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Abstract: Methylene blue (MB) is a hazardous chemical that is widely found in wastewater, and its
removal is critical. One of the most common methods to remove MB is adsorption. To enhance the
adsorption process, magnetic adsorbents, particularly those based on superparamagnetic iron oxide
nanoparticles (SPION), play a vital role. This study focuses on comparing recent novel SPION-based
MB adsorbents and how to acquire the critical parameters needed to evaluate the adsorption and
desorption mechanisms, including isotherms, kinetics, and thermodynamic properties. Moreover,
the review article also discusses the future aspects of these adsorbents.
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1. Introduction

The eutrophication of water bodies and a decline in water quality are two environ-
mental problems associated with wastewater discharge. Annually, around 7 × 107 tons of
non-biodegradable synthetic dyes are produced worldwide, leading to water pollution [1].
Textile dyes can cause serious problems, such as suppressing plant growth, inhibiting the
oxygen supplies for living species, toxicity, mutating species, impairing photosynthesis
processes, and carcinogenicity [2,3].

To treat dye effluents, many methods can be considered, including adsorption, floccu-
lation, ion exchange, advanced oxidation processes, chemical precipitation, decantation,
biodegradation, and other processes [4]. Among these methods, adsorption is well rec-
ognized for being a promising method since, depending on the system, it is efficient,
affordable, and easy to handle materials [5]. Conventional treatment methods have been
used successfully in a range of wastewater; however, industrial wastewater, which contains
significant amounts of toxic compounds such as heavy metals and coloring chemicals, is
not well suited for them [6]. Adsorption is one of these methods, and depending on the
system, it is well recognized to be a potential method due to its easy handling, low costs,
and high efficiency [7].

Furthermore, to enhance wastewater treatment operations, magnetic properties have
been researched extensively to modify these systems because they are very effective, utilize
minimal energy, and are ecologically beneficial [6]. Nanoparticles with magnetic properties,
which have high absorption/adsorption capabilities, charge neutralization, and large surface
areas, have been considered effective adsorbents for wastewater treatment. More importantly,
when applying the external magnetic field, the adsorbents can be separated rapidly [7–9].

Hence, for researchers who are new (i.e., undergraduate and graduate students) and
interested in removing methylene blue from wastewater using the superparamagnetic iron
oxide nanoparticles (SPION)-based composite, the aim of this work is to provide a complete
overview of:
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• How to synthesize SPION-based adsorbents;
• How to characterize the adsorbents;
• How to perform the adsorption and desorption experiments;
• How to calculate the adsorption kinetics, adsorption isotherms, and adsorption ther-

modynamics properties;
• How to calculate the desorption kinetics;
• Comparing the MB adsorption capacity, kinetics, isotherms, and thermodynamic

properties of the most recent adsorbents;
• The future research of methylene blue adsorption by using the SPION-based composite,

including recyclability, antimicrobial activities, cost–benefit analysis, and optimization.

1.1. Methylene Blue

As seen in Figure 1, methylene blue (MB) is an aromatic heterocyclic basic dye with the
chemical formula C16H18N3SCl. It is also referred to as cationic or primary thiazine dye.
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The presence of negative polar sites on water molecules causes an attraction for the
cationic dye, resulting in the separation of positive ions and the creation of a stable solution
with water at room temperature [10]. MB is recognized as a popular cationic dye utilized in
a variety of sectors, including the pharmaceutical, food processing, paper, paint, printing,
dyeing, and medicine (i.e., diagnostic and therapeutic medicine for both humans and
animals) industries [11]. In the textile industry, MB adheres well to the interstitial gaps of
cotton fibers and remains stable on fabric. Hence, MB is one of the most used apparel colors.

However, because MB is poisonous, carcinogenic, and non-biodegradable, it may
create a variety of environmental hazards in both aquatic and terrestrial life. The danger of
MB can also damage human health in a variety of ways, including respiratory discomfort,
metal poisoning, stomach pain, blindness, and digestive issues. Furthermore, MB poisoning
causes nausea, diarrhea, vomiting, cyanosis, and other symptoms [1].

1.2. Superparamagnetic Iron Oxide Nanoparticles

Depending on the stoichiometry and oxidation state, iron oxide nanoparticles can be
in various forms, such as wüstite (FeO), ferrihydrite [Fe5HO8(4H2O)], goethite [FeO(OH)],
magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) [12–14]. Among them,
Fe3O4 and γ-Fe2O3,which have many types of crystalline phases, are the most well-studied
materials [15,16]. At room temperature, if these materials have sizes less than 20 nm, the
superparamagnetic property (as shown in Figure 2) can occur [16,17]. Superparamag-
netic iron oxide nanoparticles (SPION), or Fe3O4, are one of the most commonly used
materials [16,17].

A single-domain magnetic particle will eventually develop when a ferromagnetic,
multidomain sample of Fe3O4 is shrunk to a size of less than or equivalent to 15 nm [4,19].
When an external magnetic field is applied inside this particle, the electron exchange
coupling inside the domain makes these nanoparticles extremely internally magnetized
and becomes superparamagnetic. The particle differs from the ferromagnetic due to the
losses of its magnetism after leaving the external magnetic field.
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2. SPION Synthesis

The morphology, shape, dispersibility, and size of SPION can be affected by different
synthesis methods. Several synthesis routes for magnetic SPION have been reported, in-
cluding co-precipitation, microemulsion, hydrothermal, electrochemical deposition, aerosol
pyrolysis, the sonochemical method, laser pyrolysis, and thermal decomposition [20–33].
Despite various synthesis methods, SPION is usually synthesized via the co-precipitation
method, as shown in Figure 3.
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When using NaOH as an oxidizing agent, SPION can be formed using the equations
below [33,35]:

2FeCl3 + FeCl2 + 8NaOH→ Fe3O4 + 8NaCl + 4H2O (1)

2Fe3+ + Fe2+ + 8OH− → Fe3O4 + 4H2O (2)

Fe3O4 + 2H+ → γ Fe2O3 + Fe2+ + H2O (3)

In this synthesis route, after dissolving iron salts (i.e., FeCl3·6H2O and FeCl2·4H2O) in
diluted HCl [36,37], the mixture is added dropwise to a base under inert atmosphere (Argon
or N2 gas) for 30–60 min to prevent oxidation, which can transform SPION into maghemite
(γ-Fe2O3) (as shown in Equation (3)) [36,38]. Moreover, by removing the oxygen from the
reactor, the SPION size can be reduced from 80 Å to 60 Å [39,40].

However, the co-precipitation method has its own advantages and disadvantages, as
shown in Table 1 [41].

Table 1. Advantages and disadvantages of various SPION synthesis methods.

Methods Advantages Disadvantages Factors Ref

Co-precipitation

Facile
Rapid
High yield
Cheap

Weak size control
Aggregation
Oxidation

Iron salt precursors
(Fe3+:Fe2+ = 2:1 mol/mol)
Base (ammonia, CH3NH2,
and NaOH)
Optional additional cations
(Na+, K+, Li+, NH4

+,
N(CH3)4

+, CH3NH3
+)

pH = 9–14

[33,34,40,42–45]

Hydrothermal
and high-temperature
decomposition

Small size distribution
High yield
Controllable size
and shape

High temperature
High pressure
Long reaction time

Hydrolysis ferrous salts
Oxidation of metal hydroxides
Pressure > 2000 psi
Temperature > 200 ◦C

[33,43,46–50]

Sol–gel
Controllable kinetics
Controllable
growth reactions

Expensive
Long reaction time

Iron salt precursors
Solvents
Temperature
pH
Agitation

[38,51–95]

Aerosol/vapor phase High yield
Non-aggregation High temperature Ferric salts

Reducing agent [33]

Electrochemical Controllable size Reproducibility Iron salt precursors [38,96–98]

Microemulsion Controllable size
Homogeneous

Low yield
Long reaction time
Substantial number
of solvents

Iron salt precursors

As shown in Table 1, each synthesis method has different advantages and disadvan-
tages. Hence, based on the needed characteristics of SPION, a proper synthesis method
should be considered.

3. Modifications of SPION

Bare SPION is hydrophobic, chemically unstable, aggregated, and has low biodegrad-
ability. Many researchers have modified the surface of SPION with various inorganic and
organic materials, such as silica, polymers, carbon-based materials (i.e., graphite, activated
carbon, graphene oxide,. . .), metals, metal oxide nanoparticles, etc., to enhance the perfor-
mance of these SPION-based MB adsorbents [99–104]. One of these performances can be
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reflected in the aggregation of the materials (i.e., SPION [105,106]), stability, adsorption
efficiency, adsorption amount, adsorption rate, biocompatibility, and other factors.

One of the most common materials to modify SPION is silica (SPION@SiO2). Silica
creates a shell of negative surface charges, which increases the coulomb repulsion of
SPION [37,38,107–113]. SPION@SiO2 can be synthesized via hydrolysis and condensation
of a sol–gel precursor [114], micelles/inverse micelles [115], or the deposition of silica
from silicic acid solution [116]. In general, SPION@SiO2 can be synthesized via four main
routes: Stöber, microemulsion, aerosol pyrolysis, and methods based on sodium silicate
solution [41]. Similar to bare SPION synthesis, each of these SPION@SiO2 syntheses also
has its own advantages and disadvantages [41].

Similar to silica, to modify the surface of SPION, other inorganic materials can be used.
One of the most common inorganic materials used to enhance the adsorption capabilities
is carbon. The carbon family includes reduced graphene oxide, graphene oxide, graphite,
graphene, graphite oxide, reduced graphite oxide, carbon nanotubes (single-wall, double-
wall, and multi-wall), fullerenes, and even activated carbon, as shown in Figure 4.
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Graphite is the most stable form of carbon, consisting of layers of graphene with covalent
and metallic bonds inside each layer and linked to neighboring layers through a delocalized
pi-orbital that creates weak van der Waals interactions [117,118]. This unusual shape improves
the adsorption by inserting atoms or molecules between the graphite layers [117,118].

On the other hand, activated carbon, one of the most often utilized adsorbents because
of its large surface area, strong surface reactivity, high pore value, and appropriate pore
distribution as a result of carbonization activation procedures, may be manufactured from
a variety of agricultural waste sources [119–121]. Aside from graphite and activated carbon,
graphene is a two-dimensional carbon material with a huge surface area and hexagonally
organized sp2-hybridized carbon atoms [122]. As a graphene derivative, graphene oxide
(GO) is obtained by oxidizing graphene or graphite by introducing rich-oxygen functional
groups [123] on the surface (i.e., the carboxyl group or epoxy) [32,124]. When GO continues
to be reduced, reduced graphene oxide (RGO) can be obtained [125]. Graphite oxide,
like graphene GO, has a comparable structure to graphite and a high concentration of
oxygen-containing functional groups, which can all be synthesized to G, GO, and RGO by
utilizing various techniques such as Hummer’s method [125,126].

To modify the surface of SPION with carbon-based materials, two main methods can
be used: the in situ synthesis [126–132] of SPION and carbon (adjusting the ratio between
the carbon and iron precursors [133,134]) or depositing synthesized SPION on to the surface
of carbon [125,135].
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Other inorganic materials that can be used to modify SPION are metallic elements,
which create an inert shell [38] to enhance stability and compatibility [136]. Common
metals can be used, such as gadolinium [137–140], titanium dioxide [141], gold [142–144],
silver [145,146], etc.

Other types of material that can modify the surface of SPION are organic materials, es-
pecially polymers. The two most common methods used are the in situ- and post-annealing
coating of polymers on SPION [38]. Common polymers, as shown in Figure 5, can be used
in this process, such as polyvinyl alcohol (PVA), chitosan (CS), alginate, polydopamine
(PDA), lipids, polyphenol, dextran, poly(N-isopropylacrylamide) (PNIPAM), polyethylene
glycol (PEG), starch, polymethylmethacrylate (PMMA), gelatin, poly(ethyleneimine) (PEI),
and polyacrylic acid (PAA) [20,38,41,147–159].
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As shown in Figure 5, PVA is one of the vinyl polymer derivatives with solely a C-C
bond. The presence of hydroxyl groups in the structure, on the other hand, is the cause of
significant water absorption, which is regarded as a drawback when employing PVA as a
film or composite. Several methods have been used to minimize the solubility of PVA, such
as the inclusion of additives for the usage of films/composite [160]. As a dye removal ma-
terial, PVA has been widely studied, especially combined with other organic and inorganic
materials, such as PVA/GO, PVA/GO/SPION, PVA@walnut shell powder, D-glucose, agar,
peroxidase-immobilized Bucky paper/PVA, or PVA/magnesium peroxide [104,161–165].
When PVA creates a shell outside of SPION, the adsorbents can be classified as macro-
molecules and have a unique polymer gel with great stability and monodisperse effi-
ciency [166–168]. To further enhance the adsorption capabilities, CS can be used in com-
bination with PVA to form hydrogels or enable a film-forming ability [169,170]. If CS is
crosslinked to the epoxy groups in GO, a polymer matrix encapsulates GO and modifies
the surface of GO as well [28,40–42]. These polymers can coat SPION via encapsulation, as
well as graft-to and graft-from methods [20,33]. One of the types of coating is represented
graphically in Figure 6 [4].
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When coating SPION with CS, PNIPAM, PEI, or PAA, SPION’s surface charge can
be positive, which increases the dispersibility, stability, and hydrophobicity [171–179].
Moreover, to produce small nanoparticles, using complexing agents such as dextran, starch,
PVA, or carboxydextran during the synthesis of SPION can inhibit the nucleation growth
process [38,43,180]. Hence, the polymer modification of SPION might decrease aggregation
and many other difficulties associated with nanoparticles on the surface while having
no influence on the intended qualities of the SPION. Furthermore, the right combination
with the polymer may significantly improve the characteristics of SPION. For instance,
due to the hydrophilic, water-soluble, biocompatible polymer properties of PEG, the
inner SPION-coated polymerized polyethylene glycosylated bilayer has demonstrated
outstanding solubility and stability [147,181–183] in an aqueous solution.

4. Characterization

Zeta potential analyzers may be used to evaluate and quantify the adsorbents’ surface
charge [184]. The structure of magnetite nanoparticles may be established using the X-ray
diffractometer (XRD) [185]. The hkl planes (220), (311), (422), and (440) of the spinel cubic
structure of SPION are represented by the peaks at 30◦, 35◦, 54◦, and 63◦ in the XRD pattern
for SPION [186–189]. However, the XRD analysis can be difficult to distinguish between Fe3O4
and maghemite [190]. Hence, the Mössbauer spectra can be used to distinguish them [190].

Other materials bonding to the SPION may also be verified using FTIR techniques
(Fourier transform infrared spectroscopy) [32]. The Fe-O-Fe band, which corresponds to
the Fe-O bond in bulk magnetite, divides into two peaks in the FTIR spectra of SPION at
~580 and ~450 cm−1, respectively [186,189,191].

UV-VIS spectrophotometry may be used to determine how much MB is loaded onto
the particles and how much MB is removed from them [192,193].

By using dynamic light scattering (DLS), the nanoparticles’ zeta potential can also
be determined [194]. Transmission electron microscopy (TEM) and DLS, respectively,
were used to examine the morphology and hydrodynamic diameter of the particles [195].
Additionally, scanning electron microscopy (SEM) may be used to examine the size and
shape of the particles, as illustrated in Figure 7 [32].

Overall, the surface morphology can be characterized using SEM and TEM [196].
Various publications [185,197–202] contain TEM and high-resolution TEM pictures of bare
SPION and various types of polymer-coated SPION. Atomic force microscopy (AFM) may
also be utilized to analyze the morphology in addition to SEM and TEM [203]. A vibrating
sample magnetometer (VSM) may be used to test an iron nanoparticle’s superparamag-
netic [204]. The Brunauer–Emmett–Teller (BET) method may be used to determine the
surface area [205,206]. The mesopore pore size distribution, pore volume, pore diameter,
and surface area may be determined using Barrett–Joyner–Halenda (BJH) [206,207].
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In BJH analysis, nitrogen gas is usually absorbed into the adsorbents. The volume
of adsorbed gas was plotted against the relative pressure p/p0 to determine the types of
adsorptions, as shown in Figure 8.
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As shown in Figure 8, the type I isotherm indicates that the adsorbents have a mi-
croporous (size < 2 nm) structure [209]. When this phenomenon occurs, the amount of
adsorption is at its maximum limit [208,209]. This type can be seen with adsorbents made
of carbon (i.e., charcoal, activated carbon) [208,209]. The type I isotherm also represents the
chemisorption process [210].

The type II isotherm indicates the physical adsorption of gases on non-porous or
macroporous (size > 50 nm) adsorbents [209]. The physical adsorption can be monolayer
adsorption followed by multilayer adsorption at higher p/p0 [208,209]. The type II isotherm
occurs when gases at temperatures lower than their critical temperature and pressures be-
low but approaching saturation pressure [208,209]. For this type of isotherm, the adsorbent
is usually carbons with a combination of micro and mesoporous structures [208,209]. The
type II isotherm also represents the physisorption process [210].

The type III isotherm indicates adsorbents with a low adsorption capacity [209]. The
type IV isotherm indicates the adsorbents are mesoporous (2 nm < size < 50 nm) [209].
When it comes to type IV isotherms, the largest amount of adsorption occurs before the
saturation pressure [208,209]. It shows a hysteresis loop and is linked to the existence of
mesoporosity [208,209]. The hysteresis loop is formed by capillary condensation, in which
adsorbate molecules condense into tiny capillary gaps [208,209].
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At low relative pressures, if the adsorbate interacts weakly with the adsorbent, type V
isotherms, which are convex to the relative pressure axis, can be seen [208,209]. Hysteresis
is also present in the multimolecular adsorption areas, and it may be observed in both
microporous and mesoporous substances [208,209]. In essence, type III’s capillary conden-
sation is the basis of this type of isotherm [208,209]. The adsorbed gas quantity is relatively
tiny at a low p/p0, but once a molecule is adsorbed, the force between the gas molecules
encourages additional adsorption [208,209]. Types III and V imply the features of a weak
gas–solid interaction [208,209]. With a noticeable hysteresis between the adsorption and
desorption branches, Type IV is a common isotherm for mesoporous materials, such as the
mesoporous carbons produced through template carbonization [208,209].

The type VI isotherm shows that monomolecular layers completely develop before
moving onto the following levels [208,209]. It happens on very homogenous, non-porous
surfaces when the step height is matched by the monolayer’s capacity [208,209].

When determining the type of isotherm model, the geometry change in the hysteresis
loop, as shown in Figure 9, during the adsorption and desorption process, is important.
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In the cases of H1, H2, H3, and H4, the hysteresis loop represents the channels with
uniform sizes/shapes, channels with a pore body greater than pore mouth, adsorbents
with wide pore size distributions, and limited amounts of mesopores/micropores, respec-
tively [208,209].

Aside from using FTIR and XRD analyses to determine the structure of the adsorbents,
Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) can be used as well,
which can detect the molecules’ vibrational modes [211,212] and determine the surface
chemical composition [196].

5. Adsorption
5.1. Adsorption Methods

First, the calibration curve of MB is necessary. The MB solution, with three known
concentrations, is quantified without any adsorbents. Then, with previously known MB
concentrations, adsorbents are added to the mixture. The solution is analyzed using UV-VIS
at a certain time increment until no change in absorbance is detected. This process was
conducted three times. By measuring the concentration of MB in the solution over time, the
adsorption kinetics and isotherm model can be determined. The adsorption experiment is
repeated at least at two different temperatures to calculate the thermodynamic properties
(Gibbs free energy, entropy, and enthalpy) of the adsorption process.
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As shown in Table 1b, the MB adsorption (or loading) process can be quantified
using multiple equations (Equations (4)–(6)), such as the loading amount (Qe, mg MB (g
nanoparticles)−1) [32], dye loading capacity percent (%DL) [32,213], and the entrapment
efficiency percent (%EE) [32].

Qe =
(C0 −Ce)V

m
(4)

%DL =
Weight of MB absorbed on to the nanoparticles (mg)

Weight of nanoparticles (mg)
× 100 (5)

%EE = 100× Weight of MB absorbed on to the nanoparticles (mg)
Weight of MB initially fed (mg)

(6)

5.2. Adsorption Mechanism

Depending on the adsorbents, many types of adsorption mechanisms can occur. How-
ever, MB adsorption may involve bulk diffusion on the surface of the adsorbent, diffusion of
MB through the boundary layer of the adsorbent’s surface (affected by the rate of adsorption
and contact time), adsorption at active sites on the adsorbent’s surface, and intraparticle diffu-
sion (i.e., the rate-limiting step) of MB into the pores of the adsorbents [214–217]. Moreover,
some other mechanisms can occur, such as ion exchange [218], complexation [218], electrostatic
interactions [219], chemisorption [220], physisorption [221], hydrogen bonding [222], π-π*
stacking [222], film diffusion [222], van der Waals force [223], hydrophobic interactions [223],
ion exchange [224], and hydrogen bonding [224]. These adsorption mechanisms can be deter-
mined using an adsorption isotherm, adsorption kinetics, and adsorption thermodynamics
models, which can be calculated using the equations below, as shown in Table 2.

Table 2. Equations to calculate kinetic, isotherm, thermodynamic, and other parameters [33].

Models Equations Plot Equation

Kinetics

Pseudo-first order

Pseudo-first
order [225,226]

Determining the initial steps of the adsorption process. Relationship between changes in concentration and time. The rate depends on
the adsorbate concentration [227].

Nonlinear Qt = Qe
(
1− e−kt

)
Qt vs. t (7)

Linear log (Qe −Qt) = log Qe −
(

k1
2.303

)
t log (Qe −Qt) vs. t (7a)

Pseudo-second order

Pseudo-second
order [225,226]

The adsorption rate depends on the adsorption capacity [227]. MB adsorbed on the adsorbents via the chemisorption process (electrons
transferring) [170,228–231].

Nonlinear Qt =
k2Q2

et
1+k2Qet

Qt vs. t (8)

Linear Type I t
Qt

= 1
k2Q2

e
+ t/Qe

t
Qt

vs. t
Qe = 1/slope
k2 = slope2/intercept
h = 1/intercept

(8a)

Linear Type II 1
Qt

=

(
1

k2Q2
e

)
1
t +

1
Qe

1
Qt

vs. 1
t

Qe = 1/slope
k2 = intercept2/slope
h = 1/slope

(8b)

Linear Type III Qt = Qe −
(

1
k2Qe2

)
Qt
t

Qt vs. Qt
t

Qe = intercept
k2 = −1/intercept × slope
h = −intercept/slope

(8c)

Linear Type IV Qt
t = k2Q2

e − k2Qe
2Qt

Qt
t vs. Qt

Qe = −intercept/slope
k2 = slope2/intercept
h = intercept

(8d)

h0 = k2Q2
e (9)

Isotherm
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Table 2. Cont.

Models Equations Plot Equation

Langmuir [232,233] kaCe(1−θ) = kdθ Assumptions: the adsorption and desorption rates are equal at
equilibrium when θ is in direct proportion to the rate of desorption
from the surface [233]

(10)

θ = Q
Qm

=
KLCe

(1+KLCe)
(11)

Nonlinear Qe =
Q0KLCe
1+KLCe

Assumptions: when a single molecule occupies a single surface site,
there is no lateral interaction between adjacent adsorbed molecules
[233].

(12)

Linear Ce
Qe

= 1
Q0KL

+ 1
Q0 Ce

1
Qe

vs. Ce
1

Q0KL
= slope

1
Q0 = intercept
1

KL
= slope/intercept

(13)

RL = 1
1+KLC0

If 0 < RL < 1, then the adsorption was favorable [225,234] (14)

Freundlich [233]
1 < nF < 10, favorable adsorption [233].
1
n ≈ 0 and nF > 1, favorable physical process [234,235]
nF < 1: bond energies increase with surface density [236].

Nonlinear Qe = KFC1/nF
e (15)

Linear log Qe = log KF +
1
n log Ce (16)

BET [233]

Nonlinear Qe = BCQ0

(CS−C)
[

1+(B−1)
(

C
CS

)] (17)

Linear Qe = C
(CS−C)Qe

= 1
BQ0 + (B−1)C

BQ0CS

Qe vs. C
CS

(B−1)
BQ0 = slope
1

BQ0 = intercept
B = slope× intercept + 1

1
Q0 = y− intercept[(intercept× slope) + 1]

(18)

Dubinin-Radushkevich
(D-R) [233]

E < 0, the sorption process is exothermic [237].
8 < E < 16 kJ/mol: ion exchange [238–241].
E < 8 kJ/mol: physisorption [238–241].
KDR < 1: surface heterogeneity increases due to the interaction between adsorbents and MB [242].

ln Qe = ln Qm −KDRε
2 =

ln Qm −KDR

[
RTln 1 + 1

Ce

]2

ln Qe vs. ε2

KDR = −slope
ln Qm = intercept
average free energy of adsorption, E (kJ mol−1) E = 2KDR

−1

[233,243]

(19)

Temkin and Pyzhev
[244,245] B1 decreases when increases in temperature: exothermic [244]

Nonlinear Qe = RT
b ln KTPCe (20)

Linear Qe = B1ln KTP + B1ln Ce

Qe vs. ln Ce
B1 = the slope
ln KTP = intercept/slope

(21)

B1 = RT
b (22)

Harkins-Jura [244,246] 1
Q2

e
=
(

B2
A

)
−
( 1

A

)
log Ce

1
Q2

e
vs. log Ce

1
A = −slope
B2 = intercept/slope

(23)

Halsey and
Henderson [246,247] n decreases when increases in temperature: endothermic [246,247]

Halsey [246] ln Qe =
[( 1

n

)
ln KHa

]
−
( 1

n

)
ln Ce

ln Qe vs. ln Ce
n = −1/slope
ln KHa = intercept/slope

(24)

Henderson [246] ln [−ln (1−Ce)] = ln KHe + nln Qe

ln [−ln (1−Ce)] vs. ln Qe
n = slope
ln KHe = intercept

(25)

Redlich–Peterson [248] For simplicity, KR = KL

Nonlinear Qe =
KRCe(

1+αRC
βR
e

) (26)

Linear log
(

KRCe
Qe
− 1
)
= βRlog Ce + logαR (27)

Diffusion
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Table 2. Cont.

Models Equations Plot Equation

Intraparticle diffusion
[225,249] Qt = I + kit1/2

Qt vs. t1/2

ki = slope
I = intercept
If I = 0: the adsorption process is the intraparticle diffusion.
If I > 0: the film diffusion and intraparticle diffusion occurred at the
same
time [250–252]
If I < 0: combined impacts of surface response control and film
diffusion processes [253–255]

(28)

Simplified Elovich
model [234,256]

Qt = βln (αβ) +βln t
Boundary conditions:

• αβ� 1
• Qt = 0 at t = 0
• Qt = Qt at t = t

Qt vs. ln t
1
β

= slope

ln (α) =
intercept
slope2

(29)

Boyd’s model [234,257]
Plot: Bt vs. t
Linear: the controlling step is pore-diffusion [234,258]
Nonlinear or linear, not passing through the origin: film diffusion or chemical reaction [234].

f = Qe
Qt

(30)

Bt = −0.4977− ln (1− f) Applied when f > 0.85 (31)

Bt =
(√
π−

√
π−

(
π2f

3

))2
Applied when f < 0.85 (32)

Thermodynamics [233,234,244]

ln K0 = − ∆H
RT + ∆S

R

ln
(

Qe
Ce

)
vs. Qe (Extrapolating it to zero)

K0 = eln (
Qe
Ce

) when Qe = 0
ln K0 vs. 1/T
− ∆H

R = slope
∆S
R = intercept

(33)

∆G = ∆H− T∆S

∆G > 0: not spontaneous [234].
∆G > 0: spontaneous.
∆S < 0: the randomness decreasing on the surface.
∆S > 0: the randomness increasing on the surface [234].
∆H < 0: exothermic
∆H > 0: endothermic [234], monolayer adsorption [259].
Small ∆H > 0: weak forces of attraction, weak electrostatic
interactions, and the existence of loose bonding between adsorbents
and MB [260–262].
∆H < 40 kJ

mol : dominated by physisorption [221,263]
∆H < 20 kJ

mol : dominated by van der Waals forces [264].

(34)

Activation energy

Arrhenius [221,265,266] ln Kads = ln A− EA
RT

ln Kads vs. 1/T (K−1)
−EA/R = slope
EA < 40 kJ/mol: chemisorption [267]
25 < EA < 30 kJ/mol: diffusion-controlled [268]
EA > 40kJ/mol: physisorption [265,266].

(35)

Fittings parameters

Chi-square χ2 =
m

∑
i=1

(Qe,exp−Qe,calc)
2

Qe,exp

Small χ2: calculated values are similar to experimental data [244].
Large χ2: calculated values are different from experimental data
[244]

(36)

Moreover, the physical and chemical characteristics of the adsorbents, the concen-
tration of the adsorbate, the temperature, pressure, shaking time, stirring speed, contact
time, ionic strength, pH value, and the presence of an interfering material all affect the
adsorption capacity and rate [233,269–274]. For instance, by increasing the ionic strength,
the MB adsorption capacity in aqueous GO and amberlite can increase and decrease, re-
spectively [269,274]. Hence, several studies should be carried out to determine which
adsorption condition yields the most efficient adsorption capacity and adsorption rate.
However, the effects on MB adsorption by varying the adsorption temperature, pH, and
initial MB concentration can be predicted.
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5.3. Effects on Temperature

Temperature is one of the variables that can affect the adsorbed amount of MB on the
adsorbents. Based on the change in temperature and the adsorbed amount, adsorption ther-
modynamics parameters can be calculated. Based on these parameters, if the adsorption is
endothermic, the adsorption capacity increases with the increases in temperature [275–277].
On the other hand, if the adsorption capacity decreases with the increases in temperature,
the adsorption process is exothermic [275–277]. The endothermic or exothermic processes
can be validated via the positive or negative values of enthalpy (∆H), respectively.

5.4. Effects on pH

Depending on the surface charge of the adsorbents at different pHs, the adsorption
capacities can vary. However, the optimal pH range for methylene blue (MB) adsorption
is between 6 and 8. When the functional group in the adsorbent has the highest ability to
bind the dye, pH 7 to 8 may be the range where MB reaches its isoelectronic point [278,279].
When the adsorbent has a positive charge, at basic conditions, the adsorbent’s capacity
to bind MB is reduced because the dye and free OH− ions compete for the surface area
Hence, at a higher pH, if the adsorbent has a negative charge, the adsorption capacity will
increase greatly [219]. If the surface charge density of the adsorbent is smaller than the pH,
the binding of positively charged MB can be enhanced [222]. Hence, if the adsorbent has a
charge density smaller than the pH, at lower pHs, the H+ in a solution creates a repulsive
force between the positive charges and inhibits the adsorption process [280].

5.5. Effects on Initial Concentration

With an increase in the initial concentration of MB, leading to a larger driving force
overcoming the resistance to the mass transfer, the adsorbed percentage exponentially
decreased while the quantity absorbed increased exponentially [281]. This suggests that
the high initial concentration of MB requires more active sites [214,282]. The increase in the
initial concentration of MB also increases the interaction between MB and the adsorbents,
leading to an increase in the adsorbed amount. As the initial concentration of MB increases,
the adsorption rate, in the beginning, increases as well due to the bulk diffusion—a large
amount of available active sites on the surface of the adsorbents. This phenomenon also
indicates that, with an increase in the adsorbent mass, the number of adsorption sites also
increases, leading to an increase in MB’s adsorption amount [192,281]. Due to the change
in the adsorbed amount and the adsorption rate, the time needed to reach equilibrium
also varies. Basically, regarding the increases in initial MB concentration, the time to reach
equilibrium is longer due to the lack of adsorption sites on the adsorbent’s surface, leading
to the intraparticle diffusion process (i.e., the rate-limiting step)—unbound MB molecules
must penetrate the boundary layer of the adsorbent’s surface and enter into the adsorbent’s
particles [192,193,283,284].

5.6. Adsorption Comparison Studies

Table 3 lists the comparison of diverse types of SPION-based MB adsorbents.

Table 3. Comparison of the maximum adsorption capacity of SPION-based MB adsorbents.

Adsorbent
Adsorption
Capacity
(mg/g)

Isotherm, Kinetics, Thermodynamics Ref.

SPION 45.43 Langmuir, PSO [285]

SPION (Zanthoxylum armatum DC. via
green route method) 7.26 Langmuir, PSO [286]

SPION (P. factra extract via green route method) 26.81 Freundlich, PSO [287]

SPION@C using FeSO4, FeS2, PVP K30
as raw materials 17.26 Redlich–Peterson, PSO [288]
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Table 3. Cont.

Adsorbent
Adsorption
Capacity
(mg/g)

Isotherm, Kinetics, Thermodynamics Ref.

SPION@C using FeCl3·6H2O, citrus pectin
as raw materials 141.3 Freundlich, PSO [289]

SPION@C using citrus bergamia as raw materials 31 PSO, intraparticle diffusion,
spontaneous, endothermic [290]

SPION@Carbon sheets 95 Freundlich, PSO [291]

SPION@Graphene 45.27 Langmuir, PSO [292]

SPION@NH2-MWCTNs 178.5 Langmuir, PSO, spontaneous, exothermic [293]

SPION/EG 76.2 Redlich–Peterson, PSO [294]

SPION/GO 280.26 Langmuir, PFO, spontaneous, endothermic [295]

SPION/MWCNT 48.06 Langmuir, PSO, film diffusion,
intraparticle diffusion [225]

SPION/moringa seed shell biochar 219.60 Freundlich, PSO, Elovich, spontaneous,
endothermic, chemisorption [296]

SPION/pyrolyzed sorghum straw 136.53 Langmuir, PSO, intraparticle diffusion [297]

SPION/CS/p(Aam/NVIm) hydrogels 860 Langmuir, PSO [298]

PVA/SA/SPION@KHA gel beads 781.92 Langmuir, PSO, spontaneous, endothermic [299]

SPION-MWCNT-Bentonite 48.2 Redlich–Peterson, PFO, physisorption,
non-spontaneous, endothermic [300]

SPION/AMMT 106.38 Langmuir, PSO [301]

SPION/Bentonite/Sawdust 144.2 Freundlich, PSO [302]

SPION/TiO2-graphene sponge 224 Temkin, PSO, spontaneous, endothermic [303]

Alg/Clin/SPION 12.48 Langmuir, PSO, spontaneous, exothermic [280]

Clin/SPION 45.66 Langmuir, PSO, spontaneous, exothermic [280]

Alg beads impregnated with SPION/CS@Zeolite 6.14 Freundlich, PSO, spontaneous, exothermic [304]

H2SO4 crosslinked SPION/CS 20.408 Langmuir [305]

SPION@SiO2@HKUST-1 434.78 Langmuir, PSO [306]

SPION@SiO2@Zn–TDPAT 20.83 Langmuir, PSO, spontaneous, endothermic [307]

SPION@MIL-100(Fe) 221 Langmuir, PSO, spontaneous, exothermic [308,309]

SPION-COOH/HKUST-1 118.6 Langmuir, PSO, spontaneous, endothermic [310]

SPION/PVP embedded HKUST-1 2.96 Langmuir, PSO, spontaneous, endothermic [311]

SPION/HKUST-1/GO 150 Langmuir, PFO [312]

SPION@PAA/MIL-100(Fe) 34.53 Langmuir, PSO, spontaneous, endothermic [313]

SPION/g-C3N4 20.5 PSO [314]

Co doped Fe-BDC MOF 23.92 Langmuir, PSO, spontaneous, endothermic [315]

SPION/PPy/C 90.9 Langmuir, PSO [316]

CA/CS/SWCNT/SPION/TiO2 14.3 Redlich–Peterson, PSO [317]

SPION@PDA/CMC 217.43 Langmuir, PSO, spontaneous, endothermic [318]

SPION-GLP@CAB 70.43 Langmuir, PFO, spontaneous, exothermic [319]

SDS@SPION 62.43 Langmuir, PSO, spontaneous, endothermic [320]

SPION@PPy/RGO 270.3 Langmuir, PSO, spontaneous, endothermic [321]

SPION/Ni/C 175.2 [322]

SPION/GNS 35.42 Langmuir, PSO, spontaneous, endothermic [323]

Ti3C2@SPION 11.68 Langmuir, non-spontaneous, exothermic [324]

BC-GO@SPION 9.87 Freundlich, PSO, spontaneous, endothermic [325]

Cellulose/SPION 19.49 Dubini-Radushkevich [326]
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Table 3. Cont.

Adsorbent
Adsorption
Capacity
(mg/g)

Isotherm, Kinetics, Thermodynamics Ref.

GO/SPION/CS 30.01 Langmuir [327]

Rectorite/SPION/ZnO 35.1 Langmuir [328]

SPION@C/Ag 40.16 Langmuir, PSO, spontaneous, endothermic [329]

Boehmite@SPION@PLA@SiO2 70.03 Langmuir, PSO [330]

RGO-Fe2O3-SPION 72.8 Langmuir, PSO [331]

SPION@SiO2–VTEOS–DMDAAC 109.89 Freundlich, PSO [332]

Lignin/SPION 203.66 Langmuir [333]

Fe3C/SPION/C nanosheets 918 Langmuir, PSO, Elovich, spontaneous,
endothermic [334]

paAm/CS/SPION 1603 Langmuir, PFO [335]

SPION@SiO2 123 Freundlich, PFO [336]

Multi-carboxyl functionalized SPION@SiO2 34.75 Langmuir, PSO [337]

SPION@SiO2-APTA 46.24 Freundlich, PSO [338]

SPION@SiO2-EDA-COOH 43.15 Freundlich, PSO [339]

Mesoporous SPION@SiO2 33.12 [340]

SPION@ZIF-8 20.2 [341]

HPPs-BiVO4/SPION 33.6 [342]

P(MMA-AA-DVB)/BiVO4/
SPION microcapsules 5 [343]

m-SPION0.3-C/D0.5 hydrogel 529 [344]

where CS: Chitosan; SPION: Superparamagnetic iron oxide nanoparticles; MWCNT: Multi-wall carbon nan-
otubes; SA: Sodium alginate; KHA: Potassium humate; PVP K30: Polyvinylpyrrolidone K30; FeSO4: Iron (II)
sulfate; FeS2: Iron disulfide; FeCl3·6H2O: Ferric (III) chloride hexahydrate; SiO2: Silicon dioxide; pAam: Poly-
acrylamide; pVNIm: Poly N-vinyl imidazole; EG: Expanded graphite; GO: Graphene oxide; TiO2: Titanium
dioxide; PVA: Polyvinyl alcohol; AMMT: Activated montmorillonite; H2SO4: Sulfuric acid; HKUST-1: MOF-199;
Co: Cobalt; Fe: Iron; BDC: Benzene dicarboxylic acid or terephthalic acid; MOF: Metal-organic framework; Zn:
Zinc; TDPAT: 2,4,6-tris (3,5-dicarboxyl phenylamino)-1,3,5-triazine; MIL-100: Materials of Institute Lavoisier-100
(MOF); PAA: Polyacrylic acid; ZIF-8: Zeolite imidazolate frameworks; HPPs: Hybrid porous particles; BiVO4:
Bismuth vanadate; P(MMA-AA-DVB): poly(methyl methacrylate-methyl acrylate-divinylbenzene) (P(MMA-MA-
DVB)); m-SPION0.3-C/D0.5 hydrogel: SPION modified with citrate ions entrapped in aluminum-carboxymethyl
cellulose/dextran sulfate beads; PPy: Polypyrrole; CA: Cellulose acetate; SWCNT: Single-walled carbon nan-
otube; PDA: Polydopamine; CMC: Carboxymethyl chitosan; GLP: Guava leaves powder; SDS: Sodium dodecyl
sulfate; RGO: Reduced graphene oxide; APTA: 5-aminoisophthalic acid; EDA-COOH: Carboxylated ethylene-
diamine; GNS: Graphene nanosheet; BC: Black cumin seeds; PLA: Polylactic acid; VTEO: Triethoxyvinylsilane;
DMDAAC: Dimethyl diallyl ammonium chloride; PSO: Pseudo-second order; PFO: Pseudo-first order; Alg:
Alginate; Clin: Clinoptilolite.

As shown in Table 3, the adsorption capacities and adsorption mechanisms can be
affected by various conditions, such as the synthesis route of bare SPION, the materials
that were used to modify the surface of SPION, and the adsorption conditions (pH, MB
initial concentration, adsorbents dosage, temperature).

6. Desorption
6.1. Desorption Methods [4]

After the adsorption experiment, the MB- loaded adsorbents were removed from the
aliquot using neodymium magnets. Then, the MB-loaded adsorbent container was filled
with deionized water, which has a certain pH. Each day, UV-Vis spectrometry was used
to quantify the concentration of MB. The aliquot was placed back into the container after
being analyzed by the UV-Vis spectrometry. Every certain day, the aliquot in falcons was
changed back to MB-free DI again. The desorption process duration can vary depending
on the equilibrium point. This process was conducted three times.
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6.2. Desorption Mechanism

Moreover, various types of mathematical models, such as the Higuchi, zeroth order,
and Korsmeyer–Peppas models, can be used to determine the desorption kinetics [345,346].
These models each have their own disadvantages and advantages. The desorption kinetics
study was calculated using the equations shown in Table 4 [345,346]:

Since the equation only contains the rate constant (k0ko) and the released mass fraction
at time t (Mt), the zeroth order model shows that the release rate of MB does not rely on the
concentration of MB.

Table 4. Desorption kinetics equations.

Model Linear Nonlinear

Zeroth order Mt = k0t Mt = k0t

Higuchi log (Mt) = log (kH) + 0.5log (t) Mt = kHt1/2

Korsmeyer–Peppas log
(

Mt
M∞

)
= log (kKP) + nKPlog (t) Mt

M∞
= (kKP)(tnKP )

The release of the MB from the insoluble matrices (planar system) is described by
the Higuchi model. This model works best when non-swelling polymers are used in
conjunction with water. This model assumes that the diffusion happens only in one
dimension, MB particles are much smaller than the system thickness, and the MB diffusivity
is constant.

Developed from the Higuchi model, the Korsmeyer–Peppas model or the “Power
law” describes the release of the adsorbate from polymetric matrices. When the release
mechanism is unknown, or there are many release phenomena present, the Korsmeyer–
Peppas model makes it easier to examine the release of MB [347]. If the adsorbent has
a cylindrical shape, the n values can tell the types of desorption as follows, shown in
Table 5 [348,349]:

Table 5. Explanation of nKP values.

nKP Values Types of Desorption

0.45 ≤ nKP Fickian diffusion

0.45 < nKP < 0.89 Non-Fickian diffusion (combination of diffusion and matrix-degradation
mechanisms) [350,351]

nKP = 0.89 Case II (relaxational) transport

nKP > 0.89 Super case II

7. Future Research
7.1. Recyclability

Recyclability is a crucial component of any adsorbent material, including SPION-
based MBs, because it directly affects the adsorption process’s economic and environmental
sustainability. Researchers can evaluate the number of times MB adsorbents may be reused
before their adsorption capability dramatically reduces by analyzing their recyclability.
Many research publications, however, do not provide experimental data or calculations
about the recycling and reuse of SPION-based MBs.

Several factors contribute to the relevance of recyclability. For starters, it affects the
adsorption process’s cost-effectiveness. If MB adsorbents can be recycled several times,
the requirement for regular replacement is reduced, cutting the total cost of the adsorption
process. Furthermore, recyclability minimizes the need for fresh MBs, which can be costly
to synthesize or obtain, making the process more economically viable. Furthermore, recy-
clability is critical in decreasing the environmental effect of SPION-based MB adsorbents.
SPION manufacturing requires energy-intensive procedures and may need the use of
hazardous chemicals. By increasing MB recyclability, the overall consumption of SPIONs
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may be reduced, resulting in a reduction in the environmental footprint associated with
their synthesis and disposal. Understanding the constraints and degradation mechanisms
connected with the recycling process allows scientists to work on enhancing a material’s
qualities and coating methods to improve the adsorbent’s lifetime and recyclability.

7.2. Antibacterial Properties

The capacity of SPION-based MB adsorbents to display antimicrobial qualities, such
as limiting the development or killing of microbes, is referred to as antimicrobial activity.
While the major emphasis of these adsorbents is frequently placed on their adsorption
capacities, their potential antimicrobial activities can play a significant role in a variety of
applications, notably in water treatment and environmental remediation. Several reasons
contribute to the relevance of antibacterial activity in SPION-based MB adsorbents. For
starters, the presence of harmful microorganisms in water treatment applications might
represent serious health dangers. Several bacteria may cause serious health problems in
wastewater, such as Salmonella spp., Shigella spp., Escheria spp., Yersinia spp., Leptospira spp.,
Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Pseudomonas, Mycobacterium
spp., and Klebsiella spp. [352]. It is feasible to minimize the microbial load and limit disease
transmission through treated water by integrating antimicrobial characteristics into MB
adsorbents. Regardless of these potential dangers, many published research studies fail to
analyze or address the antibacterial properties of SPION-based MB adsorbents. This omis-
sion inhibits our comprehension of their larger uses and prevents us from exploring their
full potential. To investigate the antibacterial activities of SPION-based MB adsorbents,
many different techniques can be used, such as the agar disk-diffusion method, antimicro-
bial gradient method, agar well-diffusion method, agar plug-diffusion method, cross-streak
method, dilution method, broth dilution method, and agar dilution method [353].

7.3. Optimization

The size, shape, and geometry of SPIONs can affect the magnetic field, leading to
the retrieval of SPION-based MB adsorbents. Moreover, when modifying SPIONs, the
zeta potential values, stability, and surface charges of the adsorbents can be changed as
well, affecting the MB adsorption capacities, depending on the acidic or basic environment.
By balancing these factors, economical and effective SPION-based MB adsorbents can be
designed. Moreover, the cost analysis of these adsorbents should be investigated further.
Additionally, determining the relationship between the size, shape, and geometry of the
adsorbent and the MB adsorption capacities can be investigated further. In addition, when
the antibacterial properties of SPION-based MB adsorbents are determined by incorporating
this factor, these adsorbents can have dual functionalities—adsorbing MB and inhibiting
the growth of bacteria, leading to a real-world application of these adsorbents. Hence, when
taking account of these factors, optimization studies can be the direction of future research.

8. Conclusions

The SPION-based MB adsorbents play a crucial role in removing MB from wastewater.
With the superparamagnetic property, the adsorbents can be extracted easily via an external
magnetic field. SPIONs can be synthesized via different techniques; among them, the most
facile method is co-precipitation. By modifying the surface of SPIONs, these adsorbents can
have different adsorption mechanisms. Hence, evaluating the isotherm models, kinetics
models, and thermodynamic models is important. Moreover, the desorption process is also
important to research, and the review article shows several types of methods to evaluate
the desorption mechanisms. However, recently, the recyclability of SPION-based MB
adsorbents is still not one of the main concerns for most of the research articles. Additionally,
the antimicrobial activities of these adsorbents are almost completely neglected, which
contributes to the limitations of the applications of these SPION-based MB adsorbents.
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Abbreviations

C0 Initial concentration (mg/mL) KF
Constant of the relative adsorption
capacity of the adsorbent

Ct Concentration at time t (mg/mL) QmDR Theoretical saturation capacity

V Reaction volume (mL) KDR
The activity coefficient related to the
mean free energy of adsorption

m Nanoparticles mass (g) ε The Polanyi potential

Qe
The amounts of adsorbate (MB)
adsorbed at the equilibrium (mg/g)

R Universal gas constant

Qt MB mass adsorbed at time t (mg/g) T Temperature

Ce
The equilibrium aqueous-phase
concentration adsorbate (mg/L)

KTP Equilibrium binding constant

Q0
The theoretical adsorption capacity
or the monolayer adsorption
capacity (mg/g)

B1 Related to the heat of adsorption

KL

Constant related to the free adsorption
energy and the reciprocal of the
concentration at which half saturation
of the adsorbent is reached

KHa The Halsey isotherm constant

Qm
The quantity of adsorbate adsorbed in a
single monolayer

ki Intraparticle diffusion rate constant

θ The fractional surface coverage I Constant

ka
The respective rate constant
for adsorption

α The theoretical initial adsorption rate

kd
The respective rate constant
for desorption

β The theoretical desorption constant

1
nF

The intensity of the adsorption ∆G Gibbs free energy change
∆S Entropy change ∆H Standard enthalpy change

K0
Thermodynamic equilibrium constant
in the adsorption process

Mt Released mass fraction at a time (t)

Mt
M∞

Released fraction mass KH Higuchi release rate constant

KKP
Korsmeyer–Peppas release
rate constant

nKP
Korsmeyer–Peppas release
exponent factor

ko
Constant mass fraction at a
time (t) release

k1 Pseudo-first-order rate constant (s−1)

χ2 Chi-square value k2
Pseudo-second-order rate
constant (s−1)

M∞ The amount of MB at equilibrium state KR Modified Langmuir constant (dm3/g)
αR Redlich–Peterson constant (dm3/g) βR Redlich–Peterson constant (dm3/g)

h0
The initial adsorption
rate (mg g−1 min−1)

EA Arrhenius activation energy (kJ/mol)

R
Universal gas constant
(8.314 J mol−1 K−1)
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