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Abstract: Material science is a broad discipline focused on subjects such as metals, ceramics, polymers,
electronics, and composite materials. Each of these fields covers areas associated with designing,
synthesizing, and manufacturing, materials. These are tasks in which the use of technology may
constitute paramount importance, reducing cost and time to develop new materials and substituting
try-and-error standard procedures. This study aimed to analyze, quantify and map the scientific
production of research on the fourth industrial revolution linked to material science studies in
Scopus and Web of Science databases from 2017 to 2021. For this bibliometric analysis, the Biblioshiny
software from RStudio was employed to categorize and evaluate the contribution of authors, countries,
institutions, and journals. VOSviewer was used to visualize their collaboration networks. As a result,
we found that artificial intelligence represents a hotspot technology used in material science, which
has become usual in molecular simulations and manufacturing industries. Recent studies aim to
provide possible avenues in the discovery and design of new high-entropy alloys as well as to
detect and classify corrosion in the industrial sector. This bibliometric analysis releases an updated
perspective on the implementations of technologies in material science as a possible guideline for
future worldwide research.

Keywords: bibliometric; material science; industry 4.0; Scopus; Web of Science; Biblioshiny; VOSviewer

1. Introduction

Material science is fundamental for discovering, designing, and casting the human
world. It encompasses diverse disciplines such as chemistry, metallurgy, and solid-state
physics, among others, to correlate materials’ properties with their composition and struc-
ture. These efforts serve as raw materials for engineers to develop applications in electronics,
nuclear, construction, communications, food, and other industries. However, successful
results are troublesome since try-and-error methodologies take time and resources. Hence,
material science relies on computational techniques to increase design reliability and preci-
sion, opening space for a new industrial automatization era [1–3].

The fourth industrial revolution, also known as Industry 4.0, is composed of many
technologies from which data mining [4] and artificial intelligence (AI) stands out in
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material science [5], which can be incorporated together [6]. Machine learning [7,8] and its
deep learning branch [9,10] are the most used algorithms from AI. For these emerging tools
to function, having data of quality is essential. Therefore, pretreatment steps are always
required regardless of the data source; experimental, computational, or industrial [11].
Experimental data supply information about the chemical composition, material properties,
testing conditions, processing parameters, etc. Computational data provide algorithm types,
chemical details, computation constraints, etc. Industrial data cover property information,
equipment applied, brand names, material names, and others. The stages necessary
for introducing an AI model in industrial production include data management, model
learning, model verification, model deployment, and cross-cutting aspects [12].

The application of technologies from industry 4.0 in material science is diverse, as
shown in the following research works. Data mining has been used to classify martensite,
pearlite, and bainite microstructures from their morphological parameters [13]. Machine
learning algorithms have been introduced to predict stable lead-free hybrid organic-inorganic
perovskites from unexplored perovskite data, identifying new stable compounds [14]. Deep
learning -a preferred algorithm from machine learning- is gaining relevance in the design of
photonic devices through deep neural networks, synthesizing multilayer structures based on
the thickness of each layer as input parameters [15].

Bibliometrics has been found very useful to describe the impact and growth of a
research field and determine its protagonists. It can be used with short or wide timeframes
as observed in the work of Nandiyanto et al. [16], Vukić et al. [17], and Modak et al. [18]
regarding chemical engineering issues. Likewise, the scientific community recommends
using Scopus and WoS databases to carry out this type of review due to their known quality
and flexibility to elaborate a robust query equation [19,20].

Few articles deal with the bibliometric analysis of industry 4.0 applied to material
science. Advanced and smart manufacturing have been studied separately based on Scopus
or Web of Science (WoS) databases, proving that industry 4.0 is exponentially increasing
and just emerging, correspondingly [21,22]. Artificial neural network applications have
been explored through Scopus, highlighting their importance in engineering fields [23].
Other studies have focused on quantifying the use of deep learning in structural crack de-
tection [24] and AI in the textile industry [25] through WoS. These bibliometric studies have
only covered certain areas of material science or industry 4.0 and have mainly employed
only one database. This research aims to provide a wider and complete scientometric
vision of industry 4.0 applied to material science. We took the recent 2017–2021 period,
Scopus and WoS databases, covering several emerging topics, and utilized bibliometrix
from RStudio for data mining. The following research questions were addressed:

• Q1: How many research articles were annually published between 2017 and 2021 in
material science linked to industry 4.0?

• Q2: Who are the most cited authors in studies associated with industry 4.0?
• Q3: Which papers are the most cited in material science combined with industry 4.0?
• Q4: What journals host the highest quantities of papers in this research area?
• Q5: What are the leaders’ institutions in the focused research field?
• Q6: What are the most active sponsor institutions in the selected period?
• Q7: What are the top ten countries publishing on this subject?

Bibliometric research can lead to the development and discovery of trends in a field,
helping the scientific community to identify new hotbeds of innovation based on a recent
window of observation [26]. This bibliometric analysis provides an updated perspective of
the implementations of technologies from industry 4.0 in material science as a scientific
reference for subsequent research.
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2. Materials and Methods
2.1. Study Design

We opted for a bibliometric analysis to numerically measure the scientific activity of
industry 4.0 as it is applied to materials science. This decision was made based on the high
number of scientific articles collected from Scopus and WoS between 2017 and 2021.

2.2. Data Source

The Scopus and Web of Science databases were selected due to their widespread
reputation for hosting high-quality journals and research documents. Institutional access
was required to download and corroborate the content of the study files.

2.3. Search Strategy

We introduced an extended list of keywords in both databases, covering material
science and industry 4.0 topics (see Figure 1). In search of articles that are relevant to indus-
try 4.0, the words used were the following: data science, industry 4.0, augmented reality,
computer science, remote sensing, artificial intelligence, 3D scanning, data mining, data
analytics, data handling, data processing, big data, data visualization, internet of things,
and machine learning. The selected words to represent material science were: material,
alloys, polymers, metals, nanomaterials, minerals, plastics, ceramics, catalyst, biomaterials,
molecular, organic materials, inorganic materials, corrosion, material synthesis, and manu-
facturing. These keywords were obtained in a cyclical process in which, starting from the
articles returned by the databases, more words were incorporated, covering the initially
unforeseen topics. The established timeline covered data between 2017 and 2021, while
the search was narrowed down to titles and keywords to increase the effectiveness of the
search equation. Besides, only original articles were considered as the document type. Both
web pages were consulted for the last time on 9 September 2022.

2.4. Bibliometric Analysis

Plots and tables combined the separately processed and analyzed data downloaded in
BibTeX files from the Scopus and WoS databases. The Biblioshiny app from the RStudio
cloud was used as a tool to obtain and organize both databases before manual manipu-
lation. Biblioshiny offers data about the most productive countries, institutions, authors,
research fields, and journals, as well as about keywords, h-index, impact factor, total
citations, etc. [27]. Moreover, VOSviewer was included for data mining, mapping, and
visualization of collaborative networks [28].

2.5. Limitations

The Scopus and WoS databases are not perfectly adapted to bibliometric analyses;
therefore, they tend to return a certain amount of erroneous data that limits the conclusions
to be drawn from them. In bibliometric studies, qualitative statements tend to be subjective
since these analyses are essentially quantitative [29]. This type of review offers a short-term
forecast of the area under investigation [30].
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Figure 1. Flowchart of used bibliometric methodology.

3. Results and Discussion

The findings delivered from each of the previously mentioned objectives will be pre-
sented in the following subsections based on the data taken from WoS and Scopus. Figure 1
shows that Scopus is the most used database to publish articles related to industry 4.0 in
material science, more than doubling the number of documents hosted in WoS.

3.1. Trends in the Annual Production of Original Papers

Figure 2a shows that the introduction of technologies from industry 4.0 within material
science areas slightly increased from 2017 to 2019; however, it showed sharp growth after
this point. One of the technologies that has presented an important increase in recent years
is machine learning; however, it is still a developing tool that requires a higher degree of
fine-tuning before we can see its complete potential [31].
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Figure 2. The year-wise of publication (a) and total citation (TC) (b) from WoS and Scopus from 2017
to 2021.

There has been rapid adoption of digital technologies during the COVID-19 pandemic,
triggering the additional implementation of artificial intelligence in material science [32].
As seen in Figure 2a, the number of published papers pertaining to the assessed subjects
has grown exponentially in the past five years.

The mean total citation per year reached a higher peak in 2018, after which it decreased
similarly in both databases (see Figure 2b). The decay of said metric may respond to the
time required by the researchers to identify newly published works, their novelty, their
accessibility, and the spreadability of science, among other reasons [33–35].

3.2. Most Cited Authors and Their Collaborations

The Scopus and WoS databases highlight Zhang Yan as one of the most productive
researchers in issues related to industry 4.0 applicated to materials (see Table 1). As a general
observation, Wang J. and Liu J. produced a higher quantity of TC, whereas Zhang Yan
delivered the largest number of scientific papers. In addition, as shown in Figure 3a, Zhang
Yan is the researcher with the most collaborations (60) in Scopus, followed by Li J. (51) and
Wang J. (48) (see Table A1 from Appendix A). Although Wen C., Xue D., and Su Y. are the
authors with the most link strengths from WoS, with 8 collaborations each. As such, Zhang Yan
can be considered the most influential author in the studied subjects. In his latest research, he
has used machine learning for material design and microstructure evolution prediction [36,37].
It is worth noting that images from Figure 2 are not tailored to the data of Table 1 since these
networks’ charts are focused on searching for collaborations—total link strength—and they
depend on the minimum number of articles per author and on the decision of presenting
the interconnection of nodes. In this case, the node size is proportional to the number of
associations per author. The same logic applies to the following VOSviewer figures and their
interpretations, along with the document.
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Table 1. The top 10 most-cited authors in material science coupled with industry 4.0 from 2017 to 2021.

Scopus WoS

Rank Author h-Index TC No. of Paper Author h-Index TC No. of Paper

1st Zhang Y 16 1452 44 Zhang Y 12 886 23
2nd Liu Y 16 1606 39 Li Y 9 321 21
3rd Wang J 18 2453 37 Li H 9 314 20
4th Wang Y 15 690 33 Zhang Z 8 230 19
5th Li J 14 797 32 Liu Y 8 897 18
6th Li Y 14 624 31 Li J 8 159 17
7th Zhang Z 11 348 30 Wang J 11 956 15
8th Zhang J 12 862 28 Wang Y 8 216 14
9th Li X 11 470 27 Zhang L 6 755 14

10th Li H 11 364 25 Zhang X 9 181 14

3.3. Most Cited Research Articles

As shown in Table 2, the three most-cited papers were written by Zhong RY. (2017),
Tao F. (2018), and Frank AG. (2019). The work of Zhong is a review only hosted in Scopus
that counts the highest number of citations and is about intelligent manufacturing [38].
The paper written by Tao deals with the use of big data in product life cycle manage-
ment, proposing a new method for its design, manufacture, and service driven by digital
twins [39]. Frank surveyed 92 manufacturing companies to study the implementation
of the internet of things, cloud services, big data, and analytics in smart manufacturing,
smart products, smart supply chain, and smart working. This research work highlighted
the need for named technologies in Smart manufacturing since they play a central role
within companies [40]. Furthermore, 60% of the topics extracted from Table 2 are asso-
ciated with manufacturing in the industrial sector. At the same time, machine learning
(ML) is the preferred technology, followed by its deep learning (DL) branch and big data.
As previously argued, ML and DL -artificial intelligence- have become usual techniques
for the discovery and design of materials at a molecular level. Regarding the use of big
data, the so-called 5 V model has been found to be essential for data management and
data preservation in the material science context. This model considers the variability of
unstructured data, volume of data in zettabytes, velocity in streaming data, noise removal
veracity, and added value [41].

3.4. Journals That Host a Higher Number of Articles

Table 3 shows that the journals with more participation in material science linked to
technologies from the fourth revolution are Computational Materials Science, IEEE Access,
and Journal of Physical Chemistry Letters. Even though, this latter source isn’t part of the
WoS’ top three. The cumulate average of research works hosted in these three journals is
below 8%, therefore, there exists a large spectrum of journals (>92%) publishing articles
regarding material science addressing technologies from industry 4.0.

Table 2. The top 10 most-cited articles in industry 4.0 applied to material science from 2017 to 2021 [14,38–40].

Autor, Year Document Title and Journal Name Journal Name TC Scopus TC WoS

Zhong RY, 2017 Intelligent Manufacturing in the Context
of Industry 4.0: A Review Engineering 1207 N/A

Tao F, 2018 Digital twin-driven product design,
manufacturing, and service with big data Int J Adv Manuf Technol 1136 822

Frank AG, 2019
Industry 4.0 technologies:

Implementation patterns in
manufacturing companies

Int J Prod Econ 795 633
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Table 2. Cont.

Autor, Year Document Title and Journal Name Journal Name TC Scopus TC WoS

Wang J, 2018 Deep learning for smart manufacturing:
Methods and applications J Manuf Syst 747 583

Wu Z, 2018 MoleculeNet: a benchmark for molecular
machine learning Chem Sci 637 N/A

Qi Q, 2018
Digital twin and big data towards smart

manufacturing and industry 4.0:
360-degree comparison

IEEE Access 595 434

Schütt KT, 2018 SchNet—A deep learning architecture for
molecules and materials J Chem Phys 579 N/A

Ghobakhloo M, 2018 The future of manufacturing industry: a
strategic roadmap toward Industry 4.0 J Manuf Technol Manage 503 N/A

Liu Y, 2017 Materials discovery and design using
machine learning J Materiomics NA 469

Chmiela S, 2017 Machine learning of accurate
energy-conserving molecular force fields Sci Adv 461 N/A

Table 3. Top 10 most articles hosted by the journal in industry 4.0 applied to material science from
2017 to 2021.

Scopus WoS

Rank Journal Name No. of Papers
(%) N = 2157

Impact Factor
SJR (2021) Journal Name No. of Papers (%)

N = 937
Impact Factor

JCR (2021)

1st Computational
Materials Science 58 (2.69) 0.777 Computational

Materials Science 45 (4.80) 3.572

2nd IEEE Access 38 (1.76) 0.927 IEEE Access 26 (2.77) 3.476

3rd Journal of Physical
Chemistry Letters 32 (1.48) 2.009

International Journal of
Advanced

Manufacturing
Technology

19 (2.03) NA

4th
Journal of Chemical

Information and
Modeling

31 (1.44) 1.223 ACS Applied Materials
& Interfaces 15 (1.60) 10.383

5th Journal of Physical
Chemistry C 30 (1.39) 1.103 Journal of Intelligent

Manufacturing 15 (1.60) 7.136

6th NPJ Computational
Materials 29 (1.34) 2.967 Advanced Theory and

Simulations 14 (1.49) 4.105

7th Sustainability
(Switzerland) 26 (1.21) 0.664

Journal of
Manufacturing

Systems
13 (1.39) 9.498

8th Chemistry of Materials 24 (1.11) 2.93 Materials & Design 13 (1.39) 9.417

9th Journal of Chemical
Physics 24 (1.11) 1.103 Acta Materialia 11 (1.17) 9.209

10th ACS Applied
Materials & Interfaces 23 (1.07) 2.143 Applied Sciences-Basel 11 (1.17) 2.838

On the other hand, by introducing Bradford’s law, it was feasible to classify sources
into core areas, related areas, and non-relevant areas concerning the targeted field, as
observed in Equation (1).

r0 = 2 ln(eγY) (1)
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where r0 represents the number of journals that make up the core area, γ is the Euler’s
constant (~0.577), and Y is the number of papers published in the journal with the most
hosted documents [42]. In this case, since we this study involves two databases, Y1 = 58
in Scopus and Y2 = 45 in WoS. Thus, r0−1(Scopus) ∼= 9 and r0−2(WoS) ∼= 9. As a result,
only the source Applied Sciences-Basel from WoS is removed from the core collection,
bearing in mind that ACS Applied Materials & Interfaces from Scopus is inside the WoS list of
publications with the higher JCR impact factor. Also, it is noteworthy that Computational
Materials Science is the preferred journal to publish articles around industry 4.0 connected
with material sciences.

3.5. Most Productive Institutions and Their Collaborations

Considering an array of only interconnected nodes in VOSviewer, Scopus and WoS
delivered the same result regarding the most productive institutions. The top 3 universities
in Scopus publish more papers than those in WoS. Accordingly, the University of Science
and Technology Beijing is positioned as the most contributive institution, followed by the
University of California and Shanghai University (see Table 4). Meanwhile, from the collab-
orative viewpoint, the Chinese Academy of Sciences is positioned as the most collaborative
institution with a total link strength of 58, as counted in Table A2 from Appendix B and as
appreciated in Figure 4b. Other research studies have highlighted the implementation of
technologies from industry 4.0 at the Chinese Institute of Computer Science [43].

Table 4. The top 10 most-productive institutions in industry 4.0 applied to material science from 2017
to 2021.

Scopus WoS

Rank Affiliations Country No. of Paper Affiliations Country No. of Paper

1st University of Science and
Technology Beijing China 59 University of Science and

Technology Beijing China 55

2nd University of California United
States 47 Shanghai University China 42

3rd Shanghai University China 42 University of Chinese
Academy of Sciences China 28

4th Massachusetts Institute of
Technology

United
States 38 Nanyang Technological

University Singapore 26

5th Zhejiang University China 33 Chongqing University China 25

6th Shanghai Jiao Tong
University China 30 Beihang University China 24

7th University of Chinese
Academy of Sciences China 28 Northwestern Polytech

University China 24

8th Chongqing University China 24 University of Illinois United States 24

9th South China University of
Technology China 24 Guangzhou University China 22

10th Tsinghua University China 24 Zhejiang University China 22
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In this regard, Scopus did not provide visual evidence regarding the leader institution,
(see Figure 4a) but indicated partial partnerships among most universities. Table A2 shows
that below the Chinese Academy of Sciences, its managed institution, the University of
Chinese Academy of Sciences, hosts 22 fewer partnerships. The dominance of China and the
United States is visible in Table 4. Nevertheless, Figure 3b suggests that new organizations,
such as Curtin University from Australia, have been increasing their teamwork in the past
few years.

3.6. Most Participative Funding Agencies

The studied databases were consistent in finding the National Natural Science Founda-
tion of China (NSFC) and the National Science Foundation (NSF) from the United States as
the principal funding agencies (see Table 5). Both institutions have been compared accord-
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ing to their influence on the development of artificial intelligence-associated research in
the past decade [44]. The main findings suggest that from 2010 to 2019, the NSF supported
more AI research than the NSFC, injecting 1.7 billion more dollars into research. Despite
the greater volume of published works by the NSFC, reaching 15 thousand more papers
than the NSF, it awarded less money. However, it is expected that by 2023 the NSFC will
surpass the NSF in the quantity of money awarded. In the addition to these two mighty
powers, organizations from Belgium and Germany are financing research in industry 4.0 to
sustain the growth of the field in Europe countries.

Table 5. The top 10 most-participative funding agencies in industry 4.0 applied to material science
from 2017 to 2021.

Scopus WoS

Rank Affiliations Country No. of Paper Affiliations Country No. of Paper

1st National Natural Science
Foundation of China China 350 National Natural Science

Foundation of China China 184

2nd National Science Foundation United
States 182 National Science Foundation United

States 68

3rd U.S. Department of Energy United
States 122 National Key Research and

Development Program of China China 44

4th National Key Research and
Development Program of China China 94 Fundamental Research Funds

for The Central Universities China 35

5th Office of Science United
States 79 U.S. Department of Energy United

States 33

6th Fundamental Research Funds
for the Central Universities China 72 Ministry of Education Culture

Sports Science and Technology Japan 25

7th Japan Society for the
Promotion of Science Japan 52 European Commission Belgium 23

8th
Ministry of Science and

Technology of the People’s
Republic of China

China 50 Japan Society for the
Promotion of Science Japan 22

9th Horizon 2020 Framework
Programme Belgium 49 German Research Foundation Germany 18

10th Basic Energy Sciences United
States 48 Grants-in-Aid for Scientific

Research Japan 16

3.7. Most Contributing Countries and Their Collaborations

Scopus and WoS coincide in attributing the leading countries in materials science
studies developed under the perspective of industry 4.0. China ranks as the country that
has successfully incorporated ideas, technology, and innovation from computers to the
architecture of materials and additive manufacturing [45]. In spite of the higher number
of citations received by the studies carried out by the United States rendering to Scopus
(see Table 6). Two rungs below, countries like Japan, Germany, and the United Kingdom,
appear with standardized scientific productions.

The esteemed position of China in this field is not a matter of luck since this country
thoroughly planned today’s ubication by introducing the “Made in China 2025” plan,
which was directed to catch up with industry 4.0 technologies. This plan was ten years
ahead of planning that pursued to become the country a global manufacturing power-
house [46]. However, despite Chinese expectations, only 57% of their companies are
adequately prepared for Industry 4.0 technologies. This low average of prepared compa-
nies to receive these technologies in China is surpassed by the United States (71%) and
Germany (68%) [47].
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Table 6. The top 10 countries in industry 4.0 applied to material science from 2017 to 2021.

Scopus Wos

Rank Country Frequency Total Citations Country Frequency Total Citations

1st China 1453 11514 China 1226 7238
2nd United States 1318 12957 United States 784 4661
3rd Japan 311 1310 Japan 210 698
4th Germany 246 1448 Germany 175 684

5th United
Kingdoms 229 1673 India 162 325

6th India 227 795 South Korea 158 413

7th South Korea 210 1158 United
Kingdoms 149 998

8th Canada 107 545 Australia 92 393
9th Australia 106 524 Spain 87 208

10th Spain 103 462 Singapore 76 547

According to the databases explored, among the most collaborative countries are the
United States, China, and United Kingdom (see Table A3 in Appendix C). The first two
countries, however, are interchanged in the first places in Scopus and WoS. This perhaps
demonstrates a preference by China to publish in WoS journals (see Figure 5) as a result of its
policy to measure research excellence [48]. Otherwise, Figure 5 shows that India, Turkey, and
the Czech Republic are countries that have increased their collaborations in recent years.

Keywords are loyal representations of scientific research works in articles, and their
frequent implementations may reflect the hotspots of a particular study field. The word-
cloud visualization of Scopus and WoS database in Biblioshiny (see Figure 6) allowed us
to define the most relevant keyword introduced by authors in material science associated
with industry 4.0 technologies.

We highlight smart manufacturing, additive manufacturing, and molecular dynamics
as part of the material science keywords while machine learning, deep learning, and
big data for industry 4.0. As previously mentioned most productive institutions may
fluctuate, yet, more generally, machine learning and deep learning are the most prioritized
technologies in material science studies (see Figure A1 in Appendix D). Machine learning
and deep learning are recognized as the brains behind smart manufacturing. In this regard,
both technologies are used for decision-making support systems, fault diagnosis, predictive
analytics, advanced robotics, and scheduling [49]. Additive manufacturing, also known
as 3D printing, is used to determine fabrication parameters, quality of the workpieces,
and processing time. Furthermore, it is expected that additive manufacturing will achieve
5d-printing, through the implementation of time and artificial intelligence tools as the
fourth and fifth dimensions, respectively [50]. In the case of molecular dynamics, artificial
intelligence is employed to contribute to understanding materials’ properties by simulating
the interaction of atoms and molecules. Even though some studies lead to considerable
differences between accuracy and efficiency, machine learning and deep learning are still
considered helpful tools to match efficiency with ac-curacy in molecular simulation [51].

On the other hand, Figure 7 shows possible new trends for technologies from the
fourth industrial revolution based on the keywords extracted from both studied databases.
While AI technologies continue to be tightly associated with new trends, it is notable that
materials science fields, such as high entropy alloys and corrosion, are gaining traction
in computer sciences. The predictive properties of high entropy alloys may allow for the
design of new materials by selecting key-related features of alloys [52]. Additionally, the
detection and classification of corrosive issues from images of industrial facilities have
been successfully performed through AI [53]. We believe these applications belong to a
new pathway of industry 4.0 as applied to material science and serve as a guide for future
routes to be explored by scientists.
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4. Conclusions

This bibliographic review brings us closer to the recent growing interest shown by
institutions, journals, researchers, countries, and funding agencies in the study of material
science linked to the emerging technological tools provided by industry 4.0. The main
conclusions delivered by responding to each one of the settled research questions are
the following:

• The production of original papers in the explored field is exponentially growing.
• A minimum of 14 published papers are required to become one of the most cited

authors on the tracked type of research.
• Most cited articles in these fields deal with artificial intelligence and big data applica-

tions in manufacturing industries.
• The top journals preferred to spread initiatives of industry 4.0 in conjunction with the

material science field count with a JCR higher than 2.5.
• The most productive institutions delivered at least 22 documents to be part of the

top ten.
• Funding agencies pursuing the top ten of given awards need to support a minimum

of 16 papers.
• China and the United States are the most implicated countries regarding the fourth

industrial revolution applied to material science, whose success stems from the incor-
poration of specific public policies.

• Deep learning represents the most attractive technology in machine learning to per-
form new studies in material science.

Even though AI is the research hotspot technology in material science studies, and it
has become commonly used in molecular simulations and manufacturing issues, opportu-
nities stills exist to discover and design new high entropy alloys and corrosion detection.
In general terms, this bibliometric analysis offers an updated viewpoint regarding material
science for developing subsequent research and generating consciousness about the impact
of introducing new technologies in the promotion, discovery, design, management, and
operation of materials used by companies.
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Appendix A

Table A1. The top 5 most collaborative authors in industry 4.0 applied to material science from 2017
to 2021.

Scopus WoS

Rank Author No. of Paper T. Link Strength Author No. of Paper T. Link Strength

1st Zhang Y 44 60 Wen C 5 8
2nd Li J 32 51 Su Y 5 8
3rd Wang J 37 48 Xue D 6 8
4th Liu Y 38 44 Liang H 5 5
5th Li Y 33 42 Qiao Z 5 5
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Appendix B

Table A2. The top 5 most collaborative institutions in industry 4.0 applied to material science from
2017 to 2021.

Scopus WoS

Rank Institution No. of Paper T. Link
Strength Institution No. of Paper T. Link Strength

1st Technical University of
Berlin 8 14 Chinese academy of sciences 27 58

2nd University of Zilina 10 12 University of Chinese academy
of sciences 14 32

3rd Cadi Ayyad University 3 8 Northwestern polytechnic
university 12 32

4th The institute of smart big
data analytics 5 8 University of science and

technology Beijing 18 31

5th University of Chinese
academy of sciences 7 8 Georgia institute of technology 8 26

Appendix C

Table A3. The top 5 countries in industry 4.0 applied to material science from 2017 to 2021.

Scopus WoS

Rank Country Total, Link Strength Country Total, Link Strength

1st United States 252 China 154
2nd China 176 United States 143
3rd United Kingdom 63 United Kingdom 70
4th Germany 56 Germany 45
5th India 33 Australia 31

Appendix D
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