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Abstract: Extreme precipitation has become more frequent and intense with time and space. In-
frastructure design tools such as Intensity-Duration-Frequency (IDF) curves still rely on historical
precipitation and stationary assumptions, risking current and future urban infrastructure. This study
developed IDF curves by incorporating non-stationarity trends in precipitation annual maximum
series (AMS) for Dallas–Fort Worth, the fourth-largest metropolitan region in the United States.
A Pro-NEVA tool was used to develop non-stationary IDF curves, taking historical precipitation
AMS for seven stations that showed a non-stationary trend with time as a covariate. Four statistical
indices—the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean
Square Error (RMSE), and Nash–Sutcliffe Efficiency (NSE)—were used as the model goodness of fit
evaluation. The lower AIC, BIC, and RMSE values and higher NSE values for non-stationary models
indicated a better performance compared to the stationary models. Compared to the traditional
stationary assumption, the non-stationary IDF curves showed an increase (up to 75%) in the 24 h pre-
cipitation intensity for the 100-year return period. Using the climate change adaptive non-stationary
IDF tool for the DFW metroplex and similar urban regions could enable decision makers to make
climate-informed choices about infrastructure investments, emergency preparedness measures, and
long-term urban development and water resource management planning.

Keywords: extreme rainfall; non-stationary; flood probability

1. Introduction

Since 1901, precipitation intensity has steadily risen worldwide, averaging 2.54 mm
per decade [1]. Moreover, the maximum daily precipitation has increased annually in
nearly two thirds of global land areas since 1970 [2]. This trend has created wetter weather
patterns in numerous regions, including central Africa, some parts of southwest Asia (e.g.,
Thailand and Taiwan), Central America, northern Australia, and eastern Europe between
1979 and 2010 [3]. These increases in precipitation are primarily seen in humid regions of
the globe, potentially increasing flood intensity in more than 75% of those regions [4].

A comparison study performed over Europe and North America from 1951 to 1981
showed increased precipitation due to temperature rises, adding an average of 45% more
extreme rainfall between 1982 and 2013 [5]. Extreme rainfall events and even shorter
periods (hours or days) are the primary causes of flooding and infrastructure damage [6].
For example, the extreme precipitation (~203 mm in <4 h) incident in western Germany
in July 2021 caused floods with 200 fatalities and the loss of millions of dollars’ worth of
properties [7]. Further, the World Weather Attribution (WWA) noted that the intensity of
extreme daily rainfall has increased by 3% to 19% compared to the preindustrial climate,
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which was 1.2 ◦C cooler than that in 2021, making western Germany events 500-year
occurrence events [8]. Similarly, the Vietnam flood incidents of 2020 due to monsoon
rainfall in Khanh Hoa province were triggered by precipitation of up to 360 mm in 48 h.
Tropical storm Linfa, with 1520 mm rainfall, further exacerbated this event by flooding
more than 100,000 houses, damaging highways, and causing 200 deaths, with a cumulative
loss exceeding one billion United States dollars (USD) [9].

The impact of floods seems to be more severe in urban areas, as they lack natural
defenses against flooding due to intensive land-use changes associated with urban develop-
ment [10,11]. Hence, the frequency and severity of flood events in the United States (US), a
rapidly urbanizing nation, have increased significantly due to the increase in precipitation
by 5.08 mm per decade since 1900 [1], which is almost twice the average global increase of
2.54 mm per decade. Similarly, the US encountered several climate-related natural disasters
exceeding one billion USD in losses yearly. In 2021 alone, the US experienced 20 climate-
related billion-dollar disaster events, out of which 2 were related to floods (in Louisiana
and California) due to extreme precipitation (~381 mm in 12 h) [12]. The Louisiana flood
inundated around 500 buildings, blocking many roads, while the California flood caused
dozens of landslides and debris damaging homes, vehicles, businesses, and infrastructure,
along with the washing out of sections of major highways [12].

Similarly, other devastating flood events include the 2018 flooding in North Carolina,
South Carolina, and Virginia, with an average rainfall of 444.5 mm for several days, causing
a 40 billion USD loss of property and 53 deaths [13]. These examples show the vulnerability
of infrastructure, property, and lives to extreme precipitation events that have become
more frequent and severe in recent decades. Engineers and planners rely on a hydro-
logical method called the intensity-duration-frequency (IDF) curve that helps to design
infrastructure for potential design floods, such as 1000-year flood events.

The IDF curve is the mathematical relationship between the precipitation intensity
(mm per hour) or depth (inches), event duration (anywhere from a few minutes to a few
days, typically 1–24 h), and frequency, representing the average time between occurrences
(e.g., once in two years, or a 50 percent chance each year). It measures how often a storm of
a particular intensity occurs over a given period, which is crucial for designing drainage
systems. IDF relationships were established in the 1930s [14] to quantify rainfall and help
to plan and design various water resource projects. In 1961, Hershfield created the first
geographical maps of rainfall contour to prepare rain depths for several return periods and
durations [15]. Nowadays, the US Department of Transportation (US DOT) uses IDF curves
to assist in designing highways, culverts, bridges, and other transportation structures and
estimate the volume of detention basins and their outlet structures.

Similarly, the Federal Emergency Management Agency (FEMA) uses IDF curves to
produce flood maps for the US [16]. FEMA flood maps provide awareness about the
chances of flooding in an area by dividing the space into flood risk zones, indicating the
frequency and severity of flooding. Due to its broader application in infrastructure design,
planning, and flood mapping, the NOAA has developed IDF curves since the 1970s [17]
and published them as NOAA Atlas 14: Precipitation Frequency Atlas of the US (hereafter
Atlas 14). The primary purpose of Atlas 14 is to calculate annual exceedance probabilities
(AEP) and average recurrence intervals (ARI) for precipitation durations ranging from
5 min to 60 days, with ARIs ranging from 1 to 1000 years. AEP is the chance or probability of
a flooding event occurring annually, while ARI explains how often particular precipitation
events have occurred in the past. Both ARI and AEP indicate the likelihood of a specific
amount of precipitation with a particular potential of a flood occurring in the future.

Atlas 14 is published and updated periodically [18]. The updates include more re-
cent and extended precipitation data sets, currently accepted statistical approaches, and
improved spatial interpolation and mapping techniques. For example, the most recent
Atlas 14 update was released in 2018 for Texas, US, including rainfall records from the
1870s to 2017, and published as volume 11, version 2 [18]. The updated Atlas 14 for Texas
showed increased precipitation amounts compared to the older version developed using
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precipitation data until 2001. For example, in Austin, Texas, 100-year 24 h rainfall increased
by 76 mm, and events previously categorized as 100-year occurrences have now become
25-year events.

Nevertheless, NOAA has yet to change its standardized approach to deriving the
Atlas 14, i.e., based on historical precipitation data assumed to be stationary, which assumes
that the average and variance of precipitation data remain consistent over time. In other
words, a stationary assumption means an event with the return level of T-year will have a
1/T chance of occurrence in every given year. There will be no change in the frequency of
event occurrence over time [19]. Generally, Atlas 14 is developed by fitting precipitation
data on a generalized extreme value (GEV) based on an annual maximum precipitation
series (AMS), the largest rainfall recorded annually at a particular location or station [20],
or generalized Pareto distribution (GPD) based on peaks-over-threshold (POT) extremes.
GEV distributions are commonly used to represent the probability density functions (PDFs)
of AMS events. Once the GEV is fitted, the distribution can be inverted to calculate the
magnitude of an event with any specified recurrence interval. The GEV distribution
includes three parameters: location (µ), scale (σ), and shape (ξ). However, GEV and
GPD calculation methodologies will differ when considering non-stationary assumptions.
The non-stationary model is commonly applied to the GEV location parameter (µ). With
stationarity, it is assumed that precipitation data will not show any increasing or decreasing
trend. In other words, the data’s location parameter (µ) does not vary with time. However,
many studies have widely observed increasing trends in extreme precipitation, even in
places where total precipitation is not changing [21–24].

Moreover, with climate change, a naturally occurring process amplified since the
Industrial Revolution due to increased anthropogenic activities, precipitation is conspic-
uously becoming non-stationary. Therefore, developing an IDF curve with a stationarity
assumption may make the utility of such IDF curves questionable and less reliable for
infrastructure design. Cheng et al. [25] also supported that using stationary assumptions
could lead to underestimating extreme precipitation events by up to 60%, increasing the
risk of infrastructure failure due to floods. Similarly, Soulis et al. [26] compared extreme
precipitation trends in Ontario, Canada, from 1960 to 2010 and observed that, under non-
stationary conditions, the intensity of extreme precipitation for 30 min and 24 h storms
increased by 1.25% and 1.82% per decade, respectively.

Several studies across the globe have considered non-stationary assumptions to calcu-
late changes in different duration–frequency values. For example, Wi et al. [27] applied
non-stationary GEV and GPD models to analyze extreme precipitation frequency in South
Korea. They found that the stationary model underestimated design storms for all return
periods compared to the non-stationary model. While comparing GEV and GPD non-
stationary models, the design storm estimated by GPD was generally smaller than the
estimate derived from GEV. Cooley et al. [28] used a spatiotemporal Bayesian hierarchical
modeling approach to develop an IDF curve in Colorado. They produced IDF curves of var-
ious return periods, including features that the 1973 NOAA atlas left out. Cheng et al. [29]
developed a Bayesian-based framework to analyze non-stationary precipitation extremes.
They found an increase in exceedance probability by 60% under the non-stationary climate.

Thus, the primary purpose of this study is to develop IDF curves incorporating
non-stationary assumptions and then compare those IDF curves with Atlas 14 to
quantify = potential changes and provide insight into the need for the augmentation of
Atlas 14, taking an example of an urban area in the US.

2. Materials and Methods
2.1. Study Area

The Dallas–Fort Worth (DFW) metropolitan area (Figure 1) lies in north central
Texas, with 16 counties covering an area of 12,741 mi2 (~33,000 km2). It includes
two major cities (Dallas and Fort Worth) and more than 100 smaller cities with a
population of ~7.6 million (US Census Bureau’s 2020 census). Furthermore, by 2030, the
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population of DFW is projected to reach 9.1 million. Comparing the 1.52% population
growth rate in the DFW area in 2021 with the 1.1% for Texas and 0.58% for the US, the
DFW metroplex is one of the fastest-growing urban areas in the US. As a result, the
urban development in DFW has increased, resulting in more impervious surfaces and
vulnerability to flooding [30].
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Figure 1. Dallas–Fort Worth metroplex (DFW) located in north central Texas, United States with
precipitation stations (blue dots) and non-stationary-trend-exhibiting stations (red pentagons).

The DFW region, with an annual average rainfall of ~36 inches (914 mm), has
flooded several times due to extreme precipitation. Between 1900 and 2010, there was
an increase in average rainfall by 15% in the region [31]. In particular, extreme storm
events increased by ~7% between 1960 and 2020 [32]. For example, on 24 May 1986,
Fort Worth, the 2nd-largest city in the DFW metroplex, received 3.5 inches (88.9 mm) of
rainfall in an hour, causing flash flooding that cost 2 million USD in damages and caused
two fatalities [33]. Since then, the DFW metroplex has experienced at least four notable
extreme precipitation events. On 24 May 2014, three inches (76.2 mm) of precipitation
fell within 90 min, leading to the flooding of roads and infrastructure. May 2015, with
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a monthly rainfall of 16.5 inches (419.1 mm) and a daily downpour of three inches on
24 May, was the wettest May on record. This unusually high storm event resulted in
flooding and accrued an estimated 1 billion USD in insured losses of properties and
public infrastructure. On 16 January 2020, 4 inches (101.6 mm) of precipitation fell within
24 h in the region, causing flash floods, and most recently, on 22 August 2022, some
parts of DFW recorded > 13 inches (>330 mm) of rainfall in 24 h, which was equivalent
to a 0.1% chance of happening in a year as they were in a 1000-year flood event [34].
Despite this, the IDF curves (Atlas 14) developed for this region are based on a stationary
assumption. Therefore, they may not provide adequate information to plan for resilient
infrastructures that can withstand non-stationary precipitation trends and projected
increases resulting from climate change.

2.2. Data and Key Steps

This study used the daily AMS of the historical precipitation data used by NOAA to
develop their IDF curves or Atlas 14 [18]. AMS data from 88 stations in the study area were
extracted from the NOAA Precipitation Frequency Data Server (PFDS) via their web portal
(https://hdsc.nws.noaa.gov) (Access date on 11 March 2022). The study methods and key
steps are shown in Figure 2.
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Key steps include:

1. Following the methods of Atlas 14 [18], the daily duration the AMS data of 88 stations
in the study area were used for developing historical IDF curves.

2. To determine whether the AMS data followed the stationary or non-stationary trend,
two null-hypothesis significance trend tests, namely, Mann–Kendall (MK) [35] and
Pettitt (PT) [36] used in hydrology and extreme analyses, were chosen. These
two tests are popularly used and recommended in the hydrology and climate
literature [29,37,38] for analyzing hydro-climatological time series data, including
precipitation AMS [18]. Only those stations exhibiting a trend and change point
detection were selected for developing IDF curves under non-stationary conditions.

https://hdsc.nws.noaa.gov
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3. In this research, 24 h duration IDF curves were developed using Process-informed
Non-stationary Extreme Value Analysis (ProNEVA) software (https://amir.eng.uci.e
du/software.php#:~:text=Process%252Dinformed%2520Nonstationary%2520Extrem
e%2520Value%2520Analysis%2520(ProNEVA)%2520is%2520a,change%2520in%2520
statistics%2520of%2520extremes, accessed on 22 October 2023) [39], because a 24 h
duration is one of the most commonly used durations for assessing rainfall intensity
and designing drainage systems. It is also a duration of interest for flood management
in many areas.

4. ProNEVA is a statistical modeling framework developed to estimate the frequency
and magnitude of extreme events, such as floods and droughts, under stationary
and non-stationary conditions. ProNEVA is a modified and the most recent version
of the NEVA tool developed by Cheng et al. [25]. The GEV method was used for
fitting the AMS distribution, as GEV is a commonly used distribution to model
extreme events [40–43]. Moreover, NOAA used the GEV distribution function to
develop Atlas 14. The GEV distribution had three parameters as explained by
θ = (µ,σ,ξ), where the location parameter (µ) explains the center of the distribu-
tion, the scale parameter (σ) determines the size of deviations around the location
parameter, and the shape parameter (ξ) governs the tail behavior of the GEV distri-
bution. In this study, the location and scale parameters were assumed to be linear
functions of time to account for non-stationarity while keeping the shape param-
eter constant, because the shape parameter is known to be difficult to precisely
estimate, even in the stationary case [20,39]. Pro-NEVA uses the Bayes theorem for
estimating GEV parameters under the non-stationary assumption. According to the
Bayes theorem, the probability of an event occurring given some prior knowledge
and new evidence is proportional to the product of the prior probability and the
likelihood of the evidence given the event [44]. The Bayes approach is beneficial
when there is incomplete or uncertain information and decisions must be based
on probabilities [45]. It also offers uncertainty in the parameter estimates, yielding
more realistic estimations [46]. Cheng et al. [25] provided detailed explanations of
the application of the Bayes theorem in generating non-stationary IDF curves.

5. Non-stationary IDF curves were developed for stations (Figure 1) that showed a
trend (step 2) using the historical AMS data for each station as used in Atlas 14 and
applying the GEV distribution to be consistent with the method used in Atlas 14. As
the ProNEVA tool uses the Bayes theorem for estimating the GEV, prior parameters’
(µ,σ,ξ) values were calculated for each station, as listed in Table 1, and were used to
develop the IDF curves for each station. This study used time as a covariate for the
non-stationary assumption.

6. The performance of non-stationary and stationary models was evaluated using
four statistical indices—the Akaike Information Criterion (AIC), Bayesian In-
formation Criterion (BIC), Root Mean Square Error (RMSE), and Nash–Sutcliffe
Efficiency (NSE)—available in ProNEVA. AIC [47] and BIC [48] are probabilis-
tic statistical measures to quantify model performance in hydro-climatological
studies [49]. RMSE and NSE are the two most commonly used coefficients of the
goodness of fit to select models based on minimum residual [50]. The selection
of the final model in ProNEVA is based on the performance of the combination
of all four statistical metrics—the AIC, BIC, RMSE, and NSE—that maximize the
posterior distribution [39].

Then, the resulting IDF curves were compared to see if any differences could be
observed in the intensity of storm events for a particular return period (e.g., a 24 h or
100-year storm event). For each station, the percentage change in the intensity of the
extreme precipitation of the non-stationary-based IDF curves was calculated against
Atlas 14 of the respective station. The fitted GEV distribution was sampled 10,000 times
to obtain 10,000 estimates of a given rainfall depth for a given recurrence interval to
indicate the uncertainty range at the 90% confidence interval.

https://amir.eng.uci.edu/software.php#:~:text=Process%252Dinformed%2520Nonstationary%2520Extreme%2520Value%2520Analysis%2520(ProNEVA)%2520is%2520a,change%2520in%2520statistics%2520of%2520extremes
https://amir.eng.uci.edu/software.php#:~:text=Process%252Dinformed%2520Nonstationary%2520Extreme%2520Value%2520Analysis%2520(ProNEVA)%2520is%2520a,change%2520in%2520statistics%2520of%2520extremes
https://amir.eng.uci.edu/software.php#:~:text=Process%252Dinformed%2520Nonstationary%2520Extreme%2520Value%2520Analysis%2520(ProNEVA)%2520is%2520a,change%2520in%2520statistics%2520of%2520extremes
https://amir.eng.uci.edu/software.php#:~:text=Process%252Dinformed%2520Nonstationary%2520Extreme%2520Value%2520Analysis%2520(ProNEVA)%2520is%2520a,change%2520in%2520statistics%2520of%2520extremes
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Table 1. Goodness of fit and model performance between stationary and non-stationary models for
seven stations.

Stations Model
Akaike

Information
Criterion (AIC)

Bayesian
Information

Criterion (BIC)

Root Mean Square
Error (RMSE)

Nash–Sutcliffe
Model Efficiency
Coefficient (NSE)

Corsicana
Stationary 359.4 367.7 3.15 0.95

Non-Stationary 355.6 369.4 2.44 0.97

Denton
Stationary 329.0 336.9 1.71 0.98

Non-Stationary 325.9 339.0 1.41 0.99

Farmersville
Stationary 151.6 157.4 1.52 0.97

Non-Stationary 147.0 156.7 1.58 0.97

Gordon
Stationary 221.1 227.7 1.41 0.98

Non-Stationary 216.4 227.3 1.72 0.97

Gunter
Stationary 179.7 185.5 2.38 0.94

Non-Stationary 178.6 188.3 2.79 0.92

Morgan Mill Stationary 210.2 216.3 1.61 0.97
Non-Stationary 210.0 220.3 2.37 0.95

Rainbow
Stationary 235.5 242.5 1.85 0.97

Non-Stationary 231.9 243.7 1.53 0.98

3. Results

The results of the null hypothesis significant trend tests showed that, out of the
88 stations used in Atlas 14 for the DFW metroplex, Pettitt’s test showed a trend in
twelve stations, and the MK test showed a trend in eight stations. Overall, seven
stations (Corsicana, Denton, Farmersville, Gordon, Gunter, Morgan Mill, and Rainbow)
showed a trend in Pettitt’s and MK tests statistically significant (p ≤ 0.05) as shown in
Table A1. General statistical information about the annual maxima precipitation of these
seven stations is presented in Figure A1 as a side-by-side box and whisker plot. Then,
stationary and non-stationary IDF curves were developed for these seven stations. The
non-stationary model was more successful than the stationary model at most stations.
The lower AIC and BIC values, as well as lower RMSE values and higher NSE values for
the non-stationary model (Table 1), suggested a better performance of non-stationary
models over stationary models.

It was found that, with the stationary assumption, the rainfall intensities for all
return periods (2-year, 10-year, 20-year, 50-year, and 100-year) were underestimated, as
shown in Figure 3 and Table 2, representing the Corsicana, Denton, Farmersville, Gordon,
Gunter, Morgan Hill, and Rainbow stations. For the Corsicana station, the 24 h rainfall
intensity under the non-stationary condition increased by 30.8%, 32.7%, 33.3%, 34.2%,
and 35.3% for the 2-year, 10-year, 20-year, 50-year, and 100-year periods, respectively,
compared to the stationary Atlas 14. For the Denton station, the 24 h rainfall intensity
under the non-stationary condition increased by 29.4%, 58.1%, 63.6%, 65.4%, and 65.4%
for the 2-year, 10-year, 20-year, 50-year, and 100-year periods, respectively, compared to
stationary Atlas 14. For the Farmersville station, the 24 h rainfall intensity under the non-
stationary condition increased by 37.2%, 39.0%, 37.1%, 36.7%, and 34.5% for the 2-year,
10-year, 20-year, 50-year, and 100-year periods, respectively, compared to stationary
Atlas 14. For the Gordon station, the 24 h rainfall intensity under the non-stationary
condition increased by 55.5%, 69.9%, 70.1%, 71.3%, and 71.6% for the 2-year, 10-year,
20-year, 50-year, and 100-year periods, respectively, compared to stationary Atlas 14
(Figure 3). For the Gunter station, the 24 h rainfall intensity under the non-stationary
condition increased by 43.8%, 53.3%, 55.9%, 57.1%, and 60.3% for the 2-year, 10-year,
20-year, 50-year, and 100-year periods, respectively, compared to stationary Atlas 14. For
the Morgan Mill station, the 24 h rainfall intensity under the non-stationary condition
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increased by 41.9%, 44.2%, 45.8%, 49.2%, and 49.5% for the 2-year, 10-year, 20-year,
50-year, and 100-year periods, respectively, compared to stationary Atlas 14. For the
Rainbow station, the 24 h rainfall intensity under the non-stationary condition increased
by 33.7%, 58.9%, 65.5%, 71.9%, and 74.3% for the 2-year, 10-year, 20-year, 50-year, and
100-year periods, respectively, compared to stationary Atlas 14. For all stations except for
Farmersville, there was a systematic underestimation of the 24 h precipitation intensity
under the stationary condition from shorter to longer return periods by 14.6–120%.
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Table 2. Difference between Atlas 14 (stationary) and non-stationary 24 h precipitation intensities for
five return periods at seven stations in the Dallas–Fort Worth metroplex.

Stations
Percentage Change (%) One-Day Precipitation Intensities at Five Return Levels
2-Year 10-Year 20-Year 50-Year 100-Year

Corsicana 30.8 32.7 33.3 34.2 35.3
Denton 29.4 58.1 63.6 65.4 65.4

Farmerville 37.2 39 37.1 36.7 34.5
Gordon 55.5 69.9 70.1 71.3 71.6
Gunter 43.8 53.3 55.9 57.1 60.3

Morgan Mill 41.9 44.2 45.8 49.2 49.5
Rainbow 33.7 58.9 65.5 71.9 74.3

4. Discussion

While most stations in the DFW region showed stationary trends with time, it is critical
to acknowledge the non-stationarity behavior of other stations to assess the risks associated
with extreme events, especially in the face of rapidly changing climatic conditions. Ignoring
potential risks may prove costly to coupled human–natural systems [51,52]. For instance,
Underwood et al. [53] stated that non-stationary precipitation events (e.g., due to the
changing climate) could add roughly 22 to 36 billion USD in transportation and other
infrastructure costs related to pavement maintenance and new construction in the US by
2070. Further, required mitigation measures and damages associated with a non-stationary
climate are often exacerbated by growing and unsustainable urban growth; therefore,
assessment studies should not discount low-probability events [54–56].

It is difficult, yet critical, to isolate the reasons for the non-stationary behavior of
these seven stations (Figure 1) without further research. Climatic and hydrological data
analysis techniques, such as the MK and Pettit tests, have been extensively explored in
the scientific literature. Nonetheless, these tests present some differences, as underscored
by Gholami et al. [57]. While the MK test might not have a high sensitivity toward sudden
changes, the Pettit test can detect them [58]. These abrupt changes may arise from several
sources, including but not limited to climate regime shifts, anthropogenic activities such
as the construction of dam and reservoir systems, changes in land coverage and use,
agricultural practices, river water displacement, the relocation of meteorological stations,
alterations in variable calculation methods and observation time, or the modification of
large-scale atmospheric circulation [59–65].

However, some potential reasons related to stations’ locations, physical environments,
landforms, vegetation, and rural–urban fringe-creating unique microclimates might offer
some insights. The Corsicana station, located on the southeastern side of the DFW metro-
plex, displayed non-stationarity. One potential reason for this trend could be a usually
increasing west–east precipitation gradient in Texas and the US [22]. Moreover, Corsicana
is located in a low-lying area with numerous creeks and streams and is surrounded by
larger water bodies such as Richland-Chambers Reservoir, Navarro Mills Lake, and Lake
Bardwell [66]. These water bodies, along with varied landscapes, could have created a
microclimate contributing to the non-stationary trend. However, other nearby stations
with water bodies in their periphery did not display a non-stationary trend, indicating the
influence of other factors for the non-stationary trend.

One such factor could be the highly urbanized location of Corsicana. According
to Liu and Niyogi [67], urbanization modifies the rainfall amount and intensity within
different areas of a city, resulting in an increase in the mean precipitation downwind
of the city by 18%, over the city by 16%, and on the left and right of the city by 2%
and 4%, respectively. Potential changes in rainfall patterns in urban areas [68] could be
attributed to the interaction of factors such as aerosol emissions, surface roughness, and
heat storage [69]. The Denton station is situated in an urbanized area close to Lewisville
Lake. Additionally, it has a diverse topography with rolling hills. Most likely, the local
topography, the large lake effect, and its urban growth could be potential contributing
factors to the observed non-stationary trend. Some studies have suggested that location-
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specific topography and slopes that alter humidity, wind motion, and direction could
affect local extreme precipitation variability [70,71]. The stations of Gordon, Rainbow, and
Morgan Mill, situated in southwestern DFW, are adjacent to mountains on the western
side (Clayton and Palo Pinto Mountains) and numerous streams and lakes on the eastern
side, which may have added orographic effects and caused erratic and higher precipitation
events [72]. Furthermore, issues related to the screening and quality control (correction of
missing, underestimated, or erroneously recorded events) of the AMS data by NOAA [18]
could also be a potential factor. NOAA used a combination of data sources (nearby
gauges, storm reports, storm data, and radar data) to determine unconstrained 24 h annual
maximum values for extreme events. Therefore, trend tests (stationary or non-stationary)
may be subject to data mining and quality control methods.

With the non-stationary models, the benchmark 100-year return period showed an
increase of 34.5 to 74.3%, and the most frequently occurring 2-year storm event indicated
an increase of up to 55% compared to the Atlas 14. These findings in the DFW metroplex
are consistent with studies in other metropolitan regions in the US and elsewhere. For
example, a study conducted by Cheng and Aghakouchak [25] at White Sands National
Monument Station, New Mexico, found that non-stationary IDF curves produced higher
rainfall intensities than stationary IDF curves. The authors observed that the stationary
assumption underestimated extreme precipitation by as much as 60% in a 2 h duration,
2-year return period rainfall, which could potentially increase the frequency of flood risks
and infrastructure failure several folds. Another study conducted by Soumya et al. [73]
in Kerala, India, found that non-stationary IDF curves had higher rainfall intensities than
stationary IDF curves, with an increase in rainfall intensity of greater than 50% for the
100-year return period under a non-stationary assumption compared to that of a stationary
assumption. Similarly, a study conducted in the metropolitan region of Ontario, Canada,
revealed similar findings. The authors found that, for the return period of 50–100 years,
the standard stationary-based IDF curves needed to be updated by 2 to 44% to reflect the
increases associated with non-stationary-based IDF curves [74].

While incorporating non-stationary assumptions into IDF curve development provides
benefits, some limitations should be considered. First, the consideration that non-stationary
assumptions require more complex statistical approaches and modeling techniques than
including stationary assumptions. Moreover, non-stationary assumptions may produce
results with higher uncertainties when including GCM-based future climate scenarios with
inherent GCM-specific and resolution-related uncertainties [75–77]. In contrast, stationary
assumptions are more straightforward to apply than non-stationary assumptions, mainly
because they do not need to account for changes in climate and weather patterns over
time. Therefore, stationary assumptions may be appropriate in those cases limited by data
availability and with evidence of no long-term climate change [78]. Unfortunately, the cost
of stationarity assumptions can be pretty high and burdensome, as stationary IDF curves
can lead to inaccurate estimates of extreme rainfall events in areas prone to long-term
climate change, land-use change, and other meteorological factors [79]. Therefore, it is
crucial to detect a trend in precipitation over time and space and consider local factors
before deciding on the appropriate method for the IDF curve development.

Study Limitations and Research Direction

While time could be one of the covariates in the development of non-stationary IDF
curves, as performed in several other studies [80–82] and this study, it has limitations.
First, time as a covariate alone may not adequately capture the complex changes in the
meteorological, hydrological, and environmental factors that can affect the intensity and
frequency of extreme rainfall events [81]. Second, the precipitation time series data may
only sometimes have a sufficient resolution to capture the fine-scale variations in extreme
rainfall events. Third, changes in the urban and suburban landscape, such as land use and
land cover changes, with a varying intensity of growth from mixed-use development to
single-family homes to different sizes of open spaces, can affect the intensity and frequency
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of extreme rainfall events but cannot be adequately captured by time alone [79]. Fourth,
the limited data availability (e.g., the lack of continuous hourly, sub-daily, and daily
precipitation data for several decades) can pose a challenge in estimating non-stationary
IDF curves using only time as a covariate [78].

However, the limitation of using time as the only covariate can be addressed using
other essential covariates, such as temperature, humidity, greenhouse gas concentrations,
urban extent, and ocean–atmosphere oscillations. Including these covariates could improve
the accuracy of estimating the intensity and frequency of extreme rainfall events. Among
these covariates, temperature is a crucial factor affecting extreme rainfall events’ amount
and intensity. Warmer temperatures can increase the moisture-holding capacity of the
atmosphere, leading to more intense rainfall events. Studies have demonstrated that
incorporating temperature into non-stationary IDF curve development can improve the
accuracy of estimates for extreme rainfall events [81,83]. Topography is another covariate
that can significantly impact extreme rainfall events’ intensity and frequency. Steep slopes
may experience more intense rainfall due to increased airflow and uplift convergence.

In contrast, flat terrain may experience more frequent but less intense rainfall due to
slow runoff and longer water residence time in the soil [83]. Incorporating land use and
land cover changes, such as urbanization or deforestation, into non-stationary IDF curve
development can also help to account for differences in surface properties, such as the
albedo effect, which can affect the intensity and frequency of extreme rainfall events [79,81].
Also, large-scale atmospheric circulation patterns, such as El Niño-Southern Oscillation
(ENSO) or North Atlantic Oscillation (NAO), can influence the intensity and frequency
of extreme rainfall events. Incorporating these patterns into non-stationary IDF curve
development can help to capture the effects of climate variability and improve estimates
for extreme rainfall events [84,85].

Using the covariates above and time can improve the accuracy of non-stationary
IDF curve development and help to prepare planners for extreme events in rapidly
growing and larger metropolitan areas like the DFW metroplex. Overall, non-stationary
IDF curves can provide valuable information to planners in urban areas like DFW,
helping them to better prepare for and respond to extreme rainfall events. How-
ever, although our research findings are consistent with several studies conducted in
different regions, caution should be exercised when interpreting these results. It is
recommended that further research, particularly the use of other covariates and the
use of the recently released CMIP-6 climate projections with robust downscaling and
bias correction methods, and the development of IDF curves at different durations
(sub-hourly and sub-daily, etc.), can be used to better understand the implications of
these findings for flood risk management in the DFW metroplex.

5. Conclusions

The DFW metroplex is in a region prone to frequent severe thunderstorms and flash
floods, with many communities and infrastructure systems being vulnerable to these ex-
treme events. Our study revealed a non-stationary trend in seven stations’ long-term
precipitation AMS in the DFW metroplex. Non-stationarity in these stations could be
attributed to factors related to differences in localized microclimate, land uses, and topo-
graphic variations. The currently available IDF curves for the region do not consider this
non-stationarity and, therefore, show an underestimation of precipitation intensities. The
consequences of this kind of underestimation could be quite severe when most of the infras-
tructure is designed based on traditional, stationary IDF curves. Using non-stationary IDF
curves could capture local events and effects, making it possible to estimate the probability
of extreme events in a changing climate. This information may help planners to prepare
for extreme events by identifying areas and infrastructure systems vulnerable to flooding
and developing mitigation measures and resilient systems such as flood control and early
warning systems.
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Appendix A

Table A1. Results of the Mann–Kendall and Pettit’s tests at the 0.05 significance level.

Station
Mann–Kendall Test Pettit’s Test

p-Value z-Statistic p-Value U-Statistic

Corsicana 0.0039 2.8860 0.0018 1299
Denton 0.0185 2.3560 0.0017 1067

Farmerville 0.0044 2.8490 0.0179 313
Gordon 0.0064 2.7287 0.0170 453
Gunter 0.0289 2.1849 0.0246 295

Morgan Mill 0.0237 2.2617 0.0308 347
Rainbow 0.0124 2.4990 0.0229 560
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