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Abstract: This study explores the bioactive compound extraction from laurel (Laurus nobilis L.) leaves
using a pulsed electric field (PEF) as a standalone extraction technique. The primary parameters
impacting the extraction process were optimized through response surface methodology. Specifically,
solvent composition (ethanol and water mixtures) and liquid-to-solid ratio, along with other key
PEF conditions (i.e., electric field intensity, pulse period, and pulse length) were examined. The
antioxidant capacity was evaluated through DPPH and FRAP assays, whereas total polyphenol
content was also measured. A comparison was also made between the extracts produced with
and without PEF. The results showed that after 30 min of extraction, the best parameters were a
pulse period of 355 µs, a pulse duration of 55 µs, and an electric field intensity of 0.6 kV/cm. A
liquid-to-solid ratio of 10 mL/g was chosen, whereas the best solvent was determined to be 25% (v/v)
ethanol/water mixture. The PEF-treated extract contained 77% more polyphenols compared to the
untreated sample. In addition, PEF-treated samples had a rise of up to 288% for certain individual
polyphenols. Correlation analyses also revealed interesting trends among bioactive compounds and
the antioxidant capacity of the extracts. The effect of the investigated parameters on polyphenol
recovery was demonstrated, indicating that comparable investigations should consider these pa-
rameters to optimize polyphenol extraction yield. Regarding green and non-thermal standalone
techniques, PEF outshines other extraction techniques as it could also be used as a sustainable way to
swiftly generate health-promoting extracts from medicinal plants.

Keywords: medicinal plant; sustainable extraction technique; Box–Behnken design; Pareto plot;
polyphenols; antioxidant activity; HPLC-DAD; kinetics study; partial least squares analysis;
correlation analyses

1. Introduction

From ancient times, medicinal plants have been evaluated for their therapeutic capac-
ity and several other benefits including those related to health and aesthetics [1]. Medicinal
plants generate a variety of secondary metabolites, some of which include aromatic com-
pounds and essential oils [2]. The secondary metabolites found in medicinal plants are
mostly natural antioxidants and preservatives and have a plethora of applications, includ-
ing in medicine, cosmetics, and even food sectors [3]. The chemical composition of plant
extracts is the most crucial factor in determining their effectiveness. Precipitation, temper-
ature, height, and soil type are among the environmental elements that can affect these
values [4]. Variations in polyphenol content have an immediate effect on the nutritional
value of plant-based foods. Given their well-known capacity to scavenge reactive oxygen
species, foods rich in antioxidants are in great demand [5].

Laurus nobilis L., commonly referred to as laurel, is a tall, slender, evergreen tree
or shrub with multiple branches and scented broadleaf leaves. It is a member of the
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Lauraceae family, native to the Mediterranean basin but nowadays widely distributed
across Europe and Asia [6,7]. It was historically acknowledged as a symbol of triumph
in athletic and military contests, as well as a symbol of peacefulness, during the era of
ancient Greeks and the Romans [8]. In addition to their long history of usage in folk
medicine, the leaves of this plant have long been enjoyed as a flavoring agent in traditional
food. As a result, much research has been conducted on their chemical composition and
biological activities in comparison to other plant parts [9]. Laurel leaves contain several
beneficial compounds, including norisoprenoids, alkaloids, tocopherols, and a vast number
of polyphenols, including flavonoids, phenolic acids, and lignans. Specifically, quercetin,
kaempferol, and isorhamnetin are the major polyphenols found in laurel leaves [10]. These
compounds are well-known for their antioxidant and anti-inflammatory properties [11].
Among the many desirable characteristics of laurel leaf extracts are their thermostability,
lack of phytotoxic effects, headache- and stomach-relieving properties, as well as their
ability to prevent bacterial and fungal infections [12].

Plant materials contain a wide range of polyphenolic structures, from simple to com-
plex, and highly polymerized polyphenols, which frequently interact with other compo-
nents including polysaccharides and lipids. Recovering these antioxidants is a difficult
procedure [13]. Hence, determining an ideal extraction approach that guarantees the effi-
cient recovery of the beneficial qualities of polyphenols remains challenging. To achieve
this, a multitude of techniques could be implemented [14]. While conventional extraction
methods, including maceration and infusion, are generally feasible to implement, they
frequently require a significant investment of time, energy, and solvent. On top of being
impractical for use on bigger scales, these methods can lead to the loss of thermally sensi-
tive polyphenolic compounds and are hard to automate [10,15]. Pulsed electric field (PEF)
is an innovative method that is well suited to the development of “green” sustainable
bioactive compound extraction. It emerges from the diminished energy demands per unit
of processed product [16,17]. Breaking the cell membrane structure through electropora-
tion is the fundamental notion behind PEF. In a treatment chamber. The food sample is
placed between two electrodes, where several values of electric field strength could take
place in order to extract bioactive compounds nonthermally from a solid plant tissue [18].
This technique is also defined as non-destructive and non-thermal, capable of lowering
processing time and decreasing energy consumption [19,20]. It is reported that the em-
ployment of the PEF technique can result in improved yields when extracting intracellular
bioactive compounds from various plant sources compared to conventional extraction
techniques [21–23].

Although the plant offers important health-promoting benefits to humans, there
is a scarcity of studies related to the optimization of the extraction process using PEF
technique as a standalone extraction technique for laurel leaves. Its green and non-thermal
nature, along with the standalone capability, are of great significance to produce laurel
leaves extracts in a short time. Consequently, employing response surface methodology to
optimize the extraction procedure and produce high added value extracts using PEF as a
standalone extraction technique was the aim of this study. Initially, green solvent mixtures
including water and ethanol for the extraction process were investigated along with the
liquid-to-solid ratio using a Box–Behnken design. Following this, key PEF parameters
including pulse duration, pulse period, electric field strength, and extraction duration
were also examined through a Box–Behnken design. Optimum extraction conditions were
revealed through a partial least squares model and variable importance plot. Laurel leaves
extracts were assessed as a source of antioxidant compounds, with a particular focus on
their potential applications in pharmaceutical and food industries.

2. Materials and Methods
2.1. Chemicals and Reagents

All information about the chemicals and reagents used is provided in the Supplementary
Material.
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2.2. Plant Material

For all experiments, laurel (Laurus nobilis L.) leaves were bought from a local shop in
Karditsa, Greece. Distilled water was used to cleanse the plant in order to remove sediment
and pollen particles. To freeze-dry the sample, a Biobase BKFD10P freeze-dryer (Jinan,
China) was utilized. The moisture content was measured at 41.31 ± 0.25%. Subsequently, a
blender was employed to reduce the dry laurel leaves to a fine powder of less than 400 µm.
The sample was kept at −40 ◦C until further analysis.

2.3. Plant Extraction

The extraction procedure including PEF was based on a previous study [24]. All
information is provided in the Supplementary Material and Table S1.

2.4. Optimization with Response Surface Methodology (RSM) and Experimental Design

To attain optimal extraction efficiency of bioactive compounds and assessment of an-
tioxidant capacity from laurel leaves extracts, the RSM technique was applied. Information
is given in detail in the Supplementary Material.

2.5. Kinetics Analysis

The extraction process of total polyphonic compounds and their antioxidant capacity
measured by FRAP and DPPH assays for the optimum laurel leaves extract (X1: 0.6, X2: 55,
and X3: 355) using PEF were assessed by first-order and second-order kinetic models in this
study. The samples were measured at various time intervals ranging between 1 and 40 min
to determine TPC, FRAP, and DPPH values. The rate constant (k) at extraction time (t) was
calculated using the first-order and second-order kinetic models as previously described
by Hobbi et al. [25].

2.6. Polyphenol Determination
2.6.1. Total Polyphenol Content (TPC)

Total polyphenol content (TPC) was calculated as mg gallic acid equivalents (GAE)
per g of dry weight (dw) and was evaluated based on a previous study [26]. Further
information is given in the Supplementary Material.

2.6.2. HPLC Quantification of Polyphenolic Compounds

The individual polyphenolic compounds from the laurel extracts were identified and
quantified using High-Performance Liquid Chromatography (HPLC), based on our prior
research [26]. Information is given in the Supplementary Material.

2.7. Antioxidant Capacity of the Extracts
2.7.1. Ferric-Reducing Antioxidant Power (FRAP) Assay

The ferric-reducing antioxidant power (FRAP) was calculated as µmol of ascorbic
acid equivalents (AAE) per gram of dw based on a previous established methodology by
Shehata et al. [27]. Information is given in the Supplementary Material.

2.7.2. DPPH• Antiradical Activity Assay

The antiradical activity for DPPH• (calculated as µmol AAE per gram of dw) was
evaluated based on a previously established methodology [27]. Information is given in the
Supplementary Material.

2.8. Statistical Analysis

Detailed information about statistical analysis is given in the Supplementary Material.
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3. Results and Discussion
3.1. Determination of the Optimal Solvent and Liquid-to-Solid Ratio

Determining the optimal solvent and liquid-to-solid ratio through a Box–Behnken
design was the initial purpose of this study. The Box–Behnken design depends upon
three-level incomplete factorial designs. The three-level full factorial design defines the
efficiency of an experimental design as the number of coefficients in the estimated model
divided by the number of experiments. A comparison of the Box–Behnken designs and the
Doehlert matrix, central composite design, and three-level full factorial design revealed that
the Box–Behnken designs show greater efficiency than the central composite design [28].
Furthermore, a vast benefit is that it aids the determination of optimal experimental condi-
tions by avoiding extreme treatment combinations. It also allows parameter interaction in
a short time, as it significantly decreases the number of experiments [29]. A combination
of the two parameters was carried out, as demonstrated in Table 1. Following this, the
mixtures underwent PEF treatment for 20 min at 0.8 kV/cm electric field strength, 55 µs
of pulse duration, and 550 µs of pulse period. Following centrifugation at 10,000× g, the
TPC values were determined in order to obtain the most optimal outcomes. A compari-
son between the predicted and observed response (i.e., TPC, which was expressed as mg
GAE/g dw) in relation to the optimization of the laurel extraction procedure is illustrated
in Figure 1. The actual value has a positive correlation with the predicted value (p-value
0.0009 and R2 0.9857), which increases the validity of the specific result, as indicated in
plot A. Regarding the desirability function for the optimization of the extraction process
(plot B), an increase in TPC was observed in moderate ethanol concentration (25 and 50%
v/v). On the other hand, the liquid-to-solid ratio had a more complex correlation with
TPC. The highest R values were observed at 20 and 10. To that end, a combination of 25%
v/v ethanol and liquid-to-solid ratio of 10 was found to be the most optimal extraction
combination, reaching 38.50 mg GAE/g of TPC, a statistically significant value (p < 0.05)
among the others. These outcomes were also verified by the three-dimensional graphs
in Figure 2, where it can be deduced that the highest TPC value (red area) was obtained
between 20 and 30% v/v of ethanol concentration in the X1 variable and at low values of the
X2 variable (i.e., 10 mL/g liquid-to-solid ratio). It should also be noted that the X1 variable
had greater impact than the X2 variable, as high TPC values were also observed in area
between 20 and 30% v/v of ethanol concentration, regardless of liquid-to-solid ratio. The
desirability function (with a value of 0.9608) verified the previously described conditions.

Table 1. Experimental values for the two investigated independent variables and the dependent
variable’s response to total polyphenol content (TPC).

Design Point
Independent Variables Response TPC (mg GAE/g)

X1 (C %, v/v) X2 (R, mL/g) Actual Predicted

1 1 (0) 2 (20) 15.91 17.15
2 2 (25) 2 (20) 35.44 34.56
3 3 (50) 3 (30) 38.10 36.80
4 4 (75) 4 (40) 29.33 31.10
5 5 (100) 4 (40) 15.53 14.55
6 1 (0) 1 (10) 25.37 24.38
7 2 (25) 1 (10) 38.50 39.45
8 3 (50) 5 (50) 33.42 33.01
9 4 (75) 3 (30) 30.35 30.79
10 5 (100) 5 (50) 17.29 17.45
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3.2. Optimization of PEF Conditions

Several factors affect the effectiveness of other traditional methods, such as the solvent
used, the level of agitation, and the temperature [30]. Excessive solvent usage, prolonged
processing times, decreased extraction efficiencies, potential degradation of thermolabile
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bioactive compounds, and the use of harmful chemicals are some of the drawbacks linked
with conventional extraction methods [31,32]. Similarly, other green extraction techniques
like membrane processes, supercritical fluid extraction, or microwave-assisted extraction
demand excessive energy consumption or expensive apparatus [33,34]. Therefore, food
products rich in polyphenols are more easily accessible after PEF treatment. In terms of
sustainability, extraction procedures including PEF treatment demand less energy con-
sumption than other techniques [35]. The unique short time of a PEF-based extraction
technique contributes to energy conservation [36]. After determining the ideal solvent
concentration and liquid-to-solid ratios, the next objective was to improve the conditions
of the PEF treatment. The parameters that were applied to maximize the efficiency of PEF
extraction using the Box–Behnken design are listed in Table 2, including the independent
(electric field intensity, X1; pulse duration, X2; pulse period, X3; extraction duration, X4)
and coded variables (−1, 0, 1). The various combinations of X1–X4 throughout the experi-
mental procedure, as well as the measured and predicted TPC, FRAP, and DPPH values, are
detailed in Table 3. The observed TPC values varied between 29.58 and 36.39 mg GAE/g
dw, suggesting that in order to obtain the maximum polyphenol recovery, an electric
field strength of 0.8 kV/cm may be necessary. The FRAP (462.27–581.47 µmol AAE/g)
and DPPH (190.98–230.09 µmol AAE/g dw) values varied significantly. The findings, as
presented in Table 3, suggest that in order to induce a significant antioxidant effect in the
extracts, an intermediate electric field strength of 0.6 kV/cm is necessary. A pulse period
value of 550 µs was optimal in all assays.

Table 2. The actual and coded levels of the independent variables were applied to maximize the
efficiency of PEF extraction.

Independent Variables Code Units
Coded Variable Level

−1 0 1

Electric field strength (E, kV/cm) X1 0.6 0.8 1.0
Pulse duration (tpulse, µs) X2 10 55 100

Pulse period (T, µs) X3 100 550 1000
Extraction duration (t, min) X4 10 20 30

The impact of the independent variables (X1–X4) on the recovery of the identi-
fied bioactive compounds through HPLC-DAD analysis is displayed in Table 4. A wide
range of polyphenols including flavonoids and phenolic acids was quantified, reveal-
ing a statistically significant (p < 0.05) range among the polyphenol concentrations. The
several design points had a cumulated sum of 3.79–14.70 mg/g, with kaempferol 3-O-
β-rutinoside (0.03–7.25 mg/g), isorhamnetin 3-glucoside (0–6.83 mg/g), quercetin 3-D-
galactoside (0.75–4.31 mg/g), and kaempferol 3-glucoside (0.53–1.59 mg/g) accounting as
the major polyphenols. A member of flavonol compounds, isorhamnetin 3-glucoside, can
halt oxidative stress and prevent diabetes. The aglycon isorhamnetin can reduce blood
pressure, safeguard endothelial cells from oxidized low-density lipoprotein, and lessen
the impact of ischemia-reperfusion on ventricular myocytes [37]. Kaempferol, a common
flavonol, could be present in different glycosidic forms in plant tissues. Kaempferol 3-
rutinoside demonstrates neuroprotective, anti-aging, anti-hepatotoxic, and antioxidative
properties, in addition to protecting against multi-infarct dementia and cerebral ischemic
injury [38]. Kaempferol 3-glucoside has also several health benefits. Apart from boosting
the immune system, it decreases inflammation. Improving cognitive function, lowering the
risk of diabetes, and lowering the risk of some cancers are some of the potential benefits [39].
Quercetin 3-D-galactoside has antimicrobial, anti-inflammatory, and antioxidant properties
in addition to its potential to prevent hypertension and cardiovascular diseases [40].
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Table 3. Experimental values for the four investigated independent variables and the dependent
variable’s responses.

Design
Point

Independent Variables

Responses

TPC
(mg GAE/g dw)

FRAP
(µmol AAE/g)

DPPH
(µmol AAE/g)

X1 (E,
kV/cm)

X2
(tpulse, µs) X3 (T, µs) X4

(t, min) Actual Predicted Actual Predicted Actual Predicted

1 −1 (0.6) −1 (10) 0 (550) 0 (20) 34.07 33.74 558.40 557.34 214.45 216.03
2 −1 (0.6) 1 (100) 0 (550) 0 (20) 34.68 34.50 543.18 545.75 230.09 231.82
3 1 (1.0) −1 (10) 0 (550) 0 (20) 33.64 33.43 478.21 483.94 211.26 209.75
4 1 (1.0) 1 (100) 0 (550) 0 (20) 31.85 31.79 548.48 557.84 195.49 194.13
5 0 (0.8) 0 (55) −1 (100) −1 (10) 32.33 31.94 476.86 476.50 200.77 201.47
6 0 (0.8) 0 (55) −1 (100) 1 (30) 34.07 34.27 529.46 529.58 209.25 212.37
7 0 (0.8) 0 (55) 1 (1000) −1 (10) 32.99 32.41 496.32 504.51 207.08 204.17
8 0 (0.8) 0 (55) 1 (1000) 1 (30) 31.75 31.75 484.38 493.05 204.83 204.34
9 −1 (0.6) 0 (55) 0 (550) −1 (10) 35.49 35.63 476.10 469.08 203.28 205.85

10 −1 (0.6) 0 (55) 0 (550) 1 (30) 35.13 34.65 581.47 571.18 228.20 227.14
11 1 (1.0) 0 (55) 0 (550) −1 (10) 32.34 32.30 519.49 519.72 198.85 199.62
12 1 (1.0) 0 (55) 0 (550) 1 (30) 35.61 34.96 462.27 459.23 192.26 189.40
13 0 (0.8) −1 (10) −1 (100) 0 (20) 30.97 30.75 538.17 538.73 220.05 216.48
14 0 (0.8) −1 (10) 1 (1000) 0 (20) 32.75 32.84 508.48 494.76 209.72 209.45
15 0 (0.8) 1 (100) −1 (100) 0 (20) 34.02 33.42 526.50 530.17 212.23 212.21
16 0 (0.8) 1 (100) 1 (1000) 0 (20) 29.58 29.29 576.24 565.63 210.62 213.90
17 −1 (0.6) 0 (55) −1 (100) 0 (20) 33.97 34.44 508.78 513.81 220.84 218.28
18 −1 (0.6) 0 (55) 1 (1000) 0 (20) 31.43 31.80 544.07 554.83 216.71 214.46
19 1 (1.0) 0 (55) −1 (100) 0 (20) 30.78 31.31 537.45 528.44 192.82 195.15
20 1 (1.0) 0 (55) 1 (1000) 0 (20) 31.48 31.90 482.17 478.89 190.98 193.62
21 0 (0.8) −1 (10) 0 (550) −1 (10) 32.04 32.36 482.30 485.14 208.71 209.99
22 0 (0.8) −1 (10) 0 (550) 1 (30) 34.93 35.28 514.34 519.98 213.71 216.20
23 0 (0.8) 1 (100) 0 (550) −1 (10) 33.45 34.00 534.22 530.33 213.16 210.75
24 0 (0.8) 1 (100) 0 (550) 1 (30) 32.18 32.76 538.20 537.10 216.82 215.61
25 0 (0.8) 0 (55) 0 (550) 0 (20) 35.53 35.80 514.71 515.10 208.03 208.95
26 0 (0.8) 0 (55) 0 (550) 0 (20) 36.39 35.80 514.03 515.10 210.73 208.95
27 0 (0.8) 0 (55) 0 (550) 0 (20) 35.49 35.80 516.57 515.10 208.10 208.95

To recover the majority of polyphenols, 20 min of extraction was found to be optimal
in most cases. In addition, design point 16 effectively recovered most of the polyphenols
achieving 11.14 mg/g. On the other hand, design point 1 reached 14.7 mg/g of polyphe-
nols, the highest possible, 76% of which were obtained by quercetin 3-D-galactoside and
isorhamnetin 3-glucoside concentrations, equaling total polyphenols measured in design
point 16. The polyphenols that were identified and quantified through HPLC-DAD are
illustrated in Figure 3 with a representative chromatograph.

Table 5 contains the statistical variables, including coefficients (≥0.95) and second-
order polynomial equations (models), which indicate an acceptable fit for the models. The
relationship between the predicted and actual response for each investigated parameter,
along with the corresponding desirability functions, are illustrated in Figures S1–S3 plots.
In plot A, high R2 coefficients (≥0.95) mean that experimental values were close to the
predicted, whereas the desirability functions shed light on the impact of each PEF parameter
in the assays in B plots. For instance, low electric field strength (0.6 kV/cm) was required
for extracts with high antioxidant capacity in the FRAP assay. The response graphs in three
dimensions for the TPC, FRAP, and DPPH variables are presented in Figures S4–S6. They
illustrate how the combination of the PEF variables affect the outcome of each assay, with
the red color being the most optimum. Figure S7 shows a bivariate analysis of TPC, FRAP,
and DPPH assays by each model estimate. The model equations have a high correlation
with the predicted values, with 0.8985, 0.973, and 0.9889 for TPC, FRAP, and DPPH assays,
respectively. The p-value of each model is <0.0001, which means there is no significant
difference among the variables. The R2 values are 0.8073, 0.9466, and 0.9779 for TPC, FRAP,
and DPPH assays, respectively, which indicates no large random errors in the model.
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Table 4. Coded values of the four investigated independent variables with the actual concentration
of polyphenolic compounds, expressed in mg/g dw.

DP

Independent Variables Responses

X1 (E,
kV/cm)

X2
(tpulse,
µs)

X3 (T,
µs)

X4 (t,
min) NCA VA RT EC FA Q3G L7G NRT K3R K3G A7G I3G KMP

1 −1 (0.6) −1 (10) 0 (550) 0 (20) 0.02 0.48 0.36 0.07 0.38 4.31 0.28 0.06 0.08 1.59 0.06 6.83 0.18
2 −1 (0.6) 1 (100) 0 (550) 0 (20) 0.04 0.47 0.36 0.10 0.38 0.80 0.29 0.06 5.92 0.85 0.13 0.03 0.18
3 1 (1.0) −1 (10) 0 (550) 0 (20) nd * 0.57 0.49 0.12 0.41 0.83 0.29 0.09 0.03 0.56 0.17 0.05 0.18
4 1 (1.0) 1 (100) 0 (550) 0 (20) 0.01 0.48 0.38 0.09 0.36 0.75 0.28 0.03 5.41 0.53 0.11 1.01 0.17
5 0 (0.8) 0 (55) −1 (100) −1 (10) 0.02 0.54 0.37 0.11 0.40 0.85 0.29 0.08 6.24 0.57 0.15 0.06 0.17
6 0 (0.8) 0 (55) −1 (100) 1 (30) 0.02 0.56 0.40 0.10 0.41 0.85 0.29 0.07 6.51 0.57 0.17 0.07 0.17
7 0 (0.8) 0 (55) 1 (1000) −1 (10) 0.02 0.48 0.37 0.11 0.37 0.80 0.29 0.05 5.70 0.55 0.13 0.02 0.17
8 0 (0.8) 0 (55) 1 (1000) 1 (30) 0.02 0.45 0.38 0.10 0.36 0.78 0.28 0.03 5.39 0.54 0.12 nd 0.17
9 −1 (0.6) 0 (55) 0 (550) −1 (10) 0.02 0.47 0.37 0.11 0.39 0.81 0.28 0.04 5.97 0.55 0.14 nd 0.18
10 −1 (0.6) 0 (55) 0 (550) 1 (30) 0.02 0.57 0.37 0.11 0.42 0.85 0.78 0.08 6.63 0.56 0.17 0.03 0.18
11 1 (1.0) 0 (55) 0 (550) −1 (10) 0.02 0.50 0.40 0.09 0.37 0.79 0.28 0.03 5.77 0.54 0.13 nd 0.18
12 1 (1.0) 0 (55) 0 (550) 1 (30) 0.02 0.52 0.37 0.10 0.39 0.82 0.29 0.05 6.09 0.56 0.14 0.06 0.18
13 0 (0.8) −1 (10) −1 (100) 0 (20) 0.01 0.42 0.36 0.09 0.37 0.79 0.28 0.03 5.63 0.54 0.12 0.02 0.17
14 0 (0.8) −1 (10) 1 (1000) 0 (20) 0.02 0.50 0.38 0.10 0.38 0.81 0.28 0.05 5.96 0.55 0.14 0.02 0.18
15 0 (0.8) 1 (100) −1 (100) 0 (20) 0.02 0.50 0.36 0.10 0.39 0.80 0.29 0.06 5.96 0.55 0.14 0.01 0.17
16 0 (0.8) 1 (100) 1 (1000) 0 (20) 0.02 0.61 0.38 0.11 0.44 0.89 0.30 0.10 7.25 0.57 0.20 0.07 0.20
17 −1 (0.6) 0 (55) −1 (100) 0 (20) 0.04 0.48 nd 0.09 0.38 0.78 0.28 0.04 5.74 0.54 0.13 nd 0.17
18 −1 (0.6) 0 (55) 1 (1000) 0 (20) 0.02 0.46 0.37 0.01 0.38 0.79 0.28 0.06 6.00 0.54 0.14 0.04 0.18
19 1 (1.0) 0 (55) −1 (100) 0 (20) 0.01 0.52 0.38 0.10 0.38 0.80 0.28 0.06 6.00 0.55 0.13 nd 0.18
20 1 (1.0) 0 (55) 1 (1000) 0 (20) 0.01 0.49 0.36 0.09 0.37 0.76 0.27 0.05 5.76 0.54 0.13 0.01 0.18
21 0 (0.8) −1 (10) 0 (550) −1 (10) 0.02 0.48 0.39 0.10 0.39 0.82 0.30 0.06 5.94 0.55 0.14 nd 0.18
22 0 (0.8) −1 (10) 0 (550) 1 (30) 0.04 0.41 nd 0.09 0.37 0.77 0.28 0.03 5.39 0.53 0.12 0.01 0.17
23 0 (0.8) 1 (100) 0 (550) −1 (10) 0.01 0.52 0.37 0.09 0.38 0.80 0.29 0.04 5.83 0.55 0.13 0.01 0.17
24 0 (0.8) 1 (100) 0 (550) 1 (30) 0.01 0.51 0.44 0.09 0.39 0.81 0.29 0.06 5.89 0.55 0.14 0.01 0.18
25 0 (0.8) 0 (55) 0 (550) 0 (20) 0.03 0.39 nd 0.07 0.34 0.75 0.28 nd 4.71 0.53 0.10 0.02 0.16
26 0 (0.8) 0 (55) 0 (550) 0 (20) 0.04 0.53 0.38 0.11 0.39 0.83 0.28 0.09 5.97 0.56 0.15 0.06 0.17
27 0 (0.8) 0 (55) 0 (550) 0 (20) 0.01 0.50 0.37 0.10 0.39 0.81 0.28 0.06 5.86 0.55 0.14 0.04 0.17

* nd: not detected. NCA: neochlorogenic acid; VA: vanillic acid; RT: rutin; EC: epicatechin; FA: ferulic acid; Q3G:
quercetin 3-D-galactoside; L7G: luteolin 7-glucoside; NRT: narirutin; K3R: kaempferol 3-O-β-rutinoside; K3G:
kaempferol 3-glucoside; A7G: apigenin 7-glucoside; I3G: isorhamnetin 3-glucoside; KMP: kaempferol.
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Table 5. Mathematical models generated through RSM were used to optimize the extraction process
of laurel leaves. The models included only significant terms.

Responses Second-Order Polynomial Equations (Models) R2 p-Value Equation

TPC
Y = 18.62 + 18.8X1 + 0.22X2 + 0.01X3 + 0.13X4 − 20.58X1

2 −
0.0008X2

2 − 0.00001X3
2 − 0.006X4

2 − 0.07X1X2 + 0.009X1X3 +
0.45X1X4 − 0.0001X2X3 − 0.002X2X4 − 0.0002X3X4

0.9501 <0.0001 (1)

FRAP
Y = 212.11 + 181.88X1 − 2.72X2 + 0.21X3 + 25.81X4 + 97.32X1

2 +
0.009X2

2 − 0.00001X3
2 − 0.14X4

2 + 2.38X1X2 − 0.25X1X3 −
20.32X1X4 + 0.001X2X3 − 0.02X2X4 − 0.004X3X4

0.9591 <0.0001 (2)

DPPH
Y = 116.53 + 141.52X1 + 0.34X2 + 0.007X3 + 4.44X4 − 45.76X1

2 +
0.003X2

2 − 0.00001X3
2 − 0.02X4

2 − 0.87X1X2 + 0.006X1X3 −
3.94X1X4 + 0.0001X2X3 − 0.0007X2X4 − 0.0006X3X4

0.9561 <0.0001 (3)

3.3. Impact of Extraction Parameters to Assays through Pareto Plot Analysis

A standardized Pareto plot was used to evaluate the main effects and their interactions
based on statistical significance (p < 0.05). The independent variables (electric field intensity,
X1; pulse duration, X2; pulse period, X3; extraction duration, X4) and their interactions
that affected TPC, and FRAP and DPPH antioxidant activity are displayed in Figure 4. It
also displays the orthogonal coded estimates, which are derived from the transformation
that orthogonalizes the estimates. Regarding the effects of extraction parameters through
the Pareto plot, it could be concluded that X1, X2, and X3 had a negative impact on TPC.
The highest negative contribution was achieved with a X3

2 combination, indicating that
polyphenol recovery was sensitive to pulse period changes. However, it should be noted
that the X1 variable had a vast negative contribution to the DPPH assay. This could be a
subject of high electric field strength decomposing antioxidant compounds. A similar trend
was observed in the study by Zhang et al. [41] who revealed that DPPH radical scavenging
was positively correlated with increased electric field strength until it reached a plateau.
After a certain value of electric field strength, the scavenging activity was decreased.
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3.4. Optimal Extraction Conditions

Conventional extraction techniques present a number of challenges, such as prolonged
processing times, decreased efficacy in extracting bioactive compounds, huge solvent
consumption, dangerous solvents, and potential deterioration of thermolabile bioactive
compounds [31]. Considerable advances have been achieved in recent years with regard
to the development of extraction methods that reduce the reliance on dangerous solvents,
secure human health, and use less energy [42]. PEF acts as a treatment that uses brief
electrical power pulses to electroporate cell membranes non-thermally across a range of
electric field strengths and make bioactive compounds extraction easier. The compounds of
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interest in plant-based foods are then transferred to the extraction solvent [43]. Conductivity,
polarity, and solubility parameters are of high importance, should PEF be used as an
extraction technique [44]. The impact of these parameters on extraction can be attributed to
a multitude of factors. These include variations in solvation strength, solubility restrictions,
and the incapability of the solvent to penetrate and disrupt the cell [45]. Water is a highly
ecological and cost-effective solvent. The extraction of polar compounds is greatly enhanced
by this solvent. Nevertheless, in order to isolate molecules with lower polarity, it is
possible to employ organic solvents such as ethanol or methanol to dissolve bioactive
compounds more efficiently compared to water [46]. Taking into consideration their food-
grade potential, water and ethanol mixtures serve as an ideal combination that yields more
efficiency than other binary solvents [47].

To identify the highest anticipated values for TPC and antioxidant assays (FRAP
and DPPH), the desirability function was used. The highest values of the assays were
accomplished through different PEF conditions. In the quantification of maximized TPC
value from laurel leaves at a predicted value of 36.17 mg GAE/g dw, a 15-min extraction
was required with 0.6 kV/cm of electric field strength, 75 µs of pulse duration, and 415 µs
of pulse period. A comparable study by Generalić Mekinić et al. [48] involved the measure-
ment of TPC in laurel leaves extracts. They used a conventional solid-liquid extraction with
80% ethanol as a solvent for 60 min at 60 ◦C through a 50:1 liquid-to-solid ratio. The higher
TPC content (148.3 mg GAE/g leaves) could be a matter of different cultivars. What should
be highlighted are the extraction conditions, where it appears that our approach is faster,
less energy-consuming, and non-thermal, making the process more sustainable. The same
electric field strength was necessitated for the maximum predicted response for antioxidant
assays FRAP and DPPH. Further information about optimal extraction conditions is shown
in Table 6.

Table 6. Maximum predicted responses and optimized extraction conditions for the dependent
variables.

Responses

Optimal Conditions

Maximum
Predicted Response

E, kV/cm
(X1)

tpulse, µs
(X2)

T, µs
(X3)

t, min
(X4)

TPC (mg GAE/g) 36.17 ± 0.80 0.6 75 415 15
FRAP (µmol AAE/g) 579.43 ± 15.48 0.6 23 550 27
DPPH (µmol AAE/g) 233.68 ± 5.09 0.6 90 470 26

3.5. Kinetic Modelling of Optimal Extract

The values of TPC, FRAP, and DPPH assays against time from the optimal extract
along with the kinetic model evaluation were investigated. Figure S8 shows the time course
of TPC, FRAP, and DPPH assays during extraction. The results revealed acceptable R2

values, which were measured to be ~0.96 on average for all assays. It should be noted that
the values reached a plateau beyond 30 min in all assays. To that end, the examined time did
not exceed that time in the investigation of kinetics. The first-order kinetic model (Figure S9)
was applied to the experimental data of the extraction kinetics by plotting ln(Cs/(Cs − Ct))
against t. The slope and the intercept of the plot were used to calculate the first-order rate
constant (k) and R2. The plot indicates that the extraction of TPC, FRAP, and DPPH assays
from laurel leaves using PEF, under the optimal PEF conditions (X1: 0.6, X2: 55, X3: 355),
follows a linear form of the first-order model. The k-values obtained were 0.1107 min−1,
0.1161 min−1, and 0.1384 min−1 for TPC, FRAP, and DPPH assays, respectively. The R2

values of the extraction kinetics models were 0.9794, 0.9882, and 0.9822 for TPC, FRAP,
and DPPH assays, respectively. The moderate correlation was also demonstrated by the
root mean square error (RMSE) index, which had a range of 0.1779–0.2618, with the DPPH
assay having the highest value. This moderate correlation was also revealed through the
experimental and predicted values of the assays under examination and could be verified
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further in Figure S9. The values of ln(Cs/(Cs − Ct)) against time (30 min) in TPC (1.45),
FRAP (1.36), and DPPH (1.29) assays had a ~6–30% difference from the predicted values
from the first-order kinetics.

To evaluate the suitability of the second-order kinetic model (Figure S10) for describ-
ing the extraction kinetics of TPC, FRAP, and DPPH assays from laurel leaves by PEF,
the plots of t/Ct versus t were constructed and the second-order rate constant (k) and
coefficient of determination (R2) were calculated. The k-values were 0.0073 g/(mg min),
0.0136 g/(mg min), and 0.0324 g/(mg min) for TPC, FRAP, and DPPH assays, respectively.
The R2 values were 0.9949, 0.9967, and 0.9941 for TPC, FRAP, and DPPH assays, respectively.
Regarding second-order kinetics, it appeared that R2 were greater than their corresponding
values in first-order kinetics (>0.99), indicating an ideal fit of the model to the experimental
data. The corresponding experimental and predicted values in TPC (0.3722), FRAP (0.0236),
and DPPH (0.0603) showed insignificant differences (<5%) between them. Similarly, the
considerably lower value of the RMSE by about ten-fold revealed that the extraction process
probably fit second-order kinetics.

3.6. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)

In order to extract additional information from variables and conduct a more thorough
analysis of the data, PCA was employed, the results of which are illustrated in Figure 5.
The aim of the investigation was to identify whether a correlation between TPC, FRAP, and
DPPH with individual polyphenols was observed. The graph explained the 55% of the
variance. The contribution of independent variables was also considered important to the
analysis. It was observed that three polyphenols (i.e., narirutin, ferulic acid, and vanillic
acid) were positioned in proximity to each other on the graph. Their high measured con-
centration in design point 16 would be a possible explanation, meaning these polyphenols
were affected by the same PEF parameters. On the other hand, kaempferol 3-galactoside,
isorhamnetin 3-glucoside, and quercetin 3-D-galactoside were discriminated from the other
polyphenols and were positioned together, as they were found on their maximum concen-
tration in design point 1. The same rationale was also underlying with neochlorogenic acid.
There is a negative correlation with ferulic acid and narirutin and a positive correlation
with TPC. However, it is of great interest that variable X4 positioned close to antioxidant
assays parameters, indicating a positive correlation with them, compared to variable X1
(vide infra).

The MCA diagram provides further insight into the correlation among variables. An
important advantage of this approach, as opposed to the previous correlation analysis, is
its capacity to measure the extent of negative or positive correlation among the investigated
variables. The color scale used indicates correlation values from −1 to 1, as elucidated in
the following caption. The results of this analysis are shown in Figure 6. A strong positive
correlation (<0.6) was observed with vanillic acid and ferulic acid, narirutin, kaempferol,
and apigenin 7-glucoside. The most possible explanation lies in the polarity of these
polyphenols and the distribution coefficient with the extraction solvent used (i.e., 25%
v/v ethanol). A similar rationale could lie behind the strong negative correlation (>0.6) of
kaempferol 3-O-rutinoside with isorhamnetin 3-glucoside and kaempferol 3-glucoside. An
interesting outcome was the correlation between the TPC and FRAP assay, which was rather
insignificant but negative as well. A possible explanation would be that PEF treatment led
to several extracted polyphenols that had different antioxidant capacities, an effect that has
also been reported elsewhere [49].
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3.7. Partial Least Squares (PLS) Analysis and Variable Importance Plot (VIP) Coefficient

To determine the significance of the extraction parameters (X1, X2, X3, and X4), a PLS
model was applied. The utilization of the PLS model to generate a correlation loading
plot, as illustrated in Figure 7 (plot A), visually represents the effects of PEF conditions on
laurel leaves. It can be concluded that the X1 variable, (i.e., electric field strength) did not
contribute enough to yield maximum polyphenols; however, a negative correlation was
observed with antioxidant assays. The higher the field strength, the lower the antioxidant
capacity of the extracts. On the other hand, the X2 and X3 parameters (pulse duration
and pulse period) had little or no impact, especially on the antioxidant assays. Extraction
duration (i.e., parameter X4) showed a non-significant impact on TPC, though it was noticed
that 30 min of extraction was the most beneficial in enhancing the antioxidant capacity
of the extracts. A greater contribution from a variable (or a combination of variables) is
indicated by a higher VIP coefficient, especially a value > 0.8, as shown in plot B. It was
observed that variables X1 and X4 showed the highest contribution required for the most
favorable results in both antioxidant assays.

The correlation between the experimental values and those generated by the PLS
model was found to be 0.9876 and have slight deviations, as the p-value was measured
at 0.0711. The implementation of PEF treatment led to extracts with high TPC or an-
tioxidant capacity. By selecting the optimal PEF conditions, as shown in Table 7, a high
percentage increase in the examined values was observed. The lowest percentage in-
crease among PEF-treated and untreated samples was observed in TPC (77%), which led
to extracts with 35.55 mg GAE/g dw. A study by Peiro et al. [50] suggested that PEF
treatment could increase TPC by ~100%, reaching 160 mg GAE/100 g dw of lemon peels.
Regarding laurel leaves, the study [51] by Rincón et al. examined the impact of extrac-
tion solvent. TPC ranged from 10 to 12 mg GAE/g dw of laurel leaves, indicating that
a mixture of the two could be more effective. Similar results to ours were obtained in
the research studies by Dobroslavić et al. [15,52], who used other “green” extraction tech-
niques. TPC ranged from 31.87 to 49.30 mg GAE/g when pressurized liquid extraction was
used. Microwave- and ultrasound-assisted extraction obtained 30.88–53.57 mg GAE/g and
24.43–36.74 mg GAE/g dw, respectively. However, the variance in the TPC observed to the
above studies could be subject of different cultivars of laurel leaves. Finally, a study from
Ramos et al. [12] indicated that the antioxidant capacity evaluated by FRAP assay using
ethanol with maceration process recorded 136 µmol AAE/g dw. This value is comparable
to our control sample but considerably lower than the PEF-treated sample (189.71 and
520.05 µmol AAE/g dw, respectively), highlighting the impact of PEF treatment on the
laurel leaf extracts. As laurel leaf extracts are rich in antioxidants, it was essential to high-
light the contribution of PEF to the antioxidant activity of the extracts, which was found
significant. A future study could focus on the enhancement of other biological properties
of laurel leaves extracts.

Table 7. Maximum desirability values for all investigated variables using the partial least squares
(PLS) prediction profiler under optimized extraction conditions (X1: 0.6, X2: 55, X3: 355, and X4: 30).
A comparison with the control extract (no PEF-treated) was also included.

Variables PLS Model Values Experimental Values
(PEF)

Control
(No PEF) % Increase

TPC (mg GAE/g) 35.06 35.55 ± 1.71 a 20.08 ± 0.88 b 77.0
FRAP (µmol AAE/g) 569.29 520.05 ± 10.4 a 189.71 ± 6.26 b 174.1
DPPH (µmol AAE/g) 228.8 258.64 ± 16.04 a 135.54 ± 9.49 b 90.8

Statistically significant figures (p < 0.05) are indicated with lowercase letters (e.g., a, b) within each row.
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as mentioned above. The results are shown in Table 8. PEF-treated samples had a total of
12.12 mg/g of polyphenols, recording an 81.7% increase from the untreated samples. In
most cases, statistically significant differences (p < 0.05) were observed in the polyphenol
concentrations of laurel extracts after PEF treatment. With the specific PEF conditions,
the major polyphenol was found to be kaempferol 3-O-β-rutinoside (7.40 mg/g). In the
previous study by Dobroslavić et al. [15], similar compounds were identified, including
ferulic acid (0.01 mg/g), rutin (0.97 mg/g), kaempferol 3-O-β-rutinoside (0.06 mg/g),
whereas epicatechin (0.13–0.71 mg/g) was also quantified with other “green” techniques in
the previous study from the same research team [52].

Table 8. Identified polyphenolic compounds under optimized extraction conditions. A comparison
with the control extract (no PEF-treated) was also included.

Polyphenolic
Compounds (mg/g)

Optimal Extract
(PEF)

Control
(No PEF) % Increase

Neochlorogenic acid 0.02 ± 0 a 0.02 ± 0 b 31.0
Vanillic acid 0.61 ± 0.03 a 0.28 ± 0.01 b 116.8

Rutin 0.46 ± 0.03 a 0.38 ± 0.02 b 21.0
Epicatechin 0.12 ± 0.01 a 0.05 ± 0 b 118.4
Ferulic acid 0.44 ± 0.03 a 0.29 ± 0.02 b 52.7

Quercetin 3-D-galactoside 0.91 ± 0.03 a 0.69 ± 0.03 b 30.7
Luteolin 7-glucoside 0.30 ± 0.02 a 0.26 ± 0.02 a 11.9

Narirutin 0.12 ± 0.01 a 0.07 ± 0 b 70.4
Kaempferol 3-O-β-rutinoside 7.40 ± 0.53 a 3.69 ± 0.27 b 100.3

Kaempferol 3-glucoside 0.59 ± 0.01 a 0.51 ± 0.03 b 14.8
Apigenin 7-glucoside 0.21 ± 0.01 a 0.06 ± 0 b 235.9

Isorhamnetin 3-glucoside 0.75 ± 0.02 a 0.19 ± 0.01 b 288.1
Kaempferol 0.19 ± 0.01 a 0.15 ± 0 b 25.4

Total identified 12.12 ± 0.74 a 6.67 ± 0.41 b 81.7
Statistically significant figures (p < 0.05) are indicated with lowercase letters (e.g., a, b) within each row.

4. Conclusions

The aim of the present study was to identify whether high concentrations of bioactive
compounds could be extracted from laurel leaves using “green” solvents (ethanol and
water) in conjunction with the “green” PEF technique. To improve the efficiency of the
process, a 0.6 kV/cm electric field strength was needed, accompanied by brief pulses
of 55 µs over a duration of 355 µs, for a total extraction time of 30 min. Preliminary
experiments revealed that 25% v/v of aqueous ethanol solution as solvent and a liquid-
to-solid ratio of 10 were necessitated. When compared to the control (untreated) samples,
the PEF-treated extracts demonstrated a 77% increase in polyphenol content. The increase
in specific polyphenols varied between 25% and 288%. Antioxidant capacity by FRAP
and DPPH assays increased significantly, by 174% and 90%, respectively. The amount of
the recovered polyphenols was dependent on the duration and intensity of the electric
field. Further investigation could be conducted to thoroughly elucidate the practical
application of PEF-treated extracts or other biological activities of laurel leaves extracts.
The as-prepared extracts are rich in antioxidant compounds that hold promise for the
fortification of beverages or food products as well as cosmetic products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemengineering8020026/s1, Table S1 represents the actual and
coded levels of the independent variables for the Screening design. Figures S1–S3 comprise plots
that illustrate the comparison between the actual response and the predicted response for each
parameter under examination, accompanied by the desirability functions. Figures S4–S6 present
three-dimensional response plots for the remaining responses. Figure S7 demonstrates the bivariate
analysis of each parameter on the assays under investigation. Figure S8 depicts the time course of
the same assays during extraction from laurel leaves using PEF, under the optimal extraction PEF
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conditions. Figures S9 and S10 show the first- and second-order kinetics of the assays under optimum
PEF conditions.
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