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Abstract: Barbados is heavily reliant on groundwater resources for its potable water supply, with
over 80% of the island’s water sourced from aquifers. The ability to meet demand will become
even more challenging due to the continuing climate crisis. The consequences of climate change
within the Caribbean region include sea level rise, as well as hydrometeorological effects such as
increased rainfall intensity, and declines in average annual rainfall. Scientifically sound approaches
are becoming increasingly important to understand projected changes in supply and demand while
concurrently minimizing deleterious impacts on the island’s aquifers. Therefore, the objective of
this paper is to develop a physics-based groundwater model and surrogate models using machine
learning (ML), which provide decision support to assist with groundwater resources management in
Barbados. Results from the study show that a single continuum conceptualization is adequate for
representing the island’s hydrogeology as demonstrated by a root mean squared error and mean
absolute error of 2.7 m and 2.08 m between the model and observed steady-state hydraulic head. In
addition, we show that data-driven surrogates using deep neural networks, elastic networks, and
generative adversarial networks are capable of approximating the physics-based model with a high
degree of accuracy as shown by R-squared values of 0.96, 0.95, and 0.95, respectively. The framework
and tools developed are a critical step towards a digital twin that provides stakeholders with a
quantitative tool for optimal management of groundwater under a changing climate in Barbados.
These outputs will provide sound evidence-based solutions to aid long-term economic and social
development on the island.

Keywords: deep neural networks; elastic networks; Barbados; climate-water nexus; groundwater
modelling; FEFLOW; generative adversarial networks

1. Introduction

Barbados is a small island developing state (SIDS) situated in the southeastern region of
the Caribbean. The island is almost entirely dependent on groundwater for its potable water
supply, with approximately 82% of its supply sourced from aquifers [1]. The remaining
18% of the island’s water is supplied from desalination of brackish water. The available
renewable water resources are estimated at 279 m3 per person per year; a figure of less
than 500 m3 per person per year places Barbados in the category of absolute water scarcity
according to the Falkenmark index [2]. The geology of the island is primarily a Pleistocene
coral rock, which covers 85% of the island [3]. The unconfined limestone aquifer is underlain
by an aquitard, which is composed of Tertiary-age units. The karstic and unconfined nature
of the island’s aquifers makes it vulnerable to various water quality threats. Moreover,
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changes in land use such as an increase in impervious surfaces reduce the potential for
aquifer recharge.

To date, the hydrogeologic studies conducted for the island have primarily been field
investigations commissioned by the Barbados Water Authority (BWA), the local water
utility. An early study performed by the British Union Oil Company Limited estimated that
of the average annual rainfall, 20–30% recharges the island’s aquifers. The total abstraction
rate from the island’s aquifers in 1947 was estimated to be 19,100 m3/day [4]. The major
findings from a subsequent study aimed at an improved understanding of Barbados’ water
quantity and quality estimated a safe yield of 136,000 m3/day, based on an average annual
rainfall value of 1500 mm, and estimated water demand of 60,000 m3/day [5]. Isotopic
hydrology studies were performed to investigate the spatio-temporal dynamics of recharge
mechanisms on the island [3,6,7]. The results from these studies showed that the occurrence
of recharge to the limestone aquifer takes place through the mechanisms of diffuse or
discrete recharge and primarily occurs within the three wettest months of the year. Diffuse
recharge occurs through soils comprising the vadose zone, whereas discrete recharge
dominates in areas with high sinkhole densities and dry valleys. Oxygen isotopic analyses
found that recharge varies between 15–20% of average annual rainfall in areas of higher
elevation, increasing to 25–30% at lower elevations [3,6,7].

While there have been several field hydrogeology investigations for the island, there
has been a dearth of quantitative studies. Numerical groundwater models are powerful
quantitative tools that have been leveraged to quantify the response of aquifers to climatic
and hydrologic stresses [8–10]. An accurate representation of Barbados’ hydrogeology
using numerical modelling and data-driven approaches would represent a significant
advancement that would allow for more scientifically sound decision making.

Various numerical modelling approaches have been used to quantify regional flow and
understand groundwater dynamics in karst and island settings similar to Barbados [11–14].
However, numerical models can be computationally expensive, which becomes problem-
atic in groundwater resources applications where simulation-optimization is used for
optimal management strategy development [15–20]. Surrogate models are a promising
technique that overcome the aforementioned difficulty. They are empirical techniques
that approximate a groundwater model, which describe the input–output mapping of the
original model [21]. The prediction of groundwater levels has been one of the applications
in several case studies where artificial intelligence has been successfully utilized [22–24]
across diverse study areas. However, there is a relative dearth of applications in a small
island developing state (SIDS) context.

In the taxonomy of surrogate models there are three approaches: data-driven surro-
gates, projection-based methods, and multifidelity-based surrogates [21]. In this paper, we
implement data-driven surrogates using deep neural networks (DNNs), elastic nets, and
generative adversarial networks (GANs) [25–27]. Moreover, an advantage of using DNNs
is that decision support is critical for the BWA, where short runtimes are required to enable
operational capabilities.

Therefore, the overall goal of this study is two-fold: (1) the development of a nu-
merical groundwater using the FEFLOW software that accurately represents Barbados’
hydrogeology, and (2) the implementation of data-driven surrogates that utilize machine
learning to approximate the numerical groundwater model of Barbados. Collectively, these
findings will improve the ability to manage water resources in a water scarce small island
developing state (SIDS) under a changing climate.

2. Materials and Methods
2.1. Study Area Geology and Hydrogeology

Barbados (13◦100′ N, 59◦300′ W) is the easternmost island in the eastern Caribbean,
with a total land area of 430 km2 (Figure 1). Approximately 85% of the island is comprised
of Pleistocene limestone geologic units that constitute the island’s aquifers. These geologic
formations are up to 100 m thick and in response to a continuous process of uplift, coral
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reefs developed outward from the center of the island, forming terraces. The First and
Second High Cliffs separate the three main groups of terraces. The Second High Cliff is
roughly 30 m high and there is a high degree of karstification adjacent to this cliff [6,7].
The remaining 15% of the island’s area, the Scotland District, is comprised of the Oceanic
Group, where low-permeability sediments are exposed at the surface. Since surface runoff
dominates in this portion of the island, the only significant source of groundwater occurs
within the Pleistocene limestone formations. The island’s geology has typical karst features
including caves, springs, and sinkholes.

Figure 1. Map of the Caribbean Region showing the location of Barbados [Source: Google Earth].

The topography of the interface between the limestone and underlying sediments
influences the occurrence of groundwater. Where the interface lies below mean sea level
(MSL), groundwater occurs as lenses of fresh water underlain by salt water. Conversely,
in locations where the aquifer–aquitard interface lies above MSL, groundwater exists as a
stream [28]. Generally, the subsurface has not been well characterized across the island,
therefore the interconnectivity of karst features is unknown. Therefore, the influence of
preferential flow paths enhanced by limestone dissolution and local-scale flow dynamics is
difficult to determine.

2.2. Physics-Based Numerical Model Development Using FEFLOW
2.2.1. Groundwater Model Setup

One of the main assumptions of the conceptual model is that the aquifer can be
represented as a single continuum. This assumption does not account for the fluxes
between the limestone matrix and karst conduit network. It has been shown previously
that this equivalent continuum model conceptualization is adequate for describing karst
systems if the purpose of the model is to simulate regional groundwater flow [11]. The
following are further assumptions made during development of the conceptual model:

1. Flow is three-dimensional and the unconfined limestone aquifer can be represented
as a single continuum.

2. The underlying aquitard has a sufficiently low permeability to ignore fluxes across
the interface between the base of the limestone and underlying aquitard.

3. The entire model domain is completely saturated and there are no variable den-
sity considerations.

4. The northeastern portion (Scotland District) of the island is comprised of impervious
geologic formations and the permeability of these lithologies is negligible.
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Boundary conditions are a mathematical statement assigning a value of the dependent
variable (hydraulic head) or derivative of the dependent variable (groundwater flux) at the
boundaries of the model domain. Since hydraulic heads are generally easier to measure
relative to groundwater flux, it is expedient to use hydraulic heads for boundary condition
specification [29]. Therefore, the coastline was assigned a Dirichlet boundary condition to
account for a specified head of 0 m indicating mean sea level. The model area considered
was only the Pleistocene limestone (approximately 365 km2); the remainder of the island
was assigned inactive cells. The model was run to a steady-state and accounted for fully
three-dimensional groundwater flow. The model domain was discretized using a finite
element mesh with over 2,000,000 elements. The vertical discretization was 25 layers
required to approximate the limestone aquifer only.

2.2.2. Physics-Based Groundwater Model Calibration

The island was delineated into four different zones using a sinkhole map as a proxy
for degree of karstification. Figure 2 (left) shows the spatial distribution of sinkholes
across the island, while Figure 2 (right) shows the sinkhole zones. These karstic sinkholes
are collapse features induced by dissolution of the island’s limestone geology. Table 1
provides a description of each of the four sinkhole zones (SZ1–SZ4) along with their
corresponding hydraulic conductivity parameterization. Areas with a higher density of
sinkholes were assumed to have a higher degree of karstification, thereby allowing for more
rapid groundwater flow. Conversely, areas with a lower sinkhole density were assumed
to transmit groundwater more slowly, therefore a smaller hydraulic conductivity value
was assigned. Based on experimental evidence from isotope hydrology studies, an average
annual recharge value of 300 mm/year was assigned to the top of the model domain.

Figure 2. Sinkhole map showing spatial variation in sinkhole density (left). Delineation of four sink-
hole zones with each being assigned different hydraulic conductivities (right).

Table 1. Specification of sinkhole zones and initial parameterization.

Sinkhole Zone Description K (m/day)

SZ 1 Medium-density zone 426

SZ 2 Low-density zone 10

SZ 3 High-density zone 1500

SZ 4 High-density zone 1500

The model was run to a steady-state condition and the calibration process was au-
tomated using FePest, which uses a Gauss–Newton-Levenberg–Marquardt algorithm to
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minimize the difference between simulated and observed hydraulic heads [30]. The hy-
draulic conductivity field was assumed to be homogeneous and isotropic within each of
the four zones. The BWA measures the depth to the water table at boreholes across the
island. These data were transformed into hydraulic head values by deducting the depth to
water from the surface elevation. The surface elevation data were obtained from a digital
elevation model (DEM) from the Barbados Lands and Surveys Department.

2.3. Machine Learning for Surrogate Groundwater Modelling

Groundwater level prediction in response to climatic and hydrologic stresses is critical
for sustainable groundwater resources management. Fluctuations in hydraulic head in
aquifers affect sea water intrusion in coastal zones, ecosystem services, and soil stability.
Therefore, it is of the utmost importance to have a quantitative understanding of the
response of groundwater systems to pumping and recharge. Assuming fully saturated
conditions, the spatio-temporal dynamics of the hydraulic head distribution is predicted
by the following equation subject to the appropriate initial conditions (I.Cs) and boundary
conditions (B.Cs):

∂
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+
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(1)

h = h0 , t = t0 (I.C) (2)

h = 0 on Ωc (B.C) (3)

where h(x,y,z) is hydraulic head, h0 is the initial hydraulic head, Kxx, Kyy, and Kzz are the
hydraulic conductivity values in the x, y, and z directions, Qi is the source/sink term, Ss is
specific storage, t is time, t0 is the initial simulation time, and ΩC is the coastal boundary.
The FEFLOW software also referred to as the physics-based model was used to solve
the system of Equations (1)–(3) to determine the hydraulic head distribution across the
model domain.

Three different machine learning techniques were used to construct surrogates for
the physics-based groundwater model. The training and testing data were generated by
computational experiments, which consisted of running 500 simulations of the calibrated
FEFLOW model with various pumping rates in a range of 3400 m3/day to 10,300 m3/day
at 5 different locations (see Figure 3). This range was chosen to reflect a plausible range
of worst to best case scenarios for groundwater abstraction, given that total groundwater
abstraction rates are approximately 70 million m3/year and there are 22 wells used for
abstraction by the BWA. The recharge rate was varied in the range of 70 mm/year to
1050 mm/year to capture a range from drought to above average annual rainfall conditions.
The time horizon considered was one year and the objective was to learn the input–output
relationship between hydrologic stresses (pumping and recharge rates) and the hydraulic
head at the end of the stress period.

Figure 3 is a flowchart showing the methodology used to meet the objective of de-
veloping an accurate ML surrogate for steady-state hydraulic head prediction. There are
broadly four steps in the process to meet the objective of approximating the physics-based
steady-state heads using ML techniques.
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Figure 3. Flowchart showing the methodology used to meet the objective of developing an accurate
ML surrogate for steady-state hydraulic head prediction.

2.3.1. Deep Neural Networks for Surrogate Modelling

Deep neural networks (DNNs) consist of multiple layers of artificial neurons, which
receive an input and perform a non-linear transformation. Mathematically, a feedforward
DNN used in supervised learning is defined as follows:

Let DNNK (x): Rc→Rs be a K-layer neural network with Nk neurons in the k-th layer.
Further, denote the bias vector and weight matrix in the k-th layer by bk and Wk, respectively.
For a non-linear activation function, which is typically a rectified linear unit (ReLU) given
by max {x, 0}, the sequential processing of a DNN is:

input layer : DNN0(x) = x ∈ Rc (4)

hidden layers : DNNk(x) = σ
(

WkDNNk−1(x) + bk
)

(5)

output layer : DNNk(x) = WkDNNk−1(x) + bk (6)

Figure 4 shows the structure of the feedforward DNN defined in mathematical terms
in Equation (4). The input features are well abstraction rates at 5 different pumping wells
(PW-1–PW-5) and a recharge rate, while the output feature is the stead-state hydraulic head
at an observation well. The DNNs were implemented using the Python library Keras with
a TensorFlow backend.
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Figure 4. Deep feedforward neural network architecture used for learning the mapping between
hydrologic stresses (pumping and recharge) and hydraulic head.

The 500 data points generated from the physics-based groundwater model were split
into 400 training samples and 100 testing samples. The sampling was performed with
the Scikit-learn Python library using a pseudo-random train-test split to minimize the
introduction of bias in the analysis. Figure 5 shows the location of pumping wells where
the abstraction rates were varied as well as the location of the observation well where the
hydraulic head was predicted in response to varying pumping and recharge rates.

Figure 5. Map showing a 3D representation of the model domain with the location of pumping and
observation wells used for the surrogate modelling.
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2.3.2. Elastic-Net Regression for Surrogate Modelling

The elastic net first emerged as a result of critique on the original regularization
regression method least absolute shrinkage and selection operator regression, or more
commonly known as lasso, whose variable selection can be too dependent on data and
thus unstable [26]. The solution to the perceived shortcoming of the lasso method is to
combine the penalty methodology of the second type of regularization; ridge regression and
lasso to obtain benefits from both techniques. Elastic nets aim to minimize the following
loss function:

Lenet(β̂) =
∑n

i=1 (ŷ – x′i β̂)
2

2n
+ λ(

1− α

2

m

∑
j=1

β̂2
i +α

m

∑
j=1

ˆ∣∣β j
∣∣) (7)

where m is the number of predictor variables, n is the number of data points, Lenet
(

β̂
)

is the
elastic net loss function, α is the mixing parameter between ridge (α = 0) and lasso (α = 1),
λ and α are tuning parameters. By iteratively updating the tuning parameters, the elastic
net learns the mapping between input features and output.

The strength of elastic net relative to other machine learning methods is that it performs
variable selection and regularization. This is especially useful when there are highly
correlated input features. A penalty was imposed using a shrinkage regression approach to
penalize non-parsimonious models. To avoid over-fitting, cross-validation using a 10-fold
with 10 repeats was employed. The elastic net regression was implemented using the R
software for statistical computing.

2.3.3. Generative Adversarial Neural Networks (GANs) for Surrogate Modelling

Generative adversarial networks (GANs) are comprised of two models: a generative
model, G, and a discriminative model, D. The role of the generator is to create data in
such a way that it can deceive the discriminator, while the role of the discriminator is
to distinguish between actual and generated data [27]. Mathematically, the problem is
posed as a two-player zero-sum game in which the loss function for an entire data set is
defined as:

minGmaxDV(D, G) = minGmaxD(ExPdata(x)[(x)] + EzPz(z)[log(1− D(G(z))
)

(8)

and the individual loss functions for the generator and discriminator are:

LG = min[log(D(x)) + log(1− D(G(z)))] (9)

LD = max[log(D(x)) + log(1− D(G(z)))] (10)

where D(x) is the discriminator’s evaluation of real data, D(G(z)) is the discriminator’s
evaluation of fake data, G(z) is the generator’s fake data, LD is the discriminator loss,
LG is the generator loss, Pdata(x) is the original data distribution, Pg(x) is the generated
distribution, Pz(z) is the input noise distribution, and V(D,G) is the expectation of the
combined loss function.

The objective of the GANs developed was to generate data that are indistinguishable
from the FEFLOW physics-based simulations. The GANs were implement using Keras
with a TensorFlow backend. The output variable (hydraulic head) was split into bins using
the minimum and maximum values of the variable to create these bins. The data set was
then transformed to obtain a Gaussian distribution using a power transformer. The binary
cross-entropy loss function was utilized, which is given by the following:

Hp(q) = −
1
N

N

∑
i=1

yi.log(p(yi)) + (1− yi). log(1− p(yi)) (11)
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3. Results and Discussion
3.1. Physics-Based Simulations of Island-Scale Groundwater Flow

There was an excellent agreement between the FEFLOW model and observed hy-
draulic head. Figure 6 shows a plot of the predicted versus field measured hydraulic
head data. The root mean squared error (RMSE) and mean absolute error (MAE) were
2.7 m and 2.08 m, respectively, and there was no noticeable bias in the FEFLOW model
to overestimate or underestimate the data. The hydraulic conductivity field required to
describe the data for SZ1, SZ2, SZ3, and SZ4 were 400 m/day, 10 m/day, 1500 m/day,
and 1500 m/day, respectively. These values are within a reasonable range for limestone
and karstic limestone geology, which ranges from 0.09 to 1700 m/day [31]. One of the
main limitations during calibration was related to the spatial coverage of data available
for calibration. Future efforts by the BWA should be aimed at establishing a monitoring
network that provides more robust data for calibration with fewer gaps. The model could
then be re-calibrated and provide a more quantitatively sound description of the island’s
hydrogeology. A denser network of monitoring locations would also allow for a pilot
point calibration approach that bridges the gap between parameter values in every cell of
a model and subdivision of models into homogeneous zones [32]. Stochastic techniques
could also be investigated to provide probability distribution functions of the hydraulic
conductivity field rather than deterministic values.

Figure 6. Comparison between simulated and observed steady-state hydraulic head after FEFLOW
model calibration.

Figure 7 shows regional groundwater flow paths predicted by the physics-based
groundwater model. In the north of the island, where there is a groundwater divide owing
to an anticlinal limestone geologic feature, the flow paths are directed in opposite directions
away from the anticlinal axis. These results provide further support for the model being
capable of quantitatively representing Barbados’ hydrogeology. The figure also shows the
location of sinkholes in reference to the predicted groundwater flow paths. As Barbados
moves toward a policy that is aimed at protecting groundwater from contamination, having
the quantitative tool developed herein provides part of the basis for risk management.
Geophysics surveys that image the subsurface to characterize karst features and prefer-



Hydrology 2023, 10, 2 10 of 14

ential flow paths could be integrated into the developed model, which would support an
improved understanding of risks.

Figure 7. Regional groundwater flow paths (purple lines) predicted by the model. The filled green
polygons are the locations of sinkholes across the island.

3.2. Performance of DNNs for Surrogate Modelling

A suite of numerical experiments was performed to determine the ability of DNN
feedforward networks to learn the underlying physics-based groundwater model as well
as to investigate the influence of various DNN architectures on performance metrics. The
root mean squared error (RMSE), mean absolute error (MAE), and R-squared were the
performance metrics used to assess the quality of the surrogate models developed.

To assess the impact of neural network architecture on performance metrics, the
network depth and width were varied. The depth of neural networks was varied by
specifying the number of hidden layers as 2, 4, and 6, while the width was varied by setting
the number of neurons in each hidden layer to 5, 10, 15, and 20. Figure 8a–d show the
correspondence between the top four best performing DNN surrogate models. We observed
excellent agreement between the neural network surrogate and physics-based groundwater
model. The RMSE error was in the range 2.62–2.83 m, the MAE in the range 2.2–2.44 m,
and the R-squared ranging from 0.95–0.96 for the best performing surrogates. The deepest
network (six hidden layers) with five neurons in each hidden layer produced the best
performance metrics. Although neural networks with a single hidden layer are universal
function approximators under reasonable assumptions, deeper networks allow for learning
more complex functions more efficiently. This explains the best performance observed
in the deepest neural network implemented. An automated machine learning approach
could be explored in future research efforts to more efficiently explore hyperparameter
optimization that would yield improved performance metrics.
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Figure 8. DNN surrogate model steady-state hydraulic head (in meters) prediction compared to
the physics-based numerical groundwater model steady-state hydraulic head (in meters) estimates.
Results from top-4 best performing models are in order of best metrics from (a–d).

Table 2 summarizes the performance metrics of DNNs with the architectures that
produced the best results. DNN(w-x-y-z) indicates w-input features, x-hidden layers,
y-neurons in each hidden layer, and z-output features.

Table 2. The top performing DNNs with their architecture and corresponding error metrics.

ML Surrogate RMSE (m) MAE (m) R-Squared

DNN-1 (6-6-5-1) 2.62 2.2 0.96
DNN-2 (6-2-15-1) 2.75 2.26 0.95
DNN-3 (6-2-20-1) 2.81 2.44 0.95
DNN-4 (6-4-10-1) 2.83 2.42 0.95

3.3. Performance of Elastic Nets for Surrogate Modelling

During cross-validation, 10 partitions of the data were generated, the analysis was
performed on each partition using elastic nets and an average overall error was determined.
Table 3 shows the results for the top performing elastic nets with the corresponding optimal
tuning parameters and error metrics (RMSE, MAE, and R-squared). The optimal elastic net
was tuned with α = 1 and λ = 0.0258, which led to an RMSE, MAE, and R-squared of 2.74,
2.26, and 0.95, respectively. The performance of elastic nets is similar to DNNs in terms of
the ability to approximate the numerical groundwater flow model. The best performing
DNN shows a slight improvement over the optimal elastic net in terms of the error metrics
used for assessing their performance.

Table 3. The top performing elastic nets with their optimally tuned parameters and corresponding
error metrics.

A λ RMSE (m) MAE (m) R-Squared

0.10 0.0258 2.74 2.25 0.95
0.10 0.258 2.75 2.25 0.95
0.10 2.58 3.54 2.82 0.95
0.55 0.0258 2.74 2.26 0.95
0.55 0.258 2.76 2.27 0.95
0.55 2.58 3.71 2.97 0.95
1.00 0.0258 2.74 2.26 0.95
1.00 0.258 2.77 2.27 0.95
1.00 2.58 3.87 3.11 0.95
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One advantage of elastic nets is the ability to simultaneously perform variable selection
and regularization. This was explored by performing a lasso algorithm on the ridge
regression coefficients. Variable selection was completed by investigating the coefficients
that shrank to zero and keeping the other predictor variables. Table 4 presents the significant
coefficients (p < 0.002) associated with the predictor variables used in the regression model.
Based on the significance of each regression coefficient it was found that recharge had the
greatest influence on predicting steady-state hydraulic heads at the specified observation
well, while there was a slight influence by well 4. The importance of this result in the
context of a stronger scientific basis for groundwater policy is that it can guide optimal
well placement, which is an increasingly important consideration as there is an increasing
demand and reducing supply due to climate change. The framework developed in this
paper can be used to evaluate a suite of pumping and recharge scenarios to evaluate the
implications on groundwater availability. However, one caveat is that machine learning
algorithms need to be re-trained for new scenarios.

Table 4. The significance of each predictor variable coefficient based on the lasso shrinkage model.

Variable Significance

well 1 −3.89 × 10−5

well 2 6.79 × 10−5

well 3 1.21 × 10−4

well 4 1.067 × 10−4

well 5 −3.32 × 10−4

recharge 4.42 × 10−2

3.4. Performance of GANs for Surrogate Modelling

The training parameters set in the GANs were as follows: the noise dimension was set
to 256, the dimension was set to 128, the batch size was set to 32, the log-steps were specified
as 100, the learning rate specified was 5 × 10−4, and the model was trained for 5000 epochs.
The GAN was trained using a generator and discriminator in a zero-sum game to find a
model that reproduces the FEFLOW model. The GAN implemented in this paper converged
to a result whereby the synthetic data was 95.3% accurate as compared to the physics-based
model. In future work we will explore the use of physics-informed neural networks, which
will impose the known physics in the loss functions of the neural networks [33,34]. This
will lead to less training data being required for training the neural networks.

The numerical groundwater model and machine learning surrogates demonstrate
the ability to satisfactorily describe Barbados’ hydrogeology. The ML techniques were
implemented to approximate steady-state hydraulic heads; however, in the future to better
support operational use of these tools a transient response will be approximated. While
run times for the physics-based model took approximately 45 min on a Dell Alienware
Area 51 R5 system with an 18-core Intel Core i9 7980XE architecture, trained ML surro-
gates produced similar results on the order of seconds. This is a major advantage of the
methodology developed herein from an operational perspective.

Further validation of the model through isotope hydrology studies as well as water
level time-series data will be future research thrusts. In addition, the models developed
will be coupled to optimization tools for evaluating optimal groundwater management
strategies. A limitation of the study is that it investigated the prediction of steady-state
hydraulic heads. Predicting a transient groundwater response and variable-density mecha-
nisms would be more challenging and require techniques such as long short-term memory
networks. Future work will investigate salinization processes, which represent one of the
greatest threats to groundwater quantity and quality on the island and the extension of the
current methodology to better capture highly non-linear hydrological processes.
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4. Conclusions

The objective of this work was to develop a physics-based groundwater model of
a small carbonate island and approximate the model using surrogates models based on
machine learning techniques. Achieving this objective provides a significant advancement
towards data-driven decision making for groundwater resources management under a
changing climate. Our results show that a single continuum conceptual model is capa-
ble of representing Barbados’ hydrogeology at a regional scale. This is supported by the
calibration results and groundwater flow patterns predicted by the physics-based numer-
ical groundwater model. Deep neural networks, elastic nets, and generative adversarial
networks were developed as surrogates for the physics-based groundwater model and
demonstrated their ability to approximate the model with a high degree of accuracy. The
approaches developed in this paper provide a path forward for a stronger scientific basis
for sustainable groundwater resources management in a small island developing state
severely affected by the climate crisis.
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