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Abstract: Stochastic modeling to forecast hydrological variables under changing climatic conditions
is essential for water resource management and adaptation planning. This study explores the
applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average
river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba
River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water
effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the
performance of SARIMA and SARIMAX models in long-term discharge modeling and forecasting,
demonstrating the SARIMAX model’s superior performance in various metrics, including the Nash–
Sutcliffe coefficient (NSE), the root mean square error (RMSE), and the mean absolute percentage error
(MAPE). The inclusion of precipitation as a regressor variable considerably improves the forecasting
accuracy, and can be attributed to the multivariate structure of the SARIMAX model. While stochastic
models like SARIMAX offer valuable decision-making tools for water resource management, the
study underscores the significance of employing long-term time series encompassing flood and
drought periods and including model uncertainty analysis to enhance the robustness of forecasts.
In this study, the SARIMAX model provides a better fit for extreme values, overestimating peaks
by around 11.6% and troughs by about 5.0%, compared with the SARIMA model, which tends to
underestimate peaks by an average of 6.5% and overestimate troughs by approximately 76.0%. The
findings contribute to the literature on water management strategies and mitigating risks associated
with extreme hydrological events.

Keywords: SARIMA; SARIMAX; ARIMA; streamflow forecast; hydrological modeling

1. Introduction

Efficient management of available water resources requires adequate hydrological
forecasting models. This need arises due to the increasing water demand linked to popula-
tion growth and economic development [1,2]. Hydrological time series modeling holds
significant importance due to its various applications, including drought management,
flood forecasting, discharge (streamflow) forecasting, and environmental management,
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among other uses [3–6]. Hydrological models are classified differently based on the type of
variables they use and the relationship between them, the data representation method, the
existence of spatial relationships, and temporal dependencies [7].

It is possible to categorize hydrological models into two main categories: those based
on physical processes and the area’s physical characteristics and data-driven models mainly
based on time series data analysis. Models based on physical processes have as their main
limitation their complexity, which leads to high computational efforts and a large volume
of required input data [8]. On the other hand, data-driven models, including time series
models, deep learning, and machine learning models, require care in the calibration of their
hyperparameters [9]. Hybrid approaches, combining physical and data-driven models,
are gaining prominence in this field [10]. These approaches leverage the strengths of
numerical hydrological models. By fusing the physics-based understanding of hydrological
processes with the data-driven capacity to capture complex relationships, hybrid models
offer robust streamflow forecasts, particularly in regions with limited data or rapidly
changing hydrological conditions [9,11,12].

Hydrological forecasting is carried out following two modeling approaches: deter-
ministic and stochastic [3,6]. Most hydrological processes are stochastic, meaning they
involve mathematical models incorporating random elements. The prevalence of stochas-
ticity in hydrology derives from the complex and unpredictable nature of hydrological
phenomena. However, despite their inherent randomness, hydrological processes exhibit
seasonal patterns, periodic regularities, and discernible deterministic factors. These pro-
cesses can be analyzed using principles of mass, energy, momentum conservation, and
thermodynamics, as well as conceptual and empirical models commonly employed in
modern physical hydrology [13]. Over recent years, the combination of both approaches
has been instrumental in developing and calibrating hydrological models, as this integrated
approach has been proven to be helpful in developing an understanding of the intricate
interplay between natural and anthropogenic processes within watersheds [14–16], thus
enhancing the effectiveness of decision-making in water resource system analysis.

Hydrological time series are sequences of water-related data points collected over time.
These data points encompass measurements of various variables (e.g., rainfall, river flow,
and groundwater levels), and they are analyzed with the primary goal of methodically
identifying and describing the underlying generating processes responsible for a specific
sequence of observations [17]. Their modeling examines the dynamic system characterized
by input and output sequences connected through a function. There are two main types of
time series techniques: univariate and multivariate. Univariate methods explain the output
series using elements such as constant components, trends, seasonality, or even lagged
portions of the series under analysis. Multivariate methods, on the other hand, aim to
improve the representation of the underlying transfer function by considering the influence
of other variables on the behavior of the output series [18].

AutoRegressive integrated moving average (ARIMA) models, introduced by Box and
Jenkins in the 1970s [19], are widely applied in time series analysis as linear statistical mod-
els for representing and capturing the features of time series data generated by stochastic
processes [20]. Furthermore, the parameters of an ARIMA model can be fitted to convert it
into autoregressive (AR), moving average (MA), or autoregressive moving average models
(ARMA) models [17]. Of particular interest for this study are the SARIMA and SARIMAX
models, extensions created to manage time series data with seasonal characteristics and
primarily used for forecasting when there are evident seasonal patterns or variations in the
data. The SARIMAX model is a multivariate version of the SARIMA model, allowing the in-
tegration of exogenous (explanatory) variables to increase its forecasting performance [21].
Incorporating additional climatological variables, such as temperature [22] and evapo-
transpiration [23], may enhance model performance and provide a deeper understanding
of river discharge patterns. These additional variables could contribute to more robust
and accurate hydrological models, particularly in the context of a changing climate and
evolving land use patterns.
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Brazil’s abundant water resources support biodiversity and the economy, and the
country boasts the world’s largest share of renewable internal freshwater resources, com-
prising 12% of the globe’s total. Water is vital for agriculture and hydropower, but current
challenges, such as uneven distribution and governance issues, must be overcome to guar-
antee sustainable development [24]. In 2021, the Brazilian National Water and Sanitation
Agency (Agência Nacional de Águas e Saneamento Básico—ANA) published a water
resources conjuncture report for the country. This report underscores the rising water
demand, particularly in the industrial, agricultural, and human supply sectors. Projections
indicate a 42% increase in water resource consumption by 2040, highlighting the urgent
need for strategic planning and adequate forecasting to ensure safe water usage, mitigate
the risk of water crises, and support various water-related needs, all while considering the
impact of climate change on the hydrological cycle [25].

Water-related disasters (both droughts and floods) have acquired global attention
due to their impacts on vulnerable communities and their increasing occurrence in the
face of climate change [26,27], and this is also observed in Brazil [28–30]. According to
Souza et al. [31], there are over 40,000 areas at risk of hydrological disasters in Brazil,
which together encompass around 120 million people and are responsible for 60% of the
gross domestic product. Despite national regulations, local efforts to build resilience to
floods, landslides, droughts, biodiversity loss, and energy consumption are slow. The
National Center for Monitoring and Natural Disaster Alert (CEMADEN) highlights that
available hydrometeorological data for developing mitigation actions is usually scarce,
thus emphasizing the need to develop methodologies for water resource management
that are capable of overcoming data scarcity limitations [32]. In this scenario, stochastic
analysis provides effective decision-making tools for managing water resources in regions
with limited data. This allows for the inclusion of natural uncertainty and variations in
hydrological processes, thereby improving the efficacy of water management strategies in
uncertain conditions [14].

Many researchers have relied on ARIMA, SARIMA, and SARIMAX for streamflow
modeling worldwide. Examples in the literature include the paper by Kassem et al. [33],
who applied the ARIMA model for simulating daily flow at the Khazir River basin in
Iraq, obtaining R2 values of about 0.77 and 0.82 for the two monitoring stations in the
catchment. Sun et al. [34] tested the performance of a combination of the ARIMA model
with wavelet transform in the Heihe River basin of northern China and the Pearl River basin
of southern China. They obtained R2 values above 0.83 for all of the monitoring locations
in the validation set. Danandeh Mehr et al. [35] showed satisfactory results when using
the SARIMA model for streamflow forecasting on one-step-ahead daily and weekly scales
at the Oulujoki River system in northeastern Finland. However, intramonthly streamflow
forecasting exhibited low accuracy. Thus, they introduced an ensemble univariate genetic
programming–SARIMA model and improved its accuracy significantly.

Furthermore, significant researchers in this sense were also developed in Brazilian
catchments. For instance, Bayer et al. [36] used a SARIMA model to forecast monthly
discharges in the Potiribu River basin, obtaining a Nash–Sutcliffe coefficient of 0.81 for
six-month-ahead projections. Chechi and Sanches [37] employed maximum and minimum
temperatures and the climatological normal of precipitation as covariates with which to
configure a SARIMAX model for precipitation in Erechim. This model exhibited a high
correlation between measurements and simulated values, except for extreme values that
were possibly associated with the ENSO phenomenon. Pinto et al. [38] used SARIMA
models and long-term records to forecast the monthly average flow in the Doce River
watershed in Espirito Santo. In the same state, Bleidorn et al. [23] attempted to model and
forecast monthly average flows in the Jucu River. However, they encountered challenges in
accurately predicting flows due to a severe water crisis, the most significant in 80 years,
which introduced significant biases despite satisfactory results obtained during the training
period. Caixeta et al. [39] also experienced these adverse effects when employing SARIMA
class models for forecasting mean monthly discharges in a Paranaíba River basin in the
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Alto Paranaíba region. The negative Nash–Sutcliffe coefficient between measurements and
forecasts highlighted the limitations of stochastic models in water scarcity scenarios. In
these two latter studies, the authors recommend the inclusion of other regressor variables,
consequently applying a SARIMAX model to improve accuracy in the face of extreme event
scenarios.

The present study aims to assess the suitability and effectiveness of ARIMA class
models, specifically SARIMA and SARIMAX, for long-term monthly average discharge
forecasting for a sub-basin of the Paranaíba River near Patos de Minas, MG. This case
study configures an illustrative example in the context of urban water management and
environmental challenges, as the Paranaiba River serves as both a water source and sewage
receiver for the population of Patos de Minas, a region rapidly developing and with a
considerable production for grain, livestock, and dairy [40]. Additionally, this paper
discusses how stochastic modeling can aid in forecasting streamflow under changing
climatic conditions, addressing the increasing demand for water resources, and contributing
to its effective management.

2. Materials and Methods
2.1. Study Area and Gauging Stations

The study employs hydrological data from a sub-basin of the Paranaíba River, a
major tributary within the Paraná River basin. The outlet for this sub-basin is at the
fluviometric station named Patos de Minas, as depicted in Figure 1. This station is situated
at geographical coordinates of longitude 46◦32′21.84′′ west and latitude 18◦36′6.12′′ south,
located within Patos de Minas, MG [41].
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Figure 1. Information about the study area: (a) Macrolocation of the Patos de Minas, MG; (b) location
of the gauging stations considered in this study and drainage network; and (c) average monthly
rainfall regime.

Patos de Minas is located within the Mesoregion of Triângulo Mineiro and Alto
Paranaíba. It covers an area of 3190.5 km2, encompassing a population of approximately
159,000 people [42]. Figure 1c shows that rainfall in this region occurs from October to April,
with a dry period from May to September, and average temperatures ranging from 18–22 ◦C
in June to 22–26 ◦C in December. The municipality of Patos de Minas is situated in an area



Hydrology 2023, 10, 208 5 of 20

characterized by the Central Brazil Tropical Climate, featuring four to five dry months.
This climatological regime falls under the sub-classification of the Central Brazil Wet–Dry
or Central Brazil Tropical Climate [43], which aligns with the Aw type classification in the
Köppen–Geiger climate system, signifying a tropical climate [44].

Patos de Minas holds a prominent position in the region due to its role as an agricul-
tural hub, especially for grains, livestock, and dairy production [45]. It is also an economic
center supporting various businesses and industries, an educational and healthcare hub
offering services to the region, and a transportation hub with well-connected road networks,
making Patos de Minas one of the cities with the best ratings in terms of quality of life in
the state and the country [46,47].

Both the historical series of flows from the Patos de Minas gauging station and the
historical series of precipitation from the rainfall stations of Guimarânia, Serra do Salitre,
Leal de Patos, and Carmo do Paranaíba were obtained from ANA through the HIDROWEB
site [41]. Table 1 lists their main characteristics, including their unique identification code
(ANA code), variable type, name, and geographical coordinates. All of the stations are
operated and maintained by the Geological Survey of Brazil—CPRM. Table 1 also presents
the main descriptive measures of the time series of average monthly discharges and rainfall
of a sub-basin of the Paranaíba River, referring to the period under analysis.

Table 1. Characteristics of the gauging stations employed in this study and descriptive statistics of
observed average monthly discharge and precipitation between January 2008 to December 2016.

Hydrometeorological Stations

ANA
Code

Type of
Variable Name of the Station Latitude

(Degrees)
Longitude
(Degrees)

6001100 Discharge Patos de Minas −18.6017 −46.5394
1846004 Precipitation Guimarânia −18.8497 −46.8008
1946008 Precipitation Serra do Salitre −19.1128 −46.6883
1846017 Precipitation Leal de Patos −18.6411 −46.3344
1946022 Precipitation Carmo do Paranaíba −19.0033 −46.3061

Descriptive Statistics

Discharge Precipitation

Maximum value (m3/s): 273.98 Maximum value (mm): 625.73
Minimum value (m3/s): 4.68 Minimum value (mm): 0.00

Average (m3/s): 56.89 Average (mm): 160.10
Median (m3/s): 39.45 Median (mm): 111.52

Standard deviation
(m3/s): 49.87 Standard deviation (mm): 157.82

Asymmetry: 1.52 Asymmetry 1.01
Coefficient of variation

(%): 87.65 Coefficient of variation
(%): 98.58

The data from these stations refer to the period from 2008 to 2016, comprising nine
years of records. For time series modeling, the data were divided into two distinct periods:
a training period from 2008 to 2015 and a testing period corresponding to 2016.

2.2. SARIMA and SARIMAX Forecasting Models

Chechi and Sanches [37] emphasize the importance of conducting an initial statistical
evaluation of time series data, which includes characterizing the series and identifying
trends, seasonality, and atypical values. This descriptive exploration relies on measures of
central tendency and dispersion and time series plots, decomposition graphs, and boxplots.

The methodology initially described by Box and Jenkins [19] is widely used to analyze
ARIMA models’ parameters [18]. This approach seeks to refine autoregressive models
integrated with ARIMA moving averages. The modeling process comprises four stages:
(i) model identification, (ii) parameter estimation, (iii) verification or evaluation of the se-
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lected model, and (iv) forecasting [17]. The model identification and parameter estimation
steps require extracting patterns from the original series. Traditionally, such patterns are
identified by series decompositions, which compound trend-cycle, seasonal, and remainder
(random) components [48], and are obtained by component decomposition analysis, sam-
pling autocorrelation and partial autocorrelation functions. Bayer and Souza [20] further
explain that ARIMA models can be categorized based on their components, such as AR
models with only autoregressive parts, MA models with solely moving average compo-
nents, and ARMA models featuring both autoregressive and moving average components.
As real-world series often lack stationarity, transformations are necessary to achieve sta-
tionarity. This transformation process, known as differencing, results in the integrated part
I, leading to the term ARIMA to designate the integrated ARMA model.

ARIMA class models can be extended to SARIMA class models, which incorporate
the consideration of seasonality. According to Machiwal and Jha [17], significant auto-
correlation may persist in seasonal lags even after eliminating the deterministic seasonal
component. This feature underscores the necessity of accounting for seasonality when fit-
ting from an ARIMA model to a SARIMA model (p, d, q) (P, D, Q), determined by Equation
(1). A SARIMA model (p, d, q) (P, D, Q) is characterized by its autoregressive orders (p, P),
differentiation orders (d, D), and moving average orders (q, Q).

φ(B)Φ(BS) (1 − BS)D (1 − B)d Zt = θ(B) θ(BS)
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Φ(BS) = 1 − Φ1BS − Φ2BS2 −. . .− ΦpBSp (2)

θ(BS) = 1 − θ1BS − θ2BS2 −. . .− θpBSp (3)

The seasonal auto-regressive integrated moving average with exogenous factors or
variables (SARIMAX) is the most advanced version of the ARIMA model [49]. The SARI-
MAX model is a statistical approach whose primary purpose, like that of the ARIMA
family of models, is to predict future values of a given time series using linear relationships
of previous values observed from sequential data, secondary information provided by
explanatory or exogenous variables, and error terms [50]. The SARIMAX model is con-
figured when exogenous variables influence the stochastic process and are incorporated
into SARIMA models to improve forecasting performance [21,51]. Like the SARIMA model
described in Equation (1), the SARIMAX model is often expressed by the order of its
parameters (p, d, q) (P, D, Q). It differs by including an exogenous term represented by the
sum term on the right side that models the relationship between the observed sequence
and the vector of explanatory information St, as described in [50]:

φ(B)Φ(BS) (1− BS)D (1− B)d Zt = θ(B) θ(BS) εt + ∑m
i=1 βiSt,i (4)

2.3. Identification, Evaluation, and Prediction Criteria

The adequate identification of the ARIMA model is a determinant phase of the Box and
Jenkins methodology [20]. This stage requires determining the nominal and seasonal orders
(p, q, P, Q) and the orders of integration (d, D). It is possible to use the sample autocorrelation
(ACF) to identify this order, following the method described by Hyndman [52] for a time
series:

∼
ρs =

1
(n− s)d

n−s

∑
k=1

∼
Rk,k+s (5)
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where d is the average of the diagonals of D. D is a diagonal matrix with (i,i)th element
equal to the maximum of Λi,i and ε/nβ (where ε = 20, K = 5, β = 1, c = 2), Λi,i

belongs to the matrix
∼
R = VDV′, (autocorrelation matrix with (i,j)th element ρ̂|i−j|), where

R̂ = VΛV′ is the eigendecomposition of R̂ and D. The autocorrelation matrix for the time
series {X1, . . . , Xn,} is

ρ̂s = κ
γ̆s

γ̆0

|s|
l

with s = 0, 1, 2 . . . , n− 1 (6)

γ̆s = n−1
n−|s|

∑
t=1

XtXt+|k|, κ(x) =


1 i f |x| ≤ 1
2− |x| i f 1 < |x| ≤ 2
0 otherwise

(7)

where l is the smallest positive integer such that
∣∣∣ γ̆l+k

γ̆0

∣∣∣ < c(log10n/n)1/2 for k = 1, . . ., K.
According to Hyndman [52], the partial autocorrelation function (PACF) can be found
using the Durbin–Levinson algorithm described in Morettin [53]:

∅(1)
1 =

R1

R0
, σ̂2

1 =
[
1−∅(1)2

1

]
σ̂2

0 ; for σ̂2
0 = R0 (8)

at the pth stage:

∅(p)
p =

[
Rp −∑

p−1
k=1 ∅

(p−1)
k Rp−k

]
σ̂2

p−1
(9)

σ̂2
p =

[
1−∅(p)2

p

]
σ̂2

p−1 (10)

and with the update of the other coefficients, completing the recursive procedure:

∅(p)
k = ∅(p−1)

k +∅(p)
p ∅(p−1)

p−k (k = 1, . . . , p− 1) (11)

where, in the equations, Rj is the jth sample autocovariance function, ∅(p)
k is the kth

coefficient when fitting an autoregression of p-order and σ̂2
j is the variance. PACF and ACF

functions are available in the R package “forecast”, which was employed to conduct this
research [54]. Additionally, it is worth noting that a slow decay in the correlogram indicates
a non-stationary series, implying that d > 0.

Other widely used selection criteria are the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) [17], and the corresponding equations are presented
in Equations (12) and (13).

AIC = 2(k) − 2ln(L) (12)

BIC = (k)ln(N) − 2ln(L) (13)

In the previous equations, k is the number of model parameters, ln(L) is the model’s
log-likelihood on the data, and N is the sample size.

The AIC and BIC information criteria serve distinct purposes in model selection. AIC
focuses on identifying the best approximate model for the data generation process and is
independent of the sample size. Conversely, based on a Bayesian framework, BIC aims to
determine the most accurate model and accounts for sample size. In the case of sizable
samples, BIC imposes a more substantial penalty than AIC, as it effectively evaluates model
complexity based on the number of parameters and sample size. In their second term, both
AIC and BIC assess goodness of fit through the log-likelihood function (in the context of
maximum likelihood estimation). At the same time, they penalize the model complexity in
their first term. In summary, BIC excels at selecting the correct model, while AIC is better
suited for identifying the optimal model for forecasting future observations [55].
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Performance metrics are crucial for assessing the accuracy of a model and, in turn,
establishing the reliability of its estimations. Based on previous studies [56–59], this
research considers three performance metrics: the Nash–Sutcliffe coefficient (NSE), the
root mean square error (RMSE), and the mean absolute percentage error (MAPE), obtained
through Equations (14)–(16), where N is the sample size, yi,obs and yi,est are the observed
and estimated values, respectively, and yobs is the average of observed values.

NSE = 1− ∑N
i=1(yi,est − yi,obs)

2

∑N
i=1(yi,obs − yobs)

2 (14)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi,est − yi,obs)
2 (15)

MAPE =
1
N

N

∑
i=1

∣∣yi,obs − yi,est
∣∣∣∣yi,obs

∣∣ 100 (16)

NSE is a standardized metric used to assess the proportion of the residual variance
(referred to as “noise”) regarding the variance of the measured data (referred to as “infor-
mation”). RMSE provides a measure of the typical or average error between predicted
and observed values [56] and is a widely used metric for comparing forecast and observed
data [60,61]. It is easy to interpret as it is in the unit of measurement of the result and is
suitable for long-term simulations [60]. As for the MAPE, lower values indicate a higher
model accuracy level. Nevertheless, MAPE has a notable drawback: it generates infinite
or undefined values when dealing with actual values close to zero, which are possible to
encounter in certain domains [57].

In the context of hydrologic models, NSE is common when evaluating the performance
of hydrologic models and for various time scales. Many values have been reported for
comparison, and NSE considers the uncertainty of the measurement. Furthermore, NSE
is more effective for the evaluation of the goodness of fit than the R2 coefficient, which
might indicate a good overall fit but does not identify systematic errors [62,63]. According
to Dazzi et al. [58] and Pushpalatha et al. [59], when the predicted and observed data have
a perfect combination, RMSE equals zero, and the NSE equals one. Table 2 shows common
interpretations of these performance metrics, where SD is the standard deviation of a data set.

Table 2. Common interpretation of the performance metrics used in the study.

Metric Very Good Good Satisfactory Unsatisfactory Ref.

NSE (0.75, 1.00] (0.65, 0.75] (0.50, 0.65] (−∞, 0.50] [56]
RMSE ≤0.31 SD ≤0.45 SD ≤0.83 SD >0.83 SD [58]
MAPE <10% [10%, 20%) [20%, 50%] >50% [64]

The selection of models for the monthly mean flow time series in Patos de Minas was
conducted using the “auto.arima()” command within the “forecast” package [54], which
is a variation of the Hyndman–Khandakar algorithm [65]. This command provides an
automated approach with which to model selection in order to select the most appropriate
ARIMA model by combining unit root tests, minimization of the Akaike information
criterion (AIC), and maximum likelihood estimation (MLE), as described by Hyndman
and Athanasopoulos [48]. The aforementioned “auto.arima()” command has been widely
used to reduce the time required for the optimal determination of the orders of ARIMA
models, considering the minimization of the Akaike information criterion (AIC) or Bayesian
information criterion (BIC) [39,65,66].

It is worth noting that this research considered a SARIMAX model for precipitation
data. The efficiency verification of the SARIMAX prediction model was performed via
a comparative analysis between the prediction data and the SARIMA model data. The
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monthly mean flow values forecasts for Patos de Minas for 2016 correspond with three-,
six-, nine-, and twelve-month prediction horizons.

After selecting the best model and estimating its parameters, the execution of diag-
nostic analysis assesses if the model and its parameters adequately represent the data. The
residuals should exhibit random and uncorrelated behavior and follow a normal distribu-
tion with a mean of 0. According to Bayer and Souza [20], the Ljung–Box test is appropriate
for this purpose, as it identifies the existence of the autocorrelation of errors estimated
through residual autocorrelation.

3. Results
3.1. Statistical Analysis of Flow and Precipitation Data

The maximum discharge of 273.98 m3/s occurred in January 2012, while the minimum
flow occurred in October 2014 with a value of 4.68 m3/s. High values for the standard
deviation and coefficient of variation indicate that the arithmetic mean does not adequately
represent the series. The highest recorded precipitation occurred in December 2011, reach-
ing a value of 625.73 mm. Conversely, there were several dry months, especially during
June, July, and August. The positive asymmetry reveals a higher concentration of low
values in the sample [13], with further evidence in the histograms in Figure 2.
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Figure 3a presents a line graph with the average monthly discharge time series and
their division between the training and test periods. The flow series has a pattern of
intra-annual variability, with periods of high discharges and floods followed by periods of
drought, thus portraying the presence of seasonality [18,64]. Figure 3b displays a similar
plot for the average monthly precipitation time series and its division between the training
and testing periods, following guidelines in the literature [48,67].

Seasonality can be better visualized in the boxplots in Figure 4, exhibiting the seasonal
pattern for the variables throughout the year based on the records from 2008 to 2016.

Figure 5 displays the monthly average discharge and precipitation time series, decom-
posed into trend, seasonality, and random components. In the seasonal component, it is
evident that both series exhibit periodic oscillations around a mean value, confirming the
presence of seasonality in the analyzed data. Such a pattern was expected because of the
well-defined climatological behavior of this region, as described in Section 2.1, especially
concerning precipitation. Conversely, the trend component does not exhibit discernible pat-
terns in their decomposition. One may understand that the 9 year time series is insufficient
to identify a markable trend cycle. However, the random component also did not show a
pattern, and, as it is a remainder counterpart of the decomposition, this means it is a good
indicator for ARIMA-type models and their variations, such as SARIMA and SARIMAX,
which extract characteristics of the time series by stochastic processes.
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3.2. Model Identification

Analyzing the correlogram of the sample autocorrelation (ACF) and partial autocorre-
lation (PACF) functions plays a crucial role in model identification [17]. Figure 6 illustrates
the ACF and PACF for the monthly average discharge data series. These correlograms show
significant autocorrelation at multiple lags of 12, indicating the presence of seasonality.
Consequently, the identification of a seasonal component is evident. Additionally, the sinu-
soidal and persistent behavior observed in the ACF correlogram suggests an autoregressive,
non-stationary, and seasonal process.
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The identification of the best-fit models was conducted with the aid of the “auto.arima()”
function of the R package “forecast” [54], with the results indicating the selection of SARIMA
(0,0,2)(0,1,1)12 and SARIMAX (2,0,0)(2,1,0)12. The SARIMA model presented an AIC of 855.34
and a BIC of 865.06, while the SARIMAX had an AIC of 831.49 and a BIC of 846.08. By
analyzing these parameters comparatively, it is noticeable that the values of a SARIMA model
decrease for a SARIMAX model.

The Bayesian information criterion (BIC) value tends to be higher for more complex
models as it can measure a model’s complexity based on the number of parameters and the
sample size [17,68]. Thus, simpler models have lower BIC values. When comparing the
BIC values of the SARIMA and SARIMAX models, the results suggest a better performance
of the SARIMAX model, which exhibited a lower BIC despite its higher complexity.

3.3. Diagnostic Analysis of the Models

The models’ residuals are expected to be random, uncorrelated, exhibit a normal
distribution, and have a mean of zero [13,67]. The normality of the series was verified
using the Shapiro–Wilk test according to the method described in [69], and the Ljung–
Box test was used to assess the absence of correlation among the residuals, confirming
white noise characteristics. The p-values of both tests suggest that the models exhibited a
non-significant deviation from normality and uncorrelated residuals.

Figure 7 displays the residuals’ time series plots, correlograms, and histograms for
both the SARIMA and SARIMAX models. The graphs of the SARIMA and SARIMAX
models show that the residuals exhibit a normal distribution and lack correlation in both
cases. The correlogram displays lags near zero, with only two values of the SARIMA model
falling outside the significance range and none for the SARIMAX model, indicating that
the residuals are uncorrelated and validating both models. However, the SARIMAX model
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performs better in the residual analysis, as all the lags are within the significance interval
and are close to zero.
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Figure 8 provides a comparison between the time series of observed average monthly
discharges (dark line), the SARIMA model (red line), and the SARIMAX model (blue line)
for the training period. During the first 12 months, the values are equal. Upon visual
inspection of the graph, it is apparent that both training series follow the general behavior
of the time series of records. Nevertheless, the values generated by the SARIMAX model
are generally closer to extreme observations (minimum and maximum) and average values.
Even if both models underestimate maxima, the plot shows that the SARIMA model tends
to underestimate peaks by an average of 6.5% and overestimate troughs by approximately
76.0%. In contrast, the SARIMAX model overestimates the peaks by 11.6% and the troughs
by around 5.0%. The models generally appear closer to capturing extreme peak events
effectively, with SARIMA particularly overestimating troughs and SARIMAX providing a
better fit overall for the extreme values.
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3.4. Forecasting Average Monthly Discharge

While this study primarily concentrates on monthly averages, the results in Figure 8
indicate that the minimum and most of the maximum values were adequately modeled.
However, the highest value among the maximum discharge for the training period was not
accurately represented. This discrepancy becomes evident when simulating the maximum
values during the testing period, as illustrated in Figure 9. In this phase, forecasts of
average monthly discharges are provided for horizons of three, six, nine, and twelve
months (respectively, from Figure 9a to Figure 9d), corresponding to the year 2016. The
predictions generated by the SARIMAX model align closer with the observed data across
all forecast horizons.
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Figure 9d presents the predicted and observed data for all of the months of 2016. The
SARIMAX forecast was closer to the observations at 9 months, being less accurate than
SARIMA in June, October, and December, and it is worth noting that, compared with
SARIMAX, the forecast obtained by the SARIMA model for June produced a marginally
more precise value.

3.5. Performance Assessment of the Models

In order to assess the accuracy and precision of the proposed models, the NSE, RMSE,
and MAPE performance metrics were calculated for the four forecast horizons, following
the approach of Dazzi [58] and Pushpalatha et al. [59]. Figure 10 illustrates the NSE, RMSE,
and MAPE performance metrics for the SARIMA and SARIMAX models.
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The results demonstrate that the SARIMAX model outperforms the SARIMA model,
with the NSE values obtained for the SARIMAX model falling into the classification of
acceptability and good fit defined by Moriasi et al. [56]. Similarly, when considering the
root mean square error (RMSE) and the absolute percentage error (MAPE), the values
exhibited a substantial reduction, confirming that the incorporation of precipitation as an
explanatory variable improved performance for the SARIMAX model.

Figure 10 suggests overfitting for the SARIMA model. This overfitting is apparent in
the NSE and MAPE metrics when comparing the training and testing periods, in line with
the observations of Hyndman and Athanasopoulos [48] and Chollet et al. [70]. The training
phase exhibited a high value for the NSE metric but decreased significantly in all forecast
horizons during testing. In contrast, the MAPE metric showed a noteworthy increase in
the testing horizons compared with the training phase. Because the SARIMAX model does
not exhibit this characteristic, these results indicate that the learning capacity of SARIMAX
demonstrated a better fit than SARIMA.

4. Discussion

The time series analysis outcome heavily relies on the data series length, nature, and
reliability, as these data serve as a crucial information source in subsequent statistical
procedures. In this regard, even if a stochastic model is exceptionally well-designed, it
cannot enhance the accuracy of parameters estimated from low-quality data. Therefore,
hydrologists should evaluate the data’s quality before progressing to the subsequent stages
of hydrological frequency analysis [13]. Stochastic validation assesses a model’s capability
to replicate watershed response by converting the uncertainty associated with model
parameters into predictive uncertainty by utilizing probability distribution functions for
these parameters [14].

It is worth noting that models can have short-term and long-term predictive capabili-
ties, with this study focusing on long-term predictions in line with the definitions of Mosavi
et al. [71]. The observed errors suggest that SARIMA models tend to be more reliable for
longer-term forecasts, in line with the findings of Alonso Brito et al. [72]. Additionally,
the performance of SARIMA models is highly sensitive to the training time series used in
model calibration, as highlighted by Danandeh Mehr et al. [35].

Regarding the challenges and limitations associated with the use of stochastic models
for discharge forecasting in regions facing severe water crises or frequent floods, one major
issue is the consideration of time series stationarity. This aspect can introduce uncertainties,
as the time series of the variable or variables under consideration might exhibit pattern
changes over time due to climate change, deforestation, land use, or land cover changes,
among other factors [73,74]. In addition to stationarity, another source of inaccuracies is
the assumption of a linear or pseudo-linear relationship between the explanatory variables
(exogenous) and the target variable (target), which may not be accurate in some hydrological
systems [75]. Nevertheless, both issues can be addressed. Non-stationary time series can be
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transformed into stationary ones through mathematical transformations (e.g., logarithmic,
exponential) [48], and using ANN is an effective approach for dealing with the assumption
of linearity in hydrological systems when this is not valid [5].

The NSE coefficient values of this study indicate that the SARIMAX model consistently
outperformed the SARIMA model, with results ranging from satisfactory to very good
across all time horizons under consideration [56]. In contrast, the SARIMA model only
achieved a satisfactory rating at the 12 month forecast horizon. For instance, these findings
differ from those of Danandeh Mehr et al. [35,76] in their studies conducted for rivers
in Turkey and Finland, whose NSE results with the SARIMA model report inferior to
satisfactory performance in long-term forecasting. Similarly, the research of Chechi and
Sanches [37] and Meis et al. [77] observed the improved performance of SARIMAX to
SARIMA in their studies for Brazilian watersheds, with their analyses highlighting the
model’s strengths in metrics like RMSE, NSE, and R2.

As observed in studies for various Brazilian watersheds, including explanatory vari-
ables in the SARIMA model (resulting in SARIMAX models) usually leads to improvements
in the accuracy of these forecasting tools [23,36–39], as is the case in this article. Recent stud-
ies worldwide also support this hydrological research topic. One example is the paper by
Harat and Zarch [78], which demonstrated improved results in long-duration drought pre-
diction by adding precipitation and evapotranspiration (separately) as exogenous variables
in the SARIMAX model. Another common approach in the literature, instead of directly
forecasting flow rates, is configuring time series models of precipitation and temperature
and using these products in hydrological models to obtain estimates of discharge time
series [69,79,80].

Forecasting extreme hydrological events is particularly important in a changing cli-
mate [51], posing challenges for stochastic hydrological models in the accurate representa-
tion of such events, with most studies reporting limited satisfactory results. For example,
Danandeh Mehr et al. [76] encountered considerable inaccuracies when modeling drier
months, a similarity also observed in this research as well as in other previous studies in
Brazil [23,38,39]. Additionally, models tend to underestimate peak discharge, and, while
this was true for the test period of this research, the training period exhibited mixed results.
Possible reasons for these variations between observed values and model estimations
include the anomalous year 2014, the most severe drought in the region in decades [81],
water withdrawal during the dry season, and the influence of ENSO [37].

Kim et al. [82] utilized SARIMA and SARIMAX models for forecasting reservoir
inflows within the Han River basin, South Korea. They used prior streamflow as an
autoregressive variable and climate indices as exogenous variables. However, including
climatic variables did not significantly improve prediction outcomes, and these SARIMA
and SARIMAX models could not forecast high streamflow periods. Following a similar
methodology, Meis et al. [83] included a forecast based on the ENSO 3.4 index to configure
a SARIMAX model with which to forecast extreme discharge events in the La Plata basin,
outperforming a SARIMA model for discharge predictions horizons of 6 months and
12 months during El Niño events. This approach allowed for a satisfactory prediction of
extreme floods, suggesting its potential for future research in the study area of the present
paper. Another relatively underexplored area is the integration of ARIMA family models
with artificial neural network (ANN) models in hybrid modeling. For instance, Khairuddin
et al. [5] compared various time series analysis techniques for a watershed in Malaysia,
including linear regression, ARIMA, and ANN. In their study of real-time flood prediction
based on precipitation and water level data, these authors found that ANN outperformed
the other methods, aligning with the results reported by Kim et al. [82]. In this context,
employing SARIMAX models as tools for hydrological forecasting and water resource
management in urban areas offers the potential for the inclusion of predictor (exogenous)
variables related to urbanization, such as the evolution of impervious surface percentages
or the consideration of water levels in urban channels in stochastic modeling.
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For urban areas in particular, non-structural measures such as hydrological forecasting,
flood emergency response plans, and post-flood recovery guidelines and actions repre-
sent solid and cost-effective alternatives to structural solutions in flood management [84].
Furthermore, activities such as the conversion of native forest or pasture to agriculture
or impervious urban areas can increase areas prone to flooding, as evidenced by Hous-
panossian et al. [85] in South America. Human activities notably influence the variability
of hydrological time series. Wu et al. [86] presented a SARIMA-GARCH adaptation, which
considers the impact of human activities and natural stressors in the volatility of a karst
spring discharge in China, aiming to improve water resource management in regions
influenced by anthropogenic activities.

As frequently occurs in developing countries [32,87], the main limitation of the present
study was the relatively short time series of measurements available to conduct this research.
Therefore, future and similar studies could benefit from longer time series encompassing
flood and drought periods in their training and testing periods, aiming to improve the
understanding and forecasting of extreme values. Additionally, although the models used
are naturally stochastic, they produce deterministic outputs. Hence, the authors strongly
recommend including model uncertainty analysis to enable the stochastic use of model
responses.

In developing countries like Brazil, several areas need flow monitoring and forecasting
for both maximum and minimum extremes, and in general, they need more monitoring
data and personnel available to develop more detailed physical models. Still, available
resources for this purpose are commonly scarce or insufficient, even more so considering
the extension of this country. Nevertheless, in the meantime, reducing the risks to human
populations in basins with limited data is necessary, thus justifying the development of
models that require less input data, such as in the approach of this study.

Despite these limitations, the results of this research hold significance from an urban
perspective, particularly for the population in the study area. The Paranaíba River is the
primary water supply source of, and receives sewage discharge from, the population in
Patos de Minas [40]. In the context of climate change, some projections estimate a decrease
in extreme precipitations and flood events in the region [88], emphasizing the importance of
long-term flow predictions that use these models to assist in efficient resource management,
ensuring a continuous water supply and helping mitigate risks associated with urban
activities and expansion. Future studies may integrate additional approaches, for instance,
to include short-term daily predictions, as in Meis et al. [77], to explore extreme scenarios
under the influence of climate change [89] or to assess the impact of anthropogenic effects
on water quality parameters [90].

5. Conclusions

This article investigates the applicability of ARIMA class models for long-term dis-
charge forecasts in the Paranaíba River basin, a vital water source and a recipient of urban
sewage discharge in Patos de Minas, features that make it an illustrative case study of
urban areas facing similar challenges. This study configured and compared two stochastic
models for predicting monthly average discharge in a Paranaíba River sub-basin in Patos
de Minas, MG, Brazil. The first selected model was SARIMA (0,0,2)(0,1,1)12, which accounts
for seasonality in the series. The second seasonal model was the SARIMAX (2,0,0)(2,1,0)12,
which includes precipitation as a regressor variable. The AIC and BIC criteria were used
for automatic model selection, resulting in a better fit for the SARIMAX model than the
SARIMA model.

According to the diagnostic phase of the models, the SARIMAX model outperformed
SARIMA in terms of residual analysis and when evaluating performance metrics such as
NSE, RSME, and MAPE. Thus, precipitation as a regressor variable in the monthly average
flow prediction model substantially improved forecasting performance for this study. This
improvement can be attributed to the multivariate structure of the SARIMAX model.
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The practical implications of this research extend to supporting decision-making
processes within public agencies, particularly environmental departments. SARIMAX
models are helpful and cost-effective tools for decision processes related to defining strategic
priorities and the effective and sustainable management of water resources within river
basins.

While this study focused on monthly average flow predictions, future research en-
deavors could explore shorter-term daily predictions, particularly in light of extreme event
forecasting. Moreover, there is an opportunity to investigate the influence of climate change
and anthropogenic factors on water quality parameters, expanding the scope of applications
for SARIMAX models in urban water resource management.

Given climate change projections highlighting the significance of long-term flow
predictions for resource management and risk mitigation in human communities, especially
for growing urban areas, the findings of this study hold practical relevance. Furthermore,
this study’s approach of applying ARIMA models for long-term discharge forecasts in an
area confronting similar urban challenges underscores its importance as an illustrative case
study. Therefore, the presented method is a promising tool for enhancing the accuracy of
urban hydrodynamic modeling and forecasting, thereby contributing to making cities more
resilient to floods.
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