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Abstract: Sediment deposition in river channels from various topographic conditions has been one
of the major contributors to water quality impairment through non-point sources. Soil is one of the
key components in sediment loadings, during runoff. Yazoo River Watershed (YRW) is the largest
watershed in Mississippi. Topography in the watershed has been classified into two types based on
land-use and slope conditions: Delta region with a slope ranging from 0% to 3% and Bluff hills with a
slope exceeding 10%. YRW spans over 50,000 km2; the Soil and Water Assessment Tool (SWAT) was
used to estimate soil-specific sediment loss in the watershed. Soil predominance was based on spatial
coverage; a total of 14 soil types were identified, and the sediment contributed by those soils was
quantified. The SWAT model was calibrated and validated for streamflow, sediment, Total Nitrogen
(TN), Total Phosphorus (TP), and Crop yield for soybeans. Model performance was evaluated using
the Coefficient of determination (R2), Nash and Sutcliffe Efficiency index (NSE), and Mean Absolute
Percentage Error (MAPE). The performance was good for streamflow, ranging between 0.34 and 0.83,
and 0.33 and 0.81, for both R2 and NSE, respectively. Model performance for sediment and nutrient
was low-satisfactory as R2 and NSE ranged between 0.14 and 0.40, and 0.14 and 0.35, respectively. In
the case of crop yield, model performance was satisfactory during calibration and good for validation
with an R2 of 0.56 and 0.76 and with a MAPE of 11.21% and 10.79%, respectively. Throughout YRW,
soil type Smithdale predicted the highest sediment loads with 115.45 tons/ha/year. Sediment loss in
agricultural fields with a soybean crop was also analyzed, where soil type Alligator predicted the
highest with 8.37 tons/ha/year. Results from this study demonstrate a novel addition to the scientific
community in understanding sediment loads based on soil types, which can help stakeholders in
decision-making toward soil conservation and improving the environment.

Keywords: water quality; soils; watershed modeling; hydrology; SWAT

1. Introduction

Soil loss due to human intervention has been prevalent since pre-historic times [1].
Human-induced activities such as deforestation, fire, agricultural practices, mining, etc.,
have increased soil erosion with time [2,3]. Global cultivable land has been classified as
having moderate to severe soil erosion [4]. The advent of technology and its development
helped in finding scientific solutions to this problem. Soil erosion not only poses a threat
to the environment but also has implications for the economic aspects of agriculture,
silviculture, and other human-dependent activities [5,6]. Sediment loads in surface water
have been a key component in water quality impairment [7]. It has adverse effects on
aquatic life by increasing the turbidity in the stream channels, channel aggradation, etc. [7,8].
The soil that is eroded is prominently the topsoil, which is the most fertile and where
the nutrients are most easily accessible to the majority of crops, resulting in crop yield
reduction [9,10]. Waterborne erosion of soil is a vigorous phenomenon with numerous
intricacies concerning the intensity of precipitation, slope, soil type, etc., resulting in the
loss of cultivable soils [11–13].
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Agricultural runoff is one of the major non-point sources (NPS) contributing excessive
sediment and nutrient loads to rivers and stream channels [14,15]. Watersheds with domi-
nant agricultural land use produce runoff-carrying topsoil as sediment load, a pollutant
source that is deposited into the surface water [16]. Therefore, this study analyzes the
sediment loads from the agriculture-dominant and forested regions of the watershed. Nu-
merous programs and studies have indicated that the implementation of Best Management
Practices (BMPs) is one of the effective ways to mitigate sediment and nutrient loss from
NPS pollutants [17–21].

The Mississippi river basin has the largest drainage area in the United States (US),
transporting sediments from the provinces of Canada, passing through 31 states of the US,
and draining into the Gulf of Mexico, resulting in eutrophication, sedimentation, depletion
in the coral reef, etc. [22–25]. Soil particles are key constituents of sediments, each soil type
is different in terms of erodibility, which depends on clay, silt, and sand (CSS) content,
including soil biophysical properties, etc. [26,27]. Based on the particle size and presence
of organic matter, soil bulk density and porosity vary. YRW has more than 50 different
types of soil, with varied CSS signatures, and the watershed drains into the Mississippi
river at Vicksburg, MS. Sediment load also depends on peak flow, crop cover, slope length,
and the conservation practice that is implemented in the region [28]. Therefore, it is
essential to quantify each soil erosion potential variation for implementing appropriate
conservation practices.

Modeling tools had been extremely helpful in estimating outputs for desired fields;
they are minimally invasive, robust, and accurate [29]. Numerous models have been devel-
oped such as the Revised Universal Soil Loss Equation (RUSLE) [30]; Water Erosion Predic-
tion Project (WEPP) [31]; Annualized Agricultural Non-Point Source (AnnAGNPS) [32];
Soil and Water Assessment Tool (SWAT) [33], etc., to understand sediment and hydrologic
processes in watersheds. SWAT has been used globally, for estimating hydrologic and
water quality output for various watersheds [34–42]. The SWAT model has been used in
this study for the Yazoo River Watershed (YRW), which has a drainage area of more than
50,000 km2, with a heterogeneous landscape and land-use patterns. Mississippi is one of
the largest producers of soybean, about 2.1 million acres are planted and harvested in the
USA [43]. Almost half of the total watershed area was occupied by agricultural land, and
the major crop during the simulation period was soybean. It is essential to have knowledge
about implementing the conservation practices of BMP for optimal utilization of resources
and to avoid any economic losses [20,44]. The SWAT model uses the Modified Universal
Soil Loss Equation (MUSLE) [45] for estimating sediment loads, MUSLE considers peak
flow instead of rainfall erosivity in the Universal Soil Loss Equation (USLE) [46]. SWAT
uses the MUSLE with the coarse fragment factor (CFRG) to account for the effect of rock
percentage while erosion occurs [47]. Recent studies indicate that the application of the
MUSLE in watersheds with heterogeneous topography has resulted in accurate sediment
load assessments [48–52]. Research on watershed scale sediment load assessment based
on soil type and their predominance is very limited and this study introduces sediment
loadings based on soil types. Therefore, the objectives of this study were to (i) develop a
watershed scale model for YRW; (ii) calibrate and validate the model for hydrologic, water
quality, and crop yield parameters; and (iii) quantify the effect of soil spatial variation on
sediment loads in YRW.

2. Materials and Methods
2.1. Study Area

YRW has a drainage area of about 50,000 km2 with nearly 47% agricultural land, 50%
forested land, and 3% urban, wetlands, and water. YRW spreads across 30 counties in the
state of Mississippi, making it the largest watershed in the state, as shown in Figure 1. The
forested area is located toward the northeastern part and the agricultural on the western
part of the watershed. The majority of the agricultural land is in the Mississippi Delta,
with largely flat slopes. Numerous soil types were found in the watershed but few of
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them covered the majority of the area. Major soil types found in the region belonged to
hydrologic soil groups B, C, and D, listed in Table 1; these soils have moderate to high
erosive potential.

Hydrology 2023, 10, x FOR PEER REVIEW 3 of 13 
 

 

forested area is located toward the northeastern part and the agricultural on the western 
part of the watershed. The majority of the agricultural land is in the Mississippi Delta, 
with largely flat slopes. Numerous soil types were found in the watershed but few of them 
covered the majority of the area. Major soil types found in the region belonged to hydro-
logic soil groups B, C, and D, listed in Table 1; these soils have moderate to high erosive 
potential. 

 
Figure 1. Watershed location showing weather stations and USGS gages. 

Table 1. List of predominant soils based on area coverage and clay silt sand percentages. 

Sc. No. Soil Name No. of HRUs Hydrologic Soil 
Group 

Area (ha) Clay-Silt-Sand % % Watershed Area 

1 Alligator 213 D 422,447.36 57-39-4 8.32 
2 Arkabutla 83 B, C, D 60,583.066 19-67-14 1.2 
3 Collins 77 B, C 146,331.57 12-69-19 2.88 
4 Cuthbert 76 C 65,710.24 13-20-67 1.3 

Figure 1. Watershed location showing weather stations and USGS gages.



Hydrology 2023, 10, 62 4 of 13

Table 1. List of predominant soils based on area coverage and clay silt sand percentages.

Sc. No. Soil Name No. of HRUs Hydrologic
Soil Group Area (ha) Clay-Silt-Sand % % Watershed Area

1 Alligator 213 D 422,447.36 57-39-4 8.32
2 Arkabutla 83 B, C, D 60,583.066 19-67-14 1.2
3 Collins 77 B, C 146,331.57 12-69-19 2.88
4 Cuthbert 76 C 65,710.24 13-20-67 1.3
5 Dowling 143 D 239,293.23 59-37-4 4.71
6 Dubbs 54 B 64,831.75 13-45-42 1.27
7 Dundee 68 C 169,239.4 17-65-18 3.34
8 Falaya 102 B, C 146,458.34 12-68-20 2.89
9 Forestdale 67 D 148,385.51 28-54-18 2.91

10 Loring 64 C, D 87,445.78 17-78-5 1.73
11 Memphis 176 B 227,375.2 17-77-6 4.48
12 Smithdale 294 B 364,190.11 8-25-66 7.16
13 Sharkey 178 D 451,143.45 62-35-3 8.86
14 Tensas 51 D 11,866.65 33-47-20 1.17

Total 2,605,301.66 52.22

2.2. Model Description

SWAT is a GIS-based hydrologic and water quality model developed by the United
States Department of Agriculture—Agriculture Research Services (USDA-ARS) [33]. It is
developed as an extension of ArcGIS [53]. SWAT model was made by combining numerous
models [29] such as Groundwater Loading Effect on Agricultural Management Systems
(GLEAMS) [54], Erosion Productivity Impact Calculator (EPIC) [55], Simulator for Water in
Rural Basins (SWRRB) [56], Chemical, Runoff and Erosion from Agricultural Management
Systems (CREAMS) [57], and Routing Outputs to Outlet (ROTO) [58] models. SWAT is
capable of estimating streamflow, sediment, and nutrient outputs at daily, monthly, and
yearly time steps, and the larger watershed is delineated into smaller sub-basins, which
can be further investigated at much smaller Hydrologic Response Units (HRU). This model
is beneficial for running simulations for longer periods.

2.3. Model Data Inputs

SWAT is a data-driven model, some of the primary inputs for the model are Digital
Elevation Models (DEM) [59] with 30 m × 30 m resolution; Soil data layers from the Soil
Survey Geographic (SSURGO) database [60]; Cropland Data Layer from USDA—National
Agriculture Statistical Service [61]; Weather data mainly precipitation and temperature from
National Oceanic and Atmospheric Administration [62]; Crop management inputs such as
scheduling planting date, fertilizer inputs, irrigation, pesticide inputs, and harvest dates
for Soybean Crop were obtained from Mississippi Agricultural and Forestry Extension
Service [63]; Organic manure inputs were given as per ASABE manure Standards [64] and
Forest Management inputs were obtained Mississippi Forestry Commission Handbook [65].

2.4. Calibration and Validation

SWAT model for YRW calibrated and validated for streamflow, sediment, TN, and
TP. Streamflow had been calibrated from 2005 to 2008 and validated from 2009 to 2012.
Observed daily flow in m3/s was obtained from the United States Geological Survey [66].
SWAT—Calibration Uncertainty Program (SWAT-CUP) is an auto-calibration tool, which
uses Sequential Uncertainty Fitting—2 (Sufi—2) algorithm for adjusting multiple parame-
ters [67]. Sediment, TN, and TP were calibrated from 2014 to 2016 for the Big Sunflower—
USGS gage station at Merigold, MS, and validated for the same period Bogue Phalia—USGS
gage station at Leland, MS. Observed Sediment, TN, and TP data were obtained from the
field-collected samples at bi-weekly intervals from 2014 to 2016. Manual calibration method
was adopted to calibrate sediment and nutrient outputs. Statistical indices such as Coeffi-
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cient of determination (R2) [68], Nash and Sutcliffe Efficiency index (NSE) [69], and Mean
Absolute Percentage Error (MAPE) [70] were used to determine the model performance
during calibration and validation of streamflow, sediment, and nutrient loads and crop
yield. Sensitive parameters for Hydrologic and water quality parameters were listed in the
study conducted by Venishetty and Parajuli, in 2022 [71]. Calibration of crop yield was
performed to account for the errors possible in estimating runoff, soil erosion, and water
balance due to uncalibrated crop growth/yield [72,73]. Sensitive parameters in calibrating
crop yield were obtained from different studies [74–77] Table 2.

Table 2. Sensitive parameters adjusted during calibration and validation of crop yield.

Crop Yield Parameters Definition Fitted Value

BIO_E ((kg/ha)/(MJ/m2)) Biomass Energy ratio 25
HVSTI ((kg/ha)/(kg/ha)) Harvest Index 0.34

BLAI (m2/m2) Maximum Potential Leaf area index 6
WSYF ((kg/ha)/(kg/ha)) Lower limit corresponding to harvest index 0.01

DLAI (Heat units/heat units) Fraction of the plant growing season when
leaf area begins to decline 0.6

2.5. Sediment Load Estimation

Modified Universal Soil Loss Equation (MUSLE) [45] is used in sediment load estima-
tion by SWAT and was developed as an improvement to USLE. Sediment calculations were
performed based on runoff factor where the energy required for soil particle separation
and transportation was included. Delivery ratios in rainfall erosivity factor (R) of USLE
consider just the energy required for soil particle separation. Therefore, the results from
USLE resulted inaccurate while estimating sediment load by water quality models. The
following Equation (1) is used while calculating sediment load with MUSLE [47]:

Y = 11.8
(
Q ∗ qp

)0.56 ∗ K ∗ LS ∗ C ∗ P ∗ CFRG (1)

CFRG = e(−0.053 ∗ rock %) (2)

where Y is Storm specific sediment yield in metric tons (MT); Q is runoff volume of the
respective storm event, measured in m3; qp is peak runoff rate, measured in m3/s; K is soil
erodibility factor, K values are assigned based on soil and topographic conditions by the
model, using the equations listed in the SWAT—Input/output Documentation [74]. The
SWAT model assigned default K values based on HRU characteristics were used in this
study. LS is the slope length and slope gradient factor; C is the crop management factor; P
is the conservation practice factor; and 11.8 and 0.56 are unit conversion factors to MT. The
CFRG is the coarse fragment factor.

2.6. Soil Classification

Soil Classification was performed by using the soil input file from the SSURGO
database that was extracted from the soil layer [60]. Soil profile for all the HRUs was
identified including the CSS percentages. Major soil types in the watershed had been
isolated based on the area covered by the soils and the number of HRUs present in each soil.
Each soil type was matched based on the unique identification number in each subbasin
obtained from the HRU report generated by the model. A minimum of 50 HRUs was
set as the threshold during the analysis. The majority of these soils were classified under
hydrologic soil groups B, C, and D, which were moderate to severe erodible soils, as
mentioned in Table 1.
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3. Results and Discussion
3.1. Calibration and Validation

Model calibration and validation were performed monthly for streamflow, from 2005
to 2008, and from 2009 to 2012, respectively, at seven USGS gage stations in the watershed.
Overall model performance was good, with R2 ranging from 0.34 to 0.83 and NSE from 0.33
to 0.81 during calibration, and R2 0.65 to 0.78 and NSE from 0.57 to 0.75 during validation,
as shown in Table 3. The calibration and validation trends are shown in Figure 2 for the
USGS gage station in Skuna River at Bruce, MS (Station number. 7283000).

Table 3. Streamflow calibration and validation from 7 gage stations in the watershed.

Sc. No Gage Station USGS Gage
Station Number

Calibration Validation

R2 NSE R2 NSE

1 Skuna River,
Bruce, MS 7283000 0.83 0.81 0.71 0.7

2 Big Sunflower,
Sunflower, MS 7288500 0.75 0.71 0.66 0.59

3 Little Tallahatchie,
Etta, MS 7268000 0.63 0.60 0.77 0.68

4 Big Sunflower,
Merigold, MS 7288280 0.66 0.65 0.72 0.61

5 Bouge Phalia,
Leland, MS 7288650 0.81 0.81 0.73 0.75

6 Tallahatchie River,
Money, MS 7281600 0.55 0.4 0.65 0.57

7 Steel Bayou,
Vicksburg, MS 7288955 0.34 0.33 0.78 0.72
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Figure 2. Streamflow calibration and validation trend at Skuna River gage (7283000), Bruce, MS, USA.

Model performance for sediment and nutrient calibration was found to be poor and sat-
isfactory, respectively, but within the acceptable range from previous studies [19,38,78,79];
this was due to extreme weather conditions while field sampling for the calibration and
validation period in the region [80], and the availability of observed data was limited, from
2014 to 2016 for two stations. Calibration was performed for the USGS gage station at
Merigold, MS; R2 and NSE for sediment were 0.18 and 0.18; TN: 0.07 and 0.12; and TP: 0.34
and 0.20, respectively. Validation for water quality parameters was performed at the USGS
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gage station at Leland, MS; R2 and NSE for sediment: 0.15 and 0.14; TN: 0.09 and 0.14; and
TP: 0.40 and 0.35, respectively.

In the case of soybean crop yield, model performance was good and verified with
previous literature [75,76,81]. For agricultural watersheds, the impact of crop yield is high
in estimating runoff, for accurate water and nutrient balance. Therefore, calibration of the
model for crop yield parameters was essential for water quality processes [72,73,82,83].
The average annual observed soybean yield was collected from USDA—NASS. Model
performance for soybean yield is shown in Table 4.

Table 4. Model performance for Soybean yield.

Soybean Yield

Process County R2 MAPE

Calibration Sunflower 0.56 11.21
Validation Leflore 0.76 10.79

3.2. Sediment Load Assessment
3.2.1. Watershed Scale

Average annual sediment loss from all the sub-basins in the watershed based on soil
coverage was estimated; our results indicated that the highest amount of sediment load
was estimated from the area with Smithdale soils, with CSS% 8-25-66 covered, which was
115.45 tons/ha/year, then followed by Loring with CSS% 17-77-6, Arkabutla with CSS% 19-
67-14, and Memphis with CSS% 17-77-6, which were 55.67, 48.17, and 44.78 tons/ha/year,
respectively. The least sediment load was estimated for Dubbs, CSS% 13-45-42, which was
about 0.22 tons/ha/year. The sediment load for 14 predominant soils was quantified and
mentioned in Table 5, in the order of highest to lowest. Figure 3 shows the comparison of
sediment load concerning soil type. The soils in Mississippi were formed during the last
glacial period about 11,700 years ago and through the Holocene. The alluvial deposits in
the Mississippi valley were formed by the Holocene Mississippi River floodplain deposits.
With time, clay, sand, and silt from the Mississippi River bed spread across the Delta and
the Bluff hill region of Mississippi [84]. The soil types simulated by the model matched the
characteristics mentioned in the soil survey reports of the Natural Resources Conservation
Service (NRCS) [60]. Although some of the soil types had moderate erodibility, they
resulted in high sediment yield due to heterogeneity in slope length, gradient, and crop
cover. These soils were in the hilly region with slopes starting from 3% and exceeding more
than 10%. With the increase in slope, slope length decreased, starting from about 91.51 m
and going as low as 24.12 m, respectively, resulting in higher runoff and sediment load.
Smithdale soils are largely located in the region with higher slopes, sand being one of the
major components of these soils, and there is less water-holding capacity. The steep slope
and lower water holding capacity resulted in increased erosion and higher sediment loads.
Although Loring soils have a similar topography, the percentage of their clay content is
higher, which has a better water-holding capacity than sand, as clay particles stick to the
ground allowing them to create some resistance [85–87].

Table 5. Sediment load of predominant soils throughout the watershed.

Rank Soil Name Sediment Load (Tons/ha/Year)

1 Smithdale 115.45
2 Loring 55.67
3 Arkabutla 48.17
4 Memphis 44.78
5 Collins 33.92
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Table 5. Cont.

Rank Soil Name Sediment Load (Tons/ha/Year)

6 Cuthbert 17.61
7 Alligator 8.37
8 Sharkey 7.28
9 Dowling 1.87
10 Falaya 1.46
11 Forestdale 0.86
12 Dundee 0.67
13 Tensas 0.28
14 Dubbs 0.22
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3.2.2. Agriculture Dominant Region

The soybean crop was chosen as a major crop in the agriculture prevalent region
since the area planted was more than 55% soybean, with the rest being corn, cotton, and
wetlands. This region was classified as delta with a constant slope, with a slope that was
1–3% and a slope length of 121.90 m, including constant cropping practices with minimal
runoff. The highest sediment load was estimated for Alligator soils with CSS% 57-39-4 as
about 8.37 tons/ha/year, followed by Sharkey with CSS 62-35-3, and Memphis with CSS
17-77-6, which were 6.55 and 4.70 tons/ha/year, respectively. The least sediment load was
estimated for the Dubbs soil type, CSS% 13-45-42, which was about 0.22 tons/ha/year. A
total of 9 out of 14 were found in this region and are listed in Table 6, with a comparative
analysis between soil types shown in Figure 4. With the advent of increased sediment
load due to topsoil loss, a moderate correlation was observed between crop yield and
sediment load; the correlation was verified and followed previous studies [12,88,89] since
the model predictions for sediments and crop yield are based on different variables. The
sediment loads are estimated considering flow, slope, topography, etc., whereas crop
yield is estimated based on seed variety, irrigation, precipitation amount, temperature, etc.
Although model predictions indicate a decrease in yield over the simulation period, the
advancement of technology and the adoption of different varieties of soybean accounted
for the yield losses [63].
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Table 6. Major soils with major agricultural land use.

Rank Soil Name Sediment Yield (Ton/ha/Year)

1 Alligator 8.37
2 Sharkey 6.55
3 Memphis 4.71
4 Dowling 1.63
5 Forestdale 0.86
6 Collins 0.73
7 Dundee 0.56
8 Falaya 0.33
8 Tensas 0.28
9 Dubbs 0.22
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4. Conclusions

Results from this study indicate that there is a significant difference in sediment
loads with respect to spatial variability for different soil types and land-use conditions.
Overall, sediment load results from the analysis show that Smithdale soils contributed the
highest amount, and the least sediment load was for Dubbs soils, for heterogeneous slope
gradient, slope length, and the crop management factor over the landscape. Although
the slope gradient, slope length, and crop management were kept constant with nominal
flow conditions, it was observed that the soil types found in the agricultural land use of
the YRW, mainly Alligator, Sharkey, and Memphis, were highly erodible. The correlation
between the sediment load and crop yield was moderate; to minimize the loss in crop yield,
new technologies have been adopted by farmers including the seeding of high-yielding
varieties. Numerous studies have discussed that the loss of topsoil in sediments has a
significant impact on crop yield since most of the plant-available minerals and nutrients
are present in the top few inches of the soil layer [9,90,91]. Therefore, it is evident that
variability in soil type resulted in variable sediment loads. The results from this research
study will provide a novel input toward soil conservation and soil-sediment dynamics.
The soil-specific analysis that was presented in this paper could assist stakeholders from
diverse backgrounds working on ecological sustainability including sediment control, water
quality, and environmental science research, in selecting appropriate crop management
and conservation practices based on the severity of erosion and sediment loading.
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