ping River from satellite images? (2) To what extent have the Ping riverbed and
banks eroded and deposited during the study period? The contribution of this study to
previous studies lies in the use of multiple water and vegetation indices, the consideration
of hydrological variables, and the application of their correlations between indices for
identifying erosion/deposition zones. Integrating these indices helps improve the accuracy
and reliability of the results.
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2. Materials and Methods
2.1. Study Area

The present study focuses on the Ping River in Kamphaeng Phet Province, as depicted
in Figure 1. The Ping River Basin is one of eight sub-basins within the Chao Phraya Basin.
The Ping River is a major upstream tributary that flows southward and eventually joins
the Chao Phraya River at the central low-lying plain before emptying into the Gulf of
Thailand. The Ping River Basin spans 44,688 km2, accounting for approximately 22% of the
Chao Phraya River Basin and contributing 24% (6.97 × 109 m3) of the total average annual
runoff [17]. Terraced mountains characterize the topography of the Ping River Basin, with
55.5% of the basin’s area lying in the elevation range of 500–1000 m (Figure 2).
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Figure 2. Ping River profile surveyed in 2019 by the Royal Irrigation Department.

The climate in the area is mainly influenced by the southwest and northeast monsoons,
as well as depression from the South China Sea during July and September, resulting
in heavy rainfall from May to October. The average annual precipitation is 1117 mm,
with an average yearly temperature of 26.7 ◦C. Nearly 88% (984 mm) of rainfall occurs
during the rainy season (May–October), as shown in Figure 3a. The main channel of
the Ping River is 658 km long, but the study area spans approximately 75 km in river
length to fit within one satellite image. The river runoff flows from north to south, and the
stream flow is seasonal, with wet and dry seasons. September has the highest discharge,
averaging 1328 m3/s, while the lowest discharge occurs from January to March, averaging
less than 361 m3/s (Figure 3a). River water levels also respond to the discharge variation
and monsoon precipitation (Figure 3b,c). Climate change and variability can significantly
impact the basin’s water resources, as evidenced by trends in climate indices such as a
decrease in precipitation and an increase in temperature indices [4,24]. Furthermore, the
basin is prone to environmental issues related to river flow during the wet and dry seasons,
including flooding during the wet season and drought during the dry season. Hence, two
rockfill weirs are Kamphaeng Phet weir and Wang Yang weir, which regulate water flow
and reduce flooding (Figure 1).
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Figure 3. (a) Long-term (1992–2021) average rainfall (mm) and river discharge (m3/s) in the Ping River
basin showing wet (light blue) and dry seasons, (b) water levels (msl) in 2015 (black line) and 2022 (blue
line) at station P1, (c) water levels (msl) in 2015 (black line) and 2022 (blue line) at station P2.

The geological setting of the Ping riverbank is known for its extensive braiding patterns.
It is characterized by multiple shallow channels that split and rejoin around mid-channel
bars and islands and are comprised of sedimentary rocks, such as sandstone and shale,
which are susceptible to erosion and instability [25]. The river’s flow and geological
conditions have created a dynamic and constantly changing landscape. Additionally, the
presence of faults and joints in the rocks, as well as variations in rock permeability and
strength, can contribute to instability along the riverbank.

2.2. Satellite Imagery

This study obtained satellite imagery from Landsat-8 and Sentinel-2A sources (Table 1).
The imaging period was from June 2015 to June 2022. For comparison with Landsat-8, there
were six cloud-free dates across 35 different scenes for the wet season of 2015. Meanwhile,



Hydrology 2023, 10, 70 6 of 25

compared with Sentinel-2A, there were five dates across 54 scenes. The average number of
dates per scene was 4 for Landsat-8 and 5 for Sentinel-2A. Images from the same month
were selected to minimize seasonal variations in water level and surface water area.

Table 1. Details of satellite images used in this study.

Satellite Date Month Year Path/Row Cloud Cover Source

Landsat-8 12 June 2015 150/35 USGS
Sentinel-2A 10 June 2022 R104 8.97% ESA

USGS: United States Geological Survey; ESA: European Space Agency.

Landsat-8, owned and operated by NASA and the USGS, provides globally georef-
erenced images and image processing capabilities. Its instruments, the Operational Land
Imager and the Thermal Infrared Sensor, support various applications, such as cartography,
land use, forestry management, coastal zone monitoring, and flood risk management [26].
Landsat-8 was launched in 2013 and orbits the Earth at an altitude of 705 km with an
inclination of 98 degrees [27]. It is equipped with optical imagery that can detect objects
in the visible to the near-infrared range with a resolution of 30 m and a width of 185 km.
Therefore, Landsat-8 products in 2015 are suitable for studying the river as the narrowest
river width is about 35 m. However, two water pixels might be mixed with other land
cover. The reported overall accuracy of classified Landsat-8 was 75.6% for classifying bare
land, forest, settlement, vegetation, and water [28]. The differences in water level (mean
absolute 13.9 cm (0.25%) for station P1 and 12.3 cm (0.16%) for station P2, Figure 3b,c) and
the uncertainty of the spectral detections of the satellite might affect the range of water in
the riverbed and the accuracy of obtained erosion and deposition areas.

Sentinel-2A is a European optical imaging satellite that was launched in 2015 as
part of the Copernicus Program of the ESA. It orbits the Earth at an altitude of 786 km.
Sentinel-2A has a high-resolution multispectral imager with a resolution of 10–60 m and
13 spectral bands [29] that support global terrestrial observations for applications such as
forest monitoring, land cover change detection, and natural disaster management.

The data used in this study were acquired from the official websites of Landsat-8
and Sentinel-2A as level L1T and L1C data, respectively. Only the data processed with
the ESA’s version 02.04 system since 2017 were used for Sentinel-2A, following the ESA’s
recommendations, due to errors in the previous processing software. The overall accuracy
for classified Sentinel-2A was 100% for the water class [28]. The cloud and cloud shadow
masking were carried out using the Fmask 4.0 algorithm [30]. Dates with less than 10%
cloud covers were selected through this process to minimize the impact of undetected
clouds and cloud shadows and achieve the most accurate results. However, in the fluvial
processes, such low-resolution satellite imagery might reduce the accuracy of the research
results and is only allowed for estimation.

2.3. Satellite Image Extraction Method

This study devised a method to extract the Ping River from satellite images, as illus-
trated in Figure 4. The satellite data were acquired from online archives and underwent
preprocessing, including atmospheric correction, geometric correction, and image mosaic.
The images were then re-sampled to a 15 m spatial resolution using the average resampling
method in the GDAL program (version 3.5.1) [31].
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Figure 4. The flowchart of the method for extraction of the Ping River from satellite images.

To analyze the satellite images, five different techniques were employed to extract
streams, including the Normalized Difference Water Index (NDWI), Modified Normalized
Difference Water Index (MNDWI), Soil-Adjusted Vegetation Index (SAVI), Water Ratio
Index (WRI), and Automated Water Extraction Index (AWEI). During the surface water
extraction process, a threshold of 0 was used for each index map. However, previous
studies have indicated that a threshold of 0 might not always result in the best extraction
performance in all areas [32–34]. Therefore, an optimum threshold was determined based
on the Otsu threshold method [35] to achieve the highest overall accuracy. Additionally,
indices with better extraction abilities may be combined to enhance the separability between
water and non-water surfaces, as determined by evaluation matrices.
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Ground truth locations surveyed in 2022 were used for validation purposes. However,
no ground survey data were available for 2015, so the Google Earth product was utilized
instead. A total of 201 locations were selected, including 151 water locations and 50 other
types, with a density of 1 site per 82,500 square kilometers (Figure 5). An overlay technique
was used each year to determine representative river lines. Erosion and deposition areas
were computed by considering the river in 2015 and 2022 and unchanged areas. The
riverbank erosion area was defined as the difference between the river area in 2022 and the
unchanged river area between 2015 and 2022, while the channel deposition was examined
by the difference of river shape in 2015 and the unchanged area. The left and right riverbank
were divided by thalweg, and each bank’s erosion and deposition were also estimated.
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2.3.1. Normalized Difference Water Index (NDWI)

The Normalized Difference Water Index (NDWI) is a technique utilized in satellite
imagery analysis to distinguish open water features by utilizing the near-infrared (NIR)
and visible green (GREEN) spectral bands [36]. The calculation of NDWI is performed
using the following formula:

NDWI = (GREEN − NIR)/(GREEN + NIR) (1)
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The Normalized Difference Water Index is considered an effective index for differen-
tiating land and water due to the high absorption of electromagnetic radiation by water
surfaces, resulting in low radiation reflectance. However, it can lead to errors in estimating
construction sites as water bodies. Hence, it is important to consider the ratio of NIR and
GREEN wavelengths. The Normalized Difference Water Index ranges from −1 to 1, with
1 indicating water bodies or high humidity and −1 indicating dry areas or a lack of mois-
ture [37]. The calculation of NDWI for this study was performed using the raster calculator
toolbox in the ArcMap program. Normalized Difference Water Index values ranging from
0.004 to 0.46 (with an average of 0.18) were considered as water bodies (Figure 6).
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2.3.2. Modified Normalized Difference Water Index (MNDWI)

The Modified Normalized Difference Water Index (MNDWI) effectively differentiates
between water and urban areas in satellite images. This method utilizes the visible green
(GREEN) and short-wave infrared 1 (SWIR1) spectral bands [32]. The MNDWI range
(0.004–0.46, with an average of 0.15) for the waterbody was equal to that of NDWI (Figure 6).

MNDWI = (GREEN − SWIR1)/(GREEN + SWIR1) (2)

2.3.3. Soil Adjustment Vegetation Index (SAVI)

The Normalized Difference Water Index products derived are inherently unstable,
varying with soil color, soil moisture, and saturation effects caused by dense vegetation [38].
The Soil-Adjusted Vegetation Index (SAVI) is designed to correct for the instability of NDWI
products. The Soil-Adjusted Vegetation Index reduces the impact of soil brightness by using
red (RED) and near-infrared (NIR) wavelengths [39]. The SAVI index is given as follows:

SAVI = ((NIR − RED)/(NIR + RED + L)) × (1 + L) (3)
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where L is a factor to adjust the canopy background; a value of 0.5 was found to minimize
soil brightness variations and eliminate the need for additional calibration for different
soils [40]. It was found that the transformation virtually eliminates soil-induced variations
in vegetation indices. The study extracts satellite imagery data with SAVI using the red
and near-infrared bands via a raster calculator in the ArcMap program. The SAVI values
ranged from −0.53 to 0.05 for the waterbody (Figure 6).

2.3.4. Water Ratio Index (WRI)

The Water Ratio Index (WRI) is a method that considers the dominant spectral re-
flectance of water. It is calculated as the ratio between the reflectance of visible green
(GREEN) and red (RED) spectral bands to the total reflectance of near-infrared and short-
wave infrared 1 (SWIR1) bands. The value of the WRI for waterbodies is greater than 1.
The WRI value of the waterbody is greater than 1 [41,42], where WRI is defined as:

WRI = (GREEN + RED)/(NIR + SWIR1) (4)

2.3.5. Automated Water Extraction Index (AWEI)

The Automated Water Extraction Index (AWEI) aims to enhance land cover classifica-
tion accuracy into binary water and non-water under various environmental conditions.
This is achieved by utilizing multiple spectral bands (blue, green, NIR, SWIR1, and SWIR2)
and stabilizing the threshold of 0 used to distinguish water and non-water pixels by forcing
non-water pixels below 0 and water pixels above 0 [33]. The subscript “sh” in the equation
is introduced to effectively eliminate non-watery pixels, including dark-built surfaces in
urban areas, resulting in improved accuracy by removing shadow pixels.

AWEIsh = BLUE + 2.5 × GREEN − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 (5)

2.4. Model Validation

A confusion matrix is a tool that summarizes the results of image classification predic-
tions. It provides a count of correct and incorrect predictions, broken down by class. The
observed category set is compared to the predicted classification set. There are four possible
outcomes for each column [43,44], as described in Table 2. These are: (1) the classifier
correctly identifies a water sample, referred to as a true positive (TP), (2) the classifier
incorrectly categorizes a water sample as land or vegetation, resulting in a false-negative
(FN), (3) the classifier misclassifies a land sample as water, referred to as a false-positive
(FP), and (4) the classifier correctly identifies a land sample as a true negative (TN).

Table 2. Confusion matrix.

Reference Data

Water Others

Classified Data
Water TP FP
Others FN TN

TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative.

The accuracy of the river line data extracted from satellite imagery was validated by
comparing it to the riverbanks from the Google Earth base map and ground survey data
(Figure 5). The comparison results were used to create a confusion matrix, which summarizes
the prediction results of the image classification. The accuracy, precision, and sensitivity
values were calculated based on the information contained in the confusion matrix.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (6)

Precision = TP/(TP + FP) (7)

Sensitivity = TP/(TP + FN) (8)
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3. Results and Discussion
3.1. Ping Rivershape Extracted from Satellite Images

The watercourse extraction was performed using five index methods, as determined
by the threshold values illustrated in Figure 6. Figure 7 presents the resultant map of the
Ping River in 2015, derived from a Landsat-8 image using the five indices, along with a box
plot of the pixel value distribution (Figure 6). The extracted streams using these five index
methods are not significantly dissimilar. All indices are capable of detecting the Ping River
water along the thalweg or its deepest channel (Figure 7f). The zero-threshold value used
for the AWEI index demonstrates the ability to effectively separate the water (Figure 7e).
Similarly, other indices perform well in separating the river, with some errors in water
hyacinth, shadow, and narrow areas. The weakest performance was demonstrated by the
NDWI, which requires additional effort to separate the waterbodies from shadows and
dense forests (Figure 7a).
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Figure 7. Stream extracted from Landsat-8 images in 2015 using (a) NDWI, (b) MNDWI, (c) SAVI,
(d) WRI, (e) AWEI, and (f) river shape with a number of detectable water indices. Number 1 means
only one index could detect. Numbers 2, 3, and 4 denote the areas that 2, 3, and 4 indices could detect,
respectively. Number 5 represents the area that all water indices classify as Ping River.

Furthermore, the SAVI is particularly useful in distinguishing vegetation from water,
and it is able to account for variations in soil brightness. This makes it a good choice for
detecting braided rivers where vegetation may be present (Figure 7c). However, the SAVI
may be less effective in areas with very sparse vegetation or with mixed pixel types.

On the other hand, the WRI is designed specifically to differentiate between water and
other types of land cover. It is particularly sensitive to water features, making it a good
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choice for extracting braided river features from Landsat-8 imagery (Figure 7d). However,
the WRI may not perform as well in areas where there are other types of water bodies
(e.g., lakes or wetlands) present.

The extracted map of the Ping River in 2022 using the five water indices is shown in
Figure 8, which was derived from a Sentinel-2A image. The streams extracted through these
five methods were similar. The high-resolution image provided by Sentinel-2A improved
the accuracy and completeness of the extracted river compared to the Landsat-8 image.
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Figure 8. Stream extracted from Sentinel-2A images in 2022 using (a) NDWI, (b) MNDWI, (c) SAVI,
(d) WRI, (e) AWEI, and (f) river shape with a number of detectable indices. Number 1 means only
one index could detect. Numbers 2, 3, and 4 denote the area that 2, 3, and 4 indices could detect,
respectively. Number 5 denotes the area that all water indices classify as Ping River.

The four water-related indices (NDWI, MNDWI, WRI, and AWEI) effectively reflected
water bodies based on their values. [45]. The Normalized Difference Water Index and
MNDWI are both helpful in detecting water bodies in general. However, they might not be
ideal for specifically identifying braided rivers as they do not consider the distinct spectral
characteristics of braided rivers (Figure 8a,b). The SAVI index effectively detects water
hyacinths and accurately represents the river shape, including waterbodies and ponds
along the riverside. This is because the water hyacinth has higher NIR reflectance values
than other associated plant species [46,47], as shown in Figure 8c. The AWEI might not
be effective in identifying braided rivers from Sentinel-2A imagery specifically because it
was primarily designed to detect water from vegetation, not sand (Figure 8e). Among the
indices, the WRI appeared to be a more reliable indicator, as it was the only index of the
five that enhanced water surfaces (Figure 8d). The WRI has shown promise in detecting
braided rivers from Sentinel-2A imagery. It considers the unique spectral signature of
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braided rivers, which includes both high reflectance in the green and red bands and low
reflectance in the blue band.

3.2. Result Consistency and Accuracy

In order to evaluate the relationships between different variables, the NDWI, MNDWI,
NDMI, WRI, and AWEI reflectance index values were plotted in scatter plots (Figure 9).
The coefficient of determination (R2) was used to assess the effectiveness of the regression
model in explaining the variability of the data. High R2 values close to 1 indicate a good fit
for the model [48].
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The study found strong correlations between the five water indices at a 95% confidence
level (p < 0.05, n = 65,351, Figure 9). Positive values represent surface water (Figures 7 and 8),
and four of the index methods (NDWI, MNDWI, WRI, AWEI) had positive correlations
with each other (Figure 9a–c). The SAVI showed a significant negative relationship between
the NDWI and the AWEI, with negative values indicating waterbodies in the study area
(Figures 7c and 8c). However, some regions observed weak correlations due to the narrow
range of index values for water-land cover classes [45].

Two sets of ground truth data were used for validation, including high-resolution
images from Google Earth in 2015 (201 stations, Figure 5) and a ground survey in June
2022 at the same locations (201 stations, Figure 5). The data were further divided into
two categories, 151 stations along the mid-line of a stream and 50 stations located 30 m
away from the nearest riverbank. This second category was equivalent to two pixels of the
re-sampled image due to minimizing pixels being a mixture of water, vegetation, and soil.
To assess the results, a confusion matrix was used to compare the extraction results from
each method with the Google Earth samples from 2015 and the ground survey from 2022,
including accuracy, precision, and sensitivity (Tables 3 and 4).

Table 3. Confusion matrix of the results obtained from water indices in 2015.

Reference Data Accuracy
(%)

Precision
(%)

Sensitivity
(%)Water Others

NDWI
Water 109 0

79.10 100 72.19
Others 42 50

MNDWI
Water 129 1

88.56 99.23 85.43
Others 22 49

SAVI
Water 126 3

86.07 97.67 83.44
Others 25 47

WRI
Water 118 1

83.08 99.16 78.15
Others 33 49

AWEI
Water 131 1

89.55 99.24 86.75
Others 20 49

Table 4. Confusion matrix of the results obtained from water indices in 2022.

Reference Data Accuracy
(%)

Precision
(%)

Sensitivity
(%)Water Others

NDWI
Water 141 5

92.54 96.58 93.38
Others 10 45

MNDWI
Water 135 5

89.55 96.43 89.40
Others 16 45

SAVI
Water 146 6

94.53 96.05 96.69
Others 5 44

WRI
Water 143 3

94.53 97.95 94.70
Others 8 47

AWEI
Water 139 2

93.03 98.58 92.05
Others 12 48

The stream in 2015 (2022) obtained from the NDWI extraction was 79 (93) percent
accurate and 100 (97) percent precise. The NDWI measures presented water in pixels.
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Shadows, saturated soil, and plants are also detected. False positives can occur when
non-water features are identified as water (Tables 3 and 4). The MNDWI results provide
89 (90) percent accuracy and 99 (96) percent precision for 2015 (2022). The MNDWI reduces
vegetation effects better than the NDWI. However, the MNDWI detects shadows and moist
soil, resulting in false positives (Tables 3 and 4). The river in 2015 (2022) obtained through
the SAVI extraction was 86 (95) percent accurate and 98 (96) percent precise. The SAVI is
commonly used to assess vegetation density. The SAVI can also misidentify shadows and
soil as water bodies. The WRI results provide 83 (95) percent accuracy and 99 (98) percent
precision for 2015 (2022). The WRI is an index that is used to identify surface water features.
However, it probably detects other features, such as shadows, wet soil, and vegetation,
leading to false positives. The AWEI is designed to improve the detection of water bodies
by reducing the effects of soil and vegetation. As a result, the AWEI extraction of streams
was the most accurate for Landsat-8 in 2015, with 90 percent accuracy and 99 percent
precision. However, the AWEI results were less accurate in 2022 (Table 4) compared to
2015 (Table 3). It might detect other features, such as shadows from the Sentinel-2A images,
leading to false positives.

The SAVI and WRI were the most effective methods for the 2022 environment, based
on NIR (785–900 nm for Sentinel-2A, 850–880 nm for Landsat-8). The SAVI (≤−0.53)
and WRI (≥1) values were interpreted as water areas due to the high concentration of
chlorophyll-a in the water hyacinth [49], which is sensitive to the NIR spectrum due to the
high reflectance of its internal leaf structure [47].

Regarding satellite imagery comparison, there are variations in the sensor responses and
spectral properties of target pixels between Sentinel-2A and Landsat-8 [27,50]. Sentinel-2A
offers imagery with a higher level of detail. The outcomes from Sentinel-2A were more precise
than those from Landsat-8 (as seen in Table 4). Despite the higher resolution, Sentinel-2A
has some bands with spectral characteristics similar to those of the prominent bands of
Landsat-8. The reflectance values from Sentinel-2A are more closely aligned with those from
Landsat-8 [51,52]. Therefore, for this study, the threshold of each water index derived from
Landsat-8 was applied to Sentinel-2A.

Previously established water indices (such as NDWI or MNDWI) utilized green and
NIR or SWIR bands to distinguish water bodies from non-water features, as water and
non-water features exhibit significant differences in these three bands. However, the results
of experiments showed that relying solely on the NIR band in a water index may lead
to the loss of some water features (e.g., murky water, small waterbodies), while relying
solely on the SWIR band can result in the misclassification of some land features such as
shaded pixels as water. Hence, the index based on both NIR and SWIR, such as the AWEI
and WRI (as described in Equations (4) and (5)), was found to classify water accurately, as
demonstrated in Table 3 and Figures 10 and 11.

These figures indicate that most indices can effectively distinguish water from other
land features. Some indices, such as the NDWI for Landsat-8 (Figure 10) and the MNDWI
for Sentinel-2A (Figure 11), showed a loss of small water bodies where the main channel was
divided by aits or eyots, riverine islands formed by sediment deposition or emerging river
bars at low water levels. To minimize these errors, it is recommended to use multiple indices
and the visual interpretation of satellite images to confirm the presence of the braided
river (Figures 10 and 11). Additionally, pre-processing steps such as image calibration,
atmospheric correction, and geometric correction can be applied to satellite images to
reduce errors.
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Figure 10. An overlay stream exists between NDWI, MNDWI, SAVI, WRI, and AWEI for 2015; Zone
A is the upstream reach, and zone B is the downstream reach.
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Figure 11. An overlay stream exists between NDWI, MNDWI, SAVI, WRI, and AWEI for 2022; Zone
A is the upstream reach, and zone B is the downstream reach.

3.3. Riverbank Erosion and Deposition

The Ping River flows from south to north, and two weirs exist in the studied section,
Figure 1. This river exhibits fluvial processes of erosion and deposition (Figures 12 and 13),
characteristic of braided river systems [13]. Braided rivers are characterized by multiple
interconnected channels separated by bars of sediment. The channels typically have shallow
depths and a high width-to-depth ratio, and they tend to shift and migrate over time due
to variations in water flow and sediment deposition [53]. The area between the midstream
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and downstream is flat, causing the riverbank to erode and deposit sediment on the convex
bank. The depositional bank is formed by the accumulation of coarse sand and gravel,
alternating with ridges and swales, known as sand shoals, that divide the main channel of
the Ping River into smaller waterways (Figure 12).
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Figure 12. Riverbank erosion (red) and accretion (green) along the Ping River between 2015 and 2022;
Zone A is the upstream reach and zone B is the downstream reach. RB (LB) is the right (left) bank.
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Figure 13. (a) Left and (b) right riverbank at station P1; Ping River cross-section at (c) station P1 and
(d) station P2 in 2015 (black line) and 2022 (blue line); (e) Left and (f) right riverbank at station P2;
Red (green) area denotes erosion (accretion).
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Erosion occurs when the force of the river’s flow removes sediment from the riverbed
and banks, widening and deepening the river channels (Figure 13). This erosion is typically
caused by the high velocity and turbulent flow of water, which is common in braided river
systems [54]. The erosion in the Ping River leads to the formation of sandbars and islands
within the river channels. Deposition, on the other hand, occurs when sediment carried
by the river’s flow settles and accumulates in the riverbed and banks. This deposition can
occur when the river’s flow slows down, such as when it enters wider channels or when
there is a decrease in the slope of the river [55], as seen in zone B in Figure 12. The deposition
in the Ping River leads to the formation of bars of sediment (Figures 10, 11, 12 and 13c),
which can cause the river channels to split and braid, creating a network of streams referred
to as a dendritic drainage pattern [56].

The dendritic drainage pattern of the Ping River refers to its branching network of
tributaries, which resembles the structure of a tree. This type of drainage pattern is common
in regions with uniform geology and slope [57]. In contrast to anastomosing rivers [58],
which have multiple interconnected channels that are stable over time, braided rivers such
as the Ping River tend to shift and change their channel patterns more frequently due to
changes in water flow and sediment deposition.

The water map was generated by combining the results of five different indices using
threshold values obtained from each index. Initially, a threshold value of 0 was used for all
indices, resulting in a map highlighting dense shadows and deep river depths. The Otsu
threshold method was then employed to separate water and the drainage network [35],
using values such as 0.004 for the NDWI, −0.53 for the SAVI, and 1 for the WRI (Figure 6).
This overlay technique was used to estimate the erosion and accretion area of the Ping
River between 2015 and 2022 (Figure 12), with the stream data from the five indices
(NDWI, MNDWI, SAVI, WRI, and AWEI) combined to represent the riverbank erosion
and deposition more accurately. The average surface area of the Ping River decreased by
0.58 ± 0.44 km2 (Table 5), with the AWEI and SAVI results showing the most significant
decrease in river area. The WRI results showed a minor decrease in the river area but were
the most accurate, especially for Sentinel-2A in 2022 (Table 4). The river surface area was
16.88 km2 in 2015 and 16.51 km2 in 2022, with an estimated erosion area of 5.18 km2 and
a deposition area of 5.55 km2 (Table 5). The erosion and accretion rates varied between
the five methods, with an average erosion rate of 4.51 ± 0.67 km2 and an accretion rate of
5.09 ± 0.30 km2. The unchanged area for the overlaid data was 11.33 km2, with an average
unchanged area of 10.35 ± 0.62 km2 across the five index results. The AWEI was able to
integrate smaller waterbodies, resulting in higher erosion and accretion rates compared to
the other methods.

Table 5. Surface water area and riverbank erosion and accretion areas obtained from each water index.

Index
Total Surface Area (km2) Erosion

(km2)
Accretion

(km2)
Unchanged

(km2)Year 2015 Year 2022

NDWI 15.1832 14.7022 5.0413 5.5223 9.6609

MNDWI 15.2715 14.0196 3.4429 4.6948 10.5767

SAVI 15.9412 15.3205 4.4632 5.0839 10.8573

WRI 14.7039 14.1978 4.4773 4.9834 9.7205

AWEI 16.1156 16.0887 5.1365 5.1634 10.9522

Average 15.4431 14.8658 4.5123 5.0896 10.3535

Combined
Five indices 16.8805 16.5058 5.1789 5.5536 11.3269

However, there was an error range (5.47 to 20.90%) resulting from various factors,
such as the error from water indices (Tables 3 and 4) and spatial and spectral errors in
satellites and different water levels (Figure 3b,c). The reported depositional area might
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include sediment accumulation and emerging river bars at the time of low water levels.
The accuracy of detection from satellite images depends on several factors, including the
type of object being detected, the quality of the satellite image, the radiometric calibration,
and the atmospheric conditions during image acquisition. These factors contribute to the
error range in the detection results. Consequently, to reduce the error, pre-processing
steps such as image calibration, atmospheric correction, and geometric correction can be
applied to satellite images. Additionally, image fusion techniques that combine images
from multiple sensors or data sources and a period with a similar water level can improve
detection accuracy.

The morphology of the Ping River has undergone significant alterations over seven
years, as indicated by the presence of newly formed sandbars and the changes in the accre-
tion and erosion of the riverbanks (Figure 13c,d). The study period reveals an increase in the
sandbar and riverbank accretion areas, with a rate of 0.79 km2 per year, which is higher than
the previous rate of 0.53 km2 per year between 2007 and 2017 [59]. Due to the non-cohesive
nature of the Ping River and its floodplain system [60], high sedimentation is reflected in
the swift growth of sandbars. However, this growth also causes instability in the river
reaches as it alters the river flow direction and leads to increased flow velocity [59], putting
the riverbank on the opposite side at risk (Figure 13a,b). Although the erosion occurred
at both banks, the study found that riverbank erosion is predominantly found on the left
bank (39.57 km length, Table 6) compared to the right bank (30.07 km length), indicating
that the left bank of the Ping River has undergone more significant shifting compared to
the right side. Hungry water is a phenomenon that occurs when the Kamphaeng Phet weir
creates a turbulent flow of water that can erode the riverbed and banks downstream [61].

Table 6. Erosion and accretion occurring in the left and right riverbanks.

Index
Left Bank Right Bank

Erosion (km2) Accretion (km2) Erosion (km2) Accretion (km2)

NDWI 2.7595 2.2502 2.2818 3.2721

MNDWI 1.8195 2.0893 1.6234 2.6055

SAVI 2.4725 2.0752 1.9907 3.0087

WRI 2.4687 2.0941 2.0086 2.8893

AWEI 2.6609 2.2543 2.4756 2.9091

Average 2.4494 2.1688 2.0629 2.9208

Combined Five
indices 2.9428 2.3799 2.2361 3.1737

Avg. Length
(km) 39.5709 35.2201 30.0689 39.7968

On the other hand, there was also the adverse effect of the Wang Yang weir down-
stream of the study boundary, which traps bed-load sediment and raises the riverbed
upstream (Figure 12), particularly in areas with high bed-load sediment budget such as
the Lower Ping River (Figure 13d). The increased sediment supply from the upstream
mountain ranges and the presence of at least 30 sand and gravel mining businesses along
the Ping River also contribute to the excessive sedimentation along the Ping River [62]. The
combination of increased sediment supply and low water discharge leads to a significant
decrease in the river’s depth and width (Figure 13e).

The gradient of the riverbed influences the velocity and direction of flow, which is
a crucial aspect that shapes the river’s dynamics (Figures 2 and 3). In some regions, the
riverbank has become so steep and overhanging that it forms a cantilever-like structure
(Figure 13b), which is vulnerable to collapse and failure [63]. In a cantilever riverbank
failure, erosion initially occurs at the bank’s base or toe [20]. This erosion results in the soil
or rock mass becoming increasingly unstable and leads to slumping and land sliding along
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the bank. As erosion continues, the bank becomes increasingly steep and overhanging,
forming a cantilever-like structure supported only at its toe. A combination of natural and
human factors has caused the occurrence of cantilever riverbank failure along the Ping River.
This failure can result in various impacts, such as increased erosion and loss of crops and
property. The river’s strong hydraulic forces and geological conditions are responsible for
the instability and erosion of the riverbank [64]. The overuse of groundwater, deforestation,
and development along the river also contribute to the problem [65].

Efforts are underway to address the issue of riverbank erosion along the Ping River.
These include implementing stabilizing measures for the riverbank, such as building
retaining walls, planting vegetation, and reinforcing the soil and rock materials at the
bank’s toe (Figure 13f). Additionally, efforts are being made to manage water resources
and minimize the impacts of deforestation and development along the river.

4. Conclusions

The study aimed to evaluate the performance of five water extraction indices. The
results obtained from a default threshold of 0 indicated that the AWEI could reduce the
omission errors in mapping water classes compared to the other indices using Landsat-8
images. The AWEI achieved the highest accuracy at 90% and precision at 99%. The WRI
was also found to have satisfactory results compared to other water indices for Sentinel-2A
products. The other indices may have produced less accurate results due to missing river
sections, especially those with narrow channels. Furthermore, the Otsu threshold method
was used to select the appropriate threshold for the NDWI, MNDWI, SAVI, and WRI. The
SAVI also provided a more extensive water area in 2022 due to the response of the water
hyacinth to Sentinel-2A reflectance, which was interpreted as the river area. These indices
can be effective tools for identifying and extracting braided river features from Landsat-8
and Sentinel-2A images, but their effectiveness can depend on the specific characteristics of
the landscape being analyzed.

The study also demonstrated that comparing the extracted rivers using the five water
indices throughout 2015–2022 can reflect changes in river morphology. The study found
that the river had undergone erosion of about 5.18 km2, mainly on the left riverbank, which
was often attributed to the sand mining industry. Furthermore, the study observed that
the Ping River had a growing sandbar along the river embankment and at the center of
the river, increasing by 5.5 km2 from 2015 to 2022. The river had also changed direction,
meandering back and forth over gently sloping terrain. Most of the deposited land was
observed in the downstream terrain area of the Ping River. These study findings provide
valuable insights into the river’s morphology and riverbank erosion/deposition, which
could aid government organizations in creating sustainable river management policies and
determining the best water indices for monitoring physical changes in tropical rivers.
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