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Abstract: The potential for extreme climate events to cluster in space and time has driven increased
interest in understanding and predicting compound climate risks. Through a case study on floods in
the Ohio River Basin, we demonstrated that low-frequency climate variability could drive spatial
and temporal clustering of the risk of regional climate extremes. Long records of annual maximum
streamflow from 24 USGS gauges were used to explore the regional spatiotemporal patterns of
flooding and their associated large-scale climate modes. We found that the dominant time scales
of flood risk in this basin were in the interannual (6–7 years), decadal (11–13 years), and secular
bands and that different sub-regions within the Ohio River Basin responded differently to large-scale
forcing. We showed that the leading modes of streamflow variability were associated with ENSO and
secular trends. The low-frequency climate modes translated into epochs of increased and decreased
flood risk with multiple extreme floods or the absence of extreme floods, thus informing the nature of
compound climate-induced flood risk. A notable finding is that the secular trend was associated with
an east-to-west shift in the flood incidence and the associated storm track. This is consistent with
some expectations of climate change projections.

Keywords: floods; climate variability; compound risk; Ohio River Basin

1. Introduction

Floods are the leading cause of property damage and lead to billions of annual global
losses [1]. These losses are expected to worsen through increasing exposure to coastal and
river flooding [2,3] and global and local environmental hazards [4]. Severe floods tend to
cluster in space [5,6] and time [7,8], leading to fat tails in aggregated risks [9,10].

One mechanism for the space-time correlation structure of extreme floods is the inter-
action between low-frequency hemispheric modes of global climate variability, which influ-
ence weather patterns. Paleo records of floods show clustering in time [7,11] and between
locations [12]. A dominant mode of interannual variability is the El Niño-Southern Oscil-
lation (ENSO), which has been linked to changes in flood risk around the world [7,13,14],
particularly for more extreme floods [15]. However, many other patterns have also been
identified for decadal-scale flood variability around the world [16], including the Pacific
Decadal Oscillation (PDO) [17] and North Atlantic Oscillation (NAO). For example, Tom-
mey et al. [18] found that the NAO strongly modulated interannual flood frequency in
the Susquehanna River in the Eastern United States. Often, these low-frequency modes
of climate variability dominate secular changes in the historical streamflow record of the
United States and Europe [19].

Most of the past work on flood risk estimation considered the site-level analysis of
extreme events, with limited attention to the spatiotemporal climate risks at a regional level.
The assumption of stationarity across space and time could still be utilized as a default
during the design and planning for flood management infrastructure [20], even though its
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applicability had been questioned, noting secular, as well as epochal inhomogeneities [7,21].
The recent literature has shown methods for the incorporation and considerations of non-
stationarity in statistical flood risk models using additional covariates [22–28].

The Ohio River Basin (ORB), located in the eastern United States (Figure 1), covers
204,000 square miles (522,000 sq. km.) and has a population of 25 million. The ORB has a
history of notable floods in 1845, 1883, 1884, 1907, 1913, 1933, 1937, 1948, 1964, 1997, and
2018 [29–31]. While summer floods are often characterized by locally intensive precipitation
leading to pluvial floods [32], major floods tend to occur in early spring or late winter
and are caused by persistent anomalies that track moisture from the Gulf of Mexico and
the Caribbean Sea to this region [33,34]. Past work on floods in the Ohio River Basin has
identified common mechanisms associated with the most extreme floods [33–35]. At the
synoptic time scale, each of the floods occurring in different parts of the basin resulted
from a sequence of waves of incoming moisture and rainfall from the Gulf of Mexico, from
every 4 to 7 days in the January to March period, culminating in an extreme rainfall event
that corresponded to the peak flood [33,34]. Some relationship between this mechanism
to ENSO was identified [34], and the critical conclusion was that changes in winds or
atmospheric moisture transport rather than increases in atmospheric moisture were key
to flood occurrence. This is an important observation since the dominant concern with
future floods has been with the increased moisture-holding capacity of the atmosphere
under warming, then with circulation-driven mechanisms. We further highlight the role of
the latter.
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Figure 1. The Ohio River Basin domain (shaded in blue). The red dots denote the stations used in
this study.

We build on past research to explore whether the annual floods equal to or greater than
the annual maximum across 24 long record locations exhibit common spatial patterns and
temporal clustering. The annual maximum streamflow at these locations was considered to
not be significantly modified by local human activities or regulations by the US Geological
Survey during the period of study. This criterion results in locations that have relatively
small drainage basins.

These data constraints limit the potential for assessing a major flood event where the
entire Ohio River network may be flooded simultaneously. However, a season or year
in which a large number of extreme floods occurs in the basin will lead to higher flood
damages, even if the floods are well separated in time and space, in that year. This is
the target of our study from the perspective of compound flood risk in the Ohio River
Basin. The time series of annual maximum flows across the basin that exceed the nominal
10-year event at each site is illustrated in Figure 2. Note that there are five years with ten or
more sites where the 10-year return period event was exceeded over an 87-year period of
record. If the data were independently distributed as random variables in space and time,
then the probability of these outcomes would essentially be zero (based on the binomial
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distribution). There are more than twenty years with zero occurrences of the 10-year event
across the sites, and under the independence hypothesis, the probability of this outcome is
also essentially zero. These observations are consistent with the idea that one should be
concerned with the compound risk of floods at an annual scale in the Ohio River Basin.
The question this paper then addresses is whether there are spatial patterns associated with
floods in the Ohio River Basin and whether there is a corresponding temporal structure to
the occurrence of these spatial patterns that result in years of non-occurrence and with high
occurrence of these events. If the answer is yes, then the question is whether the large-scale
climate patterns that lead to these emergent flood patterns in time and space in the Ohio
River Basin can be identified.
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Figure 2. Number of annual maximum flows exceeding the at-site 10-year return period event each
year across 24 streamflow gaging locations in the Ohio River Basin from the period 1935 to 2021.

Section 2 provides a description of the streamflow data and the climate indices used
in this study. Section 3 describes the methods used to study the space-time signatures of
annual maxima streamflow events and their relation to the known modes of atmospheric
variability. Results are presented in Section 4, followed by the conclusion in Section 5.

2. Data
2.1. Streamflow Data

The daily streamflow data were downloaded from the United States Geological Survey
(USGS) water databases using the ‘dataRetrieval’ package [36]. Stream gauges located in
the Ohio river basin with a maximum of 0.1% of missing data and a drainage area greater
than 3750 sq. miles were selected. Sites with a significant regulation of flow during the
period of study affecting the annual maxima were not considered. Using the above criteria,
24 sites (Figure 1) were included in this study, with each location having 87 years of data
from 1935–2021. The daily streamflow time series at each site was used to identify the
annual maximum streamflow for each water year, which started in October (1/10) of the
previous year and ended in September (30/9) of the current year.

2.2. Climate Indices

Climate indices are time series of diagnostic quantities that are used to characterize
hydro-climatic systems based on data from climate stations, grid points, regional averaged
data, or computed from empirical orthogonal functions and usually involve a single field,
most commonly sea surface temperature anomalies [37]. The most commonly used climate
indices are the El Niño Southern Oscillation index, Pacific Decadal Oscillation, North
Atlantic Oscillation, and Atlantic Multi-decadal Oscillation.

The Niño 3.4 index, used as an indicator of the El Niño Southern Oscillation phenom-
ena as the dominant mode of global variability influencing climate globally, is computed
from sea surface temperature anomalies in the equatorial Pacific [38]. The Pacific Decadal
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Oscillation (PDO) index is computed as the first principal component of the Northern
Pacific sea surface temperature anomalies [17,39]. The Atlantic Multidecadal Oscillation
(AMO) is computed from the sea surface temperature anomalies in the northern Atlantic
basin [40]. The North Atlantic Oscillation (NAO) index, unlike the above-mentioned in-
dices, is computed as the surface sea-level pressure difference between the subtropical high
(Azores or Gibraltar) and the sub-polar low (Iceland) [41].

The Niño 3.4, NAO, PDO, and AMO indices were converted from monthly resolution
to annual time-scale by computing their mean Dec–Jan–Feb values, which corresponded
to boreal winter. This seasonal choice was made since most of the extreme floods in the
basin occur in the January–April period. They were standardized before use in this study.
Interactions between the indices were computed as the product of departures from their
respective means.

xyt = (xt − x)× (yt − y) (1)

where xt, yt, and xyt are the values of the climate indices x, y, and their interaction at time t,
respectively. x and y are the mean values of climate index x and y, respectively. The KNMI
Climate Explorer (https://climexp.knmi.nl/start.cgi (accessed on 10 October 2022)) was
used as the primary data extraction source for these indices. Overall, ENSO, NAO, PDO,
and AMO, along with their interactions, were used in this study, where their connections to
the leading modes of streamflow variability within the Ohio River Basin that are identified
were explored. Double labels, for example, ENSO–NAO, denote interactions between
ENSO and NAO.

3. Methods

We considered two complementary strategies for the diagnosis of multi-site low-
frequency variations and their associated space-time signatures in basin-wide annual
maximum streamflow. From a regional perspective, we hypothesized that the time series at
all sites could be modulated at the same frequencies if they were influenced by larger-scale
climate oscillations that have marked quasi-periodic variability. Such common large-scale
drivers can also induce a spatial correlation structure in the annual maxima flow series
across the sites, even if the flows do not occur simultaneously across all the sites in each
year. All the larger extreme floods occur in the same season and often correspond to
recurrent synoptic waves of incoming atmospheric moisture every 4–7 days [33,34]. Thus,
some sites may experience the annual maximum event earlier than others, while all sites
have elevated flows in such a season. Two complementary approaches were explored to
diagnose the multi-site low-frequency variations and spatiotemporal structure in annual
maxima streamflow: (1) PC-Wavelet and (2) Wave-Clust (Figure 3).
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3.1. PC-Wavelet

The PC-Wavelet method (Figure 3 (left)) corresponds to a method that analyzes the
spatial structure of the multi-site data followed by a time-frequency analysis of the resulting
spatial patterns. A principal component analysis (PCA) [42] was performed on a correlation
matrix of the annual maxima streamflow data across the 24 sites to achieve a reduction in
the spatial dimension. The eigenvectors of the leading principal components identified the
patterns of spatial variability. The number of leading principal components to be analyzed
was decided by the variance (eigenvalues), as explained by the PCs. Each leading PC
was then subjected to wavelet analysis to identify the common low-frequency variations
across time if any. The following sub-section can be referred to for further details on
wavelet analysis.

3.2. Wave-Clust

The first step of the Wave-Clust method (Figure 3 (right)) entails wavelet analysis on
the annual maxima streamflow time series of the 24 sites, followed by the hierarchical clus-
tering of the resulting wavelet transforms. Hierarchical clustering, a form of agglomerative
clustering, was used to partition objects in a set based on measures of similarity, with the
most common being the distance between the objects [43]. In this study, ‘Ward Distance’,
which minimizes the within-cluster variance, was used as the distance measure for cluster
separation [44]. The hierarchical clustering was applied to the time-varying wavelet power
across each of the frequencies/scales at each site. The hierarchical cluster analysis on
the time-frequency structure helped identify clusters that participated in similar climate
patterns but were not necessarily orthogonal or statistically independent. The selection of
the number of clusters to use was performed through a visual inspection of the dendrogram
and the dissimilarity measure. Once the spatial clusters were identified, we performed a
PCA on only the time series in the cluster and examined the time-frequency structure of the
leading PC using wavelet analysis to identify the dominant time-frequency mode for that
cluster. The eigenvectors and principal component scores for the first principal component
for each cluster gave the spatial dependence structure and temporal variation within that
cluster, respectively.

Figure 3 shows a schematic of this method, with an explicit east–west clustering
divide and the identification of low-frequency signals from the leading principal compo-
nent of a cluster by means of wavelet analysis. The space-time patterns identified from
PC-Wavelet may or may not be similar to those identified from the Wave-Clust, and conse-
quently, they may exhibit different relations to the larger-scale climate indices. The wavelet
analysis, which is a building block of both the PC-Wavelet and Wave-Clust methods, is
summarized below.

Wavelet Analysis

Wavelet analysis was used as a tool to analyze the localized power variations in a time
series. We applied it here to analyze the time-frequency structure in the annual maximum
streamflow series at each site and also for each PC. The presentation below follows [45],
where the continuous wavelet transform (CWT) of the discrete-time series xt of length N
(t = 0 to N − 1), with discrete time spacing, δt is defined by:

Wt(s) =
N−1

∑
t′=0

xt′ψ
∗
[
(t′ − t)δt

s

]
(2)

where ψ∗ is the complex conjugate of the wavelet function ψ, and s is the wavelet scale.
The Morlet wavelet function was utilized in this study. The wavelet function ψ(t) is
complex, i.e., it has a real and an imaginary part. The variations in the wavelet scale s
and translations along the localized time index allow for the analysis of both the change
in amplitude versus scale and the change in amplitude versus time. A faster method to
compute the wavelet transform is via calculations in Fourier space, and to approximate the
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continuous wavelet transform, a convolution at each scale s was conducted N times. By
using the convolution theorem, the continuous wavelet transform is the inverse Fourier
transform of the product [45] given by

Wt(s) =
N−1

∑
k=0

x̂kψ̂∗(sωk)eiωktδt (3)

where x̂k is the discrete Fourier transform of xit, and ωk is the angular frequency. The
wavelet transform Wt(s) is complex and can be divided into real and imaginary parts. The
wavelet power spectrum is defined as the square of its amplitude and is given by |Wt(s)|2.
The significance level associated with the wavelet spectrum is tied explicitly to the choice
of background spectrum, which for hydro-climatic data, is often taken to be a red noise or
white noise spectrum. The red noise significance test developed by [45] involves fitting an
AR(1) model to the time series and computing its Fourier spectrum where the associated
one-sided (1 − α)% confidence limits give the α% significance levels over red noise at the
scale. We guide the reader to [45] for details.

For the Wave-Clust, at each site i, the annual maximum flood series xit is transformed
into Wti(s) as above, and the hierarchical clustering method is used to divide the sites i = 1
. . . ns into sub-groups based on the similarity of the Wti(s). For the PC-Wavelet analysis,
the time series of a principal component is used as xit, and the resulting Wt(s) is examined
for significant variance at each scale s.

3.3. Diagnostic Analysis of the Role of Low Frequency Climate Variation

The climate indices ENSO, NAO, PDO, AMO, and their interactions with the global
annual temperatures, are considered potential candidates which influence streamflow
variability within the Ohio River Basin. We analyzed the relationship of these climate
indices with the leading modes identified from the PC-Wavelet or Wave-Clust. These
relationships were analyzed first through correlation analysis, followed by linear and
non-linear regression methods. A further description of these methods is provided below.

3.3.1. Correlation Analysis

Wavelet coherence is used to assess the relationship between the dominant modes of
variability in the annual maximum streamflow data and the known global or hemispheric
modes of atmospheric variability [45,46]. The wavelet coherence R2

t is defined as:

R2
t =

∣∣∣S(s−1Wxy
t (s)

)∣∣∣2
S
(

s−1|Wx
t (s)|

2
)

S
(

s−1
∣∣∣Wy

t (s)
∣∣∣2) (4)

Wxy
t = Wx

t Wy∗
t (5)

where Wx
t is the continuous wavelet transform of xt and ‘*’ denotes the complex conjugate

of Wy
t , which is the continuous wavelet transform of yt; S is a smoothing operator, and s is

the scale. The wavelet coherence can be thought of as a localized correlation between two-
time series in the time-frequency domain, with the above equation resembling a correlation
coefficient equation. We refer the reader to [45,46] for further details on this method. The
wavelet coherences were computed and generated using the ‘biwavelet’ package in R [47].
Furthermore, we also looked at the direct correlation between the PCs and the climate
indices using the Pearson correlation coefficient [48].

3.3.2. Linear Regression with Regularization and Variable Selection

The least absolute shrinkage and selection operator (LASSO) is a linear regression
method that performs both regularization and variable selection [49]. Lasso is a penalized
selection method that minimizes the residual sum of squares, which is subject to the sum
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of the absolute value of the coefficients and is less than a constant [50]. The coefficients β j
of the linear relationship between a response variable Yi and p predictors Xij were solved
by minimizing the cost function:

n

∑
i=1

(
Yi −

p

∑
j=1

Xijβ j

)2

+ λ
p

∑
j=1

∣∣β j
∣∣ (6)

where, λ ≥ 0 is the shrinkage parameter.
This is subject to the constraint:

∑j

∣∣β j
∣∣ ≤ t (7)

The parameter λ controls the magnitude of shrinkage that is applied to the model and
is selected using leave-one-out cross-validation. This formulation leads to a sparse solution
where several of the coefficients β j are set to zero if the corresponding predictor does
not contribute significantly to the dependent variable. This translates into an automatic
variable selection. This analysis was carried out using the glmnet package [51] in R.

3.3.3. Non-Linear Regression

Random forests are a class of ensemble learning methods that use decision trees as the
building blocks [52]. They can be used for either classification or in a regression setup. In a
regression setup, the mean of the predictions across the ensemble of decision trees is used
as the estimate.

A random forest consists of an ensemble of decision trees, where each tree is con-
structed using a bootstrapped (sampling with replacement) sample of the data. The CART
algorithm is then used to train the decision trees. In addition to the bootstrap, a subset of
the variables is selected at random, and the best split is based on that limited subset only
(52). Since the input training data for each tree are drawn at random, and a subset of the
variables are used for node splitting, random forests overcome the issue of overfitting and
the high variance faced by modeling individual decision trees. The bootstrapping of the
training data, leaving out a fraction of the data that is not used for training that decision
tree, is then used to compute the out-of-bag estimate, thereby providing validation in spite
of using the entire data to train the algorithm.

Random forest models allow for the computation of a variable importance measure,
which can be used to perform variable selection or identify relevant variables/features.
The variable importance is decided using the Gini impurity criterion [53]. The ’Random-
Forest’ [54] package in R is used to fit these models.

4. Results
4.1. Diagnosis of Low Frequency Variations and Space-Time Signatures for the ORB

The PC-Wavelet and Wave-Clust methods were applied to the annual maximum
streamflow data across the Ohio river basin to identify the low-frequency variations and
space-time signatures of the data (Figures 4 and 5). The first and second principal compo-
nents of annual maximum streamflow data explain ~39% and 16% of the total variance,
respectively, adding up to 56% of the total variance (Figure A1). Hierarchical clustering,
when applied to the wavelet-transformed streamflow data, led to the identification of
two primary clusters among the stream gauges (Figure A2). The leading two principal
components and the two clusters from the Wave-Clust were subsequently analyzed further.
The two methods led to consistent results in the identification of the dominant space-time
frequency structure of floods for the leading PC (Figure 4) but diverged for the second
dominant mode of variability (Figure 5).
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Figure 4. PC-Wavelet analysis ((a)) on the first principal component of the annual maximum stream-
flow data. Wave-Clust analysis ((b)) on the leading principal component of the first largest cluster of
the annual maximum streamflow. For each subplot: (A)—The principal component score with the
local polynomial regression (7-year span) fit was in red. (B)—The eigenvectors of the principal com-
ponent for the associated stream gauges. The color grey denotes stream-gauges not in the cluster for
Wave-Clust. (C)—Global wavelet spectrum of the principal component score. The red and black lines
correspond to the 90% significance level for red and white noise, respectively. (D)—Wavelet power
spectrum of the principal component score. The regions bounded in thick contour line are significant.
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Figure 5. PC-Wavelet analysis ((a)) on the second principal component of the annual maximum
streamflow data. Wave-Clust analysis ((b)) on the leading principal component of the second largest
cluster of the annual maximum streamflow. For each subplot: (A)—The principal component score
with the local polynomial regression (7-year span) fit in red. (B)—The eigenvectors of the principal
component for the associated stream gauges. The color grey denotes stream-gauges not in the cluster
for Wave-Clust. (C)—Global wavelet spectrum of the principal component score. The red and black
lines correspond to the 90% significance level for red and white noise, respectively. (D)—Wavelet
power spectrum of the principal component score. The regions bounded in thick contour line
are significant.
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Figures 4 and 5 show the application of the PC-Wavelet and Wave-Clust methods to the
leading and second dominant mode of variability affecting the annual maxima streamflow
within the Ohio River Basin. For PC1, the associated spatial pattern reflected a positive cor-
relation across all but two of the southeastern gauges. Focusing on the temporal domain, the
wavelet spectrum for PC-1 of the entire field (Figure 4(a-C)) and for the first wavelet cluster
(Figure 4(b-C)) showed a sharp peak around 6–7 years, which was statistically significant at
the 90% level relative to a red noise null hypothesis. This finding was particularly evident
pre-1960 (sub-panel D). Visually, the time series (sub-panel A) exhibited a much higher
variance pre-1970 than in the 1970–1990 period. Episodic variability organized over an
approximately three-year period was also seen to be statistically significant at the 90% level
relative to the red noise null hypothesis. The second principal component from PC-Wavelet
(Figure 5a) and the leading PC of the second largest cluster (Figure 5b) both contained large
secular trends. The 1930s–1960s are periods characterized by a large number of exceedances
(Figure 2) and where the wavelet power spectrum is significant (Figure 4(a-D,b-D)). It also
shows that large regions have similar spectral signatures, possibly pointing to regions that
have similar dynamics or are forced by global external climatic variability.

The leading mode captures the dynamics of the aggregate (lower Ohio) basin with a
key 6–7-year periodicity and a weaker 12-year cycle (Figure 4). The second mode highlights
the eastern-western divide within the basin with few characteristic low-frequency variations
but also indicates the presence of a strong trend. This secular trend could be modulated by
an extremely low-frequency variation or anthropogenic climate change. It is likely to be
related to a systematic displacement west of the meridional moisture flow from the Gulf of
Mexico coming into the Ohio River Basin [55,56].

Overall the order of processing space-time (PC-Wavelet) or time-space (Wave-Clust)
can lead to different insights. For PC1 and cluster 1, the difference is small because the
same dominant pattern was identified, and the dominant cluster had 18 (out of 24) stations
representing the group’s frequency behavior. The PC1 eigenvectors suggest that this is
more or less the average spatial behavior across the sites since they are all of the same sign.
The differences across sites are in the eigenvector coefficients, representing the varying
degree of participation in the regional pattern. In this case, the inter-annual modes are
identified as the regional feature by the space-time (PC-Wavelet) analysis. Correspondingly,
the stations that participated the most in the same frequency structure are identified as the
dominant cluster by the time-space (Wave-Clust) analysis.

However, since the clustering process is disjunctive, in that stations assigned to
cluster 1 cannot show up in cluster 2, the second cluster now represents a much smaller set
of stations, and the dominant feature in these stations emerges as a secular trend or shift. By
this time-space (Wave-Clust) method, this shift is associated with just these four stations.

However, by looking at the space-time (PC-Wavelet) analysis, we can see that the
corresponding PC-2 actually exhibits a spatial pattern that has a dipole structure, and in
conjunction with the trend in the time series, we understand that this is also a regional
pattern with a secular trend that indicates a post-1960 decline in the flood magnitudes in
the Eastern part of the basin relative to the Western part of the basin. The time series of the
PC-2 and the average of Cluster 2 are similar, with the only difference being that cluster 2
has a minimal inter-annual variability, and the long-term trend dominates.

4.2. Diagnosis of Relations with Climate Indices

As hypothesized earlier, large-scale climate drivers may induce a spatiotemporal
structure in the annual maxima streamflow series across sites, even if the flows do not occur
simultaneously across all the sites in each year. The large-scale climate indices considered
were ENSO, PDO, NAO, AMO, and their interactions with each other. We also included
the lagged annual global temperature as a proxy of the long-term climate trend due to
anthropogenic climate change. Overall, we explored the possibility of the joint influence of
global climate variability through these climate indices in addition to the climate change
signal, which influenced the climate indices. Since the modes computed from the PC-
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Wavelet and Wave-Clust are similar and PC-Wavelet represented the entire region, the
modes computed from PC-Wavelet were retained for subsequent analysis.

4.2.1. Correlation Analysis

The leading modes of streamflow variability within the Ohio River Basin were first
analyzed to explore the influence of hemispheric climate variability through climate indices
and the long-term global warming trend. The leading principal component (PC-1), which
explains 39% of the total variance, is the dominant mode of the regional flow variability. It
has a significant Pearson correlation coefficient with only ENSO (r = −0.27) at the 5% level
(Figure 6). PC-1’s correlation with other indices, including temperature, which serves as a
proxy for the anthropogenic climate trend, is low and non-significant. Figure 6 provides
the correlation values between PC-1, PC-2, and other climate indices.
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Figure 6. Pearson correlation coefficients of the leading (PC1) and second (PC2) principal components
of the entire data with climate indices. Values in white are not significant at the 5% level. Double
labels, for example, ENSO–NAO, denote interactions between ENSO and NAO. Temp denotes the
global annual temperature time series.

In the time-frequency domain, PC-1 has a strong peak in variance near the 6–7-year
band, which is significant at the 10% level relative to a hypothesis of red or white noise,
along with a weaker and lower frequency of a 12-year cycle (Figure 4(a-C)). The global
wavelet spectrum of the Niño 3.4 index (ENSO) averaged over Dec-Jan-Feb shows elevated
variance associated with the 5–7 year band, which is significant at the 10% level, a key
characteristic of the ENSO phenomenon, along with a weaker 12–14 year periodicity
(Figure 7A). The power associated with the 5–7 year interannual band was highest in
the broad periods of our data records (1940–1960, 1980–2000) (Figure 7B). The wavelet
coherence between PC-1 and the ENSO index showed high coherency in the 12-year cycle
post-1980s and was significant at the 10% level (Figure 7C), which is suggestive of a
connection between the two. Further, the phase angle indicates that ENSO leads PC-1 by a
period of 1 year at this frequency.

The second principal component PC-2, which explains 16% of the total variance
in annual maxima streamflow variability, was characterized by a long secular trend
(Figure 5(a-a-C)). PC-2 has high correlations with NAO (r = −0.26), PDO-AMO (r = 0.28),
and temperature (r = −0.43), all of which are significant at the 5% level (Figure 6). Overall,
the nature of the trend in PC-2, which filters information on the east–west divide, mirrors to
a large degree the long-term trend in temperature that is driven by anthropogenic warming.



Hydrology 2023, 10, 67 11 of 16

Hydrology 2023, 10, x FOR PEER REVIEW 11 of 16 
 

 

5 (a-a-C)). PC-2 has high correlations with NAO (r = −0.26), PDO-AMO (r = 0.28), and 

temperature (r = −0.43), all of which are significant at the 5% level (Figure 6). Overall, the 

nature of the trend in PC-2, which filters information on the east–west divide, mirrors to 

a large degree the long-term trend in temperature that is driven by anthropogenic warm-

ing. 

 

Figure 7. PC-1 and ENSO Index. (A)—Global wavelet spectrum of ENSO index. The red and black 

line in the global wavelet spectrum denote the 90% level relative to a hypothesis of red or white 

noise. (B) Wavelet power spectrum of the ENSO index. (C) Wavelet coherence between the 1st prin-

cipal component of the data and the ENSO index. Warmer colors denote higher power/correlation, 

while cooler colors denote lower power/correlation. The regions bounded in thick contour lines are 

significant. 

4.2.2. Linear Regression 

Figure 8 (top) shows the cross-validated results for lasso regression with PC-1 as the 

dependent variable and the climate indices with their interactions and temperature as the 

independent variables. ENSO is the only variable selected, whereas the coefficients of all 

other variables are pushed to zero when the cross-validated mean squared error is the 

lowest. This corresponds to the dashed line in Figure 8 (top). Furthermore, the removal of 

the other ten variables leads to a decrease in the cross-validated error, indicating that no 

linear combination of any subset for the non-ENSO variables is useful for predicting PC-

1.  

Lasso regression with PC-2 as the dependent variable results in the inclusion of mul-

tiple variables for the lowest cross-validated error. Temperature, PDO, NAO, AMO, and 

PDO-AMO are the selected variables when the shrinkage penalty is log(λ) ≈ −2.5. The 

other dotted line (log(λ) ≈ −1) to the right in Figure 8 (bottom) corresponds to the largest 

value of the shrinkage parameter (most parsimonious with the least number of predictors) 

such that the value of the cross-validated error is within one standard deviation of the 

minimum error. This scenario includes only temperature as the independent variable, 

with all others, pushed to zero, highlighting the role of temperature as the most important 

variable in this subset for predicting PC-2. 

Figure 7. PC-1 and ENSO Index. (A)—Global wavelet spectrum of ENSO index. The red and black
line in the global wavelet spectrum denote the 90% level relative to a hypothesis of red or white noise.
(B) Wavelet power spectrum of the ENSO index. (C) Wavelet coherence between the 1st principal
component of the data and the ENSO index. Warmer colors denote higher power/correlation,
while cooler colors denote lower power/correlation. The regions bounded in thick contour lines
are significant.

4.2.2. Linear Regression

Figure 8 (top) shows the cross-validated results for lasso regression with PC-1 as the
dependent variable and the climate indices with their interactions and temperature as the
independent variables. ENSO is the only variable selected, whereas the coefficients of all
other variables are pushed to zero when the cross-validated mean squared error is the
lowest. This corresponds to the dashed line in Figure 8 (top). Furthermore, the removal of
the other ten variables leads to a decrease in the cross-validated error, indicating that no
linear combination of any subset for the non-ENSO variables is useful for predicting PC-1.
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Figure 8. Cross-validated lasso regression plots for (top) PC-1 and (bottom) PC-2 as the independent
variables. The x-axis is the log of the shrinkage penalty, and the y-axis is the cross-validated mean
squared error. The numbers at the top of the plot indicate the number of variables with non-zero
coefficients at that shrinkage parameter. The dotted line denotes the cross-validated value with the
lowest mean-squared error.

Lasso regression with PC-2 as the dependent variable results in the inclusion of
multiple variables for the lowest cross-validated error. Temperature, PDO, NAO, AMO,
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and PDO-AMO are the selected variables when the shrinkage penalty is log(λ) ≈ −2.5.
The other dotted line (log(λ) ≈ −1) to the right in Figure 8 (bottom) corresponds to the
largest value of the shrinkage parameter (most parsimonious with the least number of
predictors) such that the value of the cross-validated error is within one standard deviation
of the minimum error. This scenario includes only temperature as the independent variable,
with all others, pushed to zero, highlighting the role of temperature as the most important
variable in this subset for predicting PC-2.

4.2.3. Non-Linear Regression

Random forest models were fit separately with PC-1 and PC-2 as dependent variables.
Each model was fit with 10,000 individual trees, and

√
11 ≈ 3 variables were used at each

split. The models, as non-linear regression counterparts of the lasso, were used to identify
a subset of pertinent variables to the dependent variables.

Figure 9A denotes variable importance when PC-1 is used as a dependent variable in
a random forest regression setting. ENSO came up as the most important variable in this
case, followed by ENSO-AMO and ENSO-PDO. The temperature showed up as the most
important variable when PC-2 was the dependent variable (Figure 9B). This was followed
by PDO-AMO, NAO, PDO-NAO, and AMO-NAO, which had similar levels of importance.
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Figure 9. Variable importance plots for random forest models with (A) PC-1 and (B) PC-2 as the
dependent variables. The y-axis denotes all the independent variables used in this study, while the
x-axis is a measure mean decrease in Gini or how much the model error increases when a particular
variable is randomly permuted or shuffled.

Overall, given the regression analysis on climate indices in addition to the diagnos-
tic analysis, our interpretation is that the region has two dominant modes of long-term
variability. The leading principal component PC-1 is associated with ENSO and marked
by inter-annual variability, and it seems to have a basin-wide impact. The second leading
mode, PC-2, is characterized by a long secular trend, and its primary climate association
appears to be with the global warming trend, with a possible association identified be-
tween some of the lower frequency climate indices. PC-2 reflects a west–east shift in the
incidence of flooding since the 1960s and correlated best with global annual temperature.
If indeed this is due to anthropogenic climate change-induced global warming, then it
is an interesting observation indicating a spatial shift in the sub-basins that are likely to
be flooded.
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5. Summary

This paper was motivated by the need to better understand compound flood risks
at the river basin scale in terms of the potential for spatial and temporal clustering of
floods. We noted that the temporal pattern of the number of annual exceedances for the
10-year return period annual maximum flood at the 24 sites was extremely unlikely to
have occurred by chance if the data indeed included spatially and temporally independent
random variables. This begged the question of whether there were spatial patterns of
flooding with distinct quasi-periodic or secular trends that could be related to large-scale
climate variability, including anthropogenic global climate change.

Recognizing that the answer to this question may be sensitive to whether we first
identified dominant spatial patterns and then looked at the time-frequency structure
or if we identified the time-frequency structure at each site and then looked for spatial
similarities in those patterns, we used the PC-Wavelet and the Wave-Clust methods to
decompose the space-time-frequency structure in the 24-time series. For the leading
modes of variability that accounted for about 56% of the spatial correlation in the flood
occurrence process, we found that the order of processing space-time or time-space made
a difference in the insights that could be drawn. The leading PC represents a common
behavior across the Ohio River Basin with quasi-periodic variability at the inter-annual
and decadal time scales that appeared to be associated with similar variability in the ENSO
index. The second PC represented an east–west dipole or negative correlation that was
associated with a pronounced secular trend and appeared to be associated most strongly
with the global temperature index reflecting a shift in the likelihood of flooding from the
eastern to the western part of the basin. This is an interesting find that reinforces not just
increased moisture in the atmosphere due to warming but subtle shifts in circulation modes,
which lead to spatial shifts in flood occurrence that may be of considerable interest for
researchers to understand as they project future flood risks, especially from a compound
risk perspective; this translates into a need to better understand the spatial structure of
flood incidence over the entire flood season in a regional context of the larger river basin.
The analysis also highlights the need to develop statistical methods for the multi-scale
conditioning of compound extremes accounting for the slower climate variations that
induce synoptic event structures that favor such clustering.
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