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Abstract: A general mathematical framework for the quantitative description of the cluster size
dependence in heterogeneous catalytic reactions has been developed based on an analysis of the
Gibbs energy of elementary reactions. The methodology was illustrated for a generic linear sequence
of elementary reactions with three steps, a multi-step mechanism of ethanol oxidation comprising
linear, nonlinear and quasi-equilibria steps and a network of parallel reactions in transformations
of furfural.
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1. Introduction

A substantial effort has been put forward in recent years in the understanding
structure-sensitive reactions, for which the turnover frequency (or the rate per exposed site)
depends on the size of the metal cluster [1–6] increasing, decreasing or passing through a
maximum. Such changes of turnover frequency (TOF) with the cluster size can originate
from changes in the relative ratio between edges, corners and terrace atoms, which exhibit
different reactivity or. because of other phenomena, influence reactivity, e.g., alterations of
the electronic state or resistance to deactivation.

The treatment of structure sensitivity in [7] considered differences in the adsorption
energy between edges and terraces, leading subsequently to different activities of edges
and terraces in terms of reactivity. A linear free energy relationship was applied linking
kinetics with thermodynamics. The initial treatment [7] and further expansions were
limited to a two-step sequence and some selected mechanisms, such as the Eley–Rideal
and the Langmuir–Hinshelwood [8–10]. For more complicated reaction mechanisms, such
as a Christiansen sequence of all linear steps, apart from adsorption and desorption, the
equilibrium constants as well as the rate constants in forward and reverse directions of
other reaction steps were considered to be independent on the cluster size.

At the same time, the reaction mechanisms can contain not only linear but also nonlin-
ear steps, thus making a derivation of the rate equations where the cluster size dependence
is directly incorporated into the rate expressions, which is far from straightforward.

The intention of the current study is to provide a general framework for the derivation
of kinetic expressions for multistep reaction mechanisms with linear and nonlinear steps
and different adsorbed species on the surface.

The approach will be illustrated for a Christiansen sequence and a reaction mechanism
comprising reversible, irreversible and quasi-equilibria steps. The same methodology can
be applied for multi-route reactions as exemplified by a network of parallel reactions.

It should be noted that the kinetic expressions derived below rely on the direct collision
model assuming that the surface diffusion of adsorbed species is fast. Moreover, in the
treatment of this study, the relationship between the particle size and the structure of
catalytic sites is considered to be constant, being independent of cluster size. In a more
general case, the electronic states of the catalytic site may change when changing the cluster
size, thus influencing the reaction kinetics and even the reaction mechanism.
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2. Theoretical Framework

Let us consider first an elementary reaction of the following type

A2 + * + B* = A* + AB* (1)

Such a reaction can correspond to the dissociative adsorption of a molecule containing
two atoms (e.g., O2) in the presence of some species already present on the surface (e.g.,
hydroxyls).

The Gibbs energy of this step can be written

∆Greaction = ∆GA,adsorbed + ∆GAB,adsorbed − ∆GA2 − ∆Gcatalyst − ∆GB,adsorbed

= ∆GA,adsorbed + ∆GAB,adsorbed − ∆GB,adsorbed
(2)

as the Gibbs energy for the formation of the molecule A2 is zero by definition.
Another example can be the recombination of two adsorbed atoms of a diatomic

molecule passing through the molecular adsorbed state

2A*→A2*+* (3)

The Gibbs energy for this reaction is obviously

∆Greaction = ∆GA2,adsorbed + ∆Gcatalyst − 2∆GA,adsorbed (4)

When only terraces and edges [7] are considered as sites with different reactivity,
the Gibbs energy of reactions described by Equations (1) or (3) are expressed in the
following way

∆Greaction = ∆Greaction,terraces fterraces + ∆Greaction,edges fedges =

= ∆Greaction,terraces(1− fedges) + ∆Greaction,edges fedges

= ∆Greaction,terraces + fedges(∆Greaction,edges − ∆Greaction,terraces)

(5)

where ∆Greaction,terraces and ∆Greaction,edges correspond, respectively, to the reaction on ter-
races and edges, while fterraces, fedges denote fractions of these surface sites with their sum
equal to unity.

A more detailed analysis is possible; for example, for cubooctahedral shapes of
nanoparticles distinguishing reactions on different types of faces

∆Greaction = ∆Greaction,square_terraces fsquare_terraces+

+∆Greaction, triangular_terraces ftriangular_terraces + ∆Greaction,edges fedges
(6)

From a relationship between the equilibrium constants and the Gibbs energy of a
reaction, it follows for Equation (5)

Kreaction = e−(∆Greaction,terraces fterraces+∆Greaction,edges fedges)/RT = e−(∆Greaction,terraces+ fedges(∆Greaction,edges−∆Greaction,terraces))/RT (7)

Or more specifically, for the elementary reaction in Equation (1)

Kreaction = e−
(∆GA,adsorbed+∆GAB,adsorbed−∆GB,adsorbed)terraces fterraces+(∆GA,adsorbed+∆GAB,adsorbed−∆GB,adsorbed)edges fedges

RT (8)

For a slightly more general case, when the Gibbs energy of formation for one of the
reactants is not equal to zero, for example, for hydroxylation of an alkane on a metal surface

RH + O*=ROH+ * (9)
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the Gibbs energy can be calculated from the Gibbs energy of formation of the reactants
and products.

∆Greaction = ∆GROH + ∆Gcatalyst − ∆GRH − ∆GO,adsorbed (10)

In should be noted that for a more convenient way of kinetic analysis, the calculations
of the Gibbs energy for the catalyst formation (Equation (10) and similar expressions)
should be avoided. In the subsequent analysis, the Gibbs energy of adsorption per se will
be used without explicitly considering the Gibbs energy for the catalyst

∆Gadsorption, O = ∆GO,adsorbed − ∆Gcatalyst (11)

Such an approach gives the following instead of Equation (10)

∆Greaction = ∆GROH − ∆GRH − ∆Gadsorption, O (12)

In Equations (11) and (12), the Gibbs energy of adsorption corresponds to the difference
between the Gibbs energy of formation of the adsorbed species on the catalytic sites and
the Gibbs energy of formation for the catalyst, per se.

The Gibbs energy for the reaction expressed by Equation (3) is thus

∆Greaction = ∆GA2adsorption − 2∆GA,adsorption (13)

In a similar fashion, instead of Equation (2)

∆Greaction = ∆GA,adsorption + ∆GAB,adsorpton − ∆GB,adsorption (14)

The rate constant of a particular reaction can be expressed, making use of the linear
free energy (or Brønsted–Evans–Polanyi) relationship between the reaction constants k and
the equilibrium constants K in a series of analogous elementary reactions [11,12]

k = g Kα (15)

where g and α (Polanyi parameter, 0 < α < 1) are constants.
More specifically, for the elementary reaction in Equation (1)

kreaction, eq.(1) = ge−
a[(∆GA,adsorption+∆GAB,adsorption−∆GB,adsorption)terraces(1− fedges)]

RT ∗

∗e−
a[(∆GA,adsorption+∆GAB,adsorption−∆GB,adsorption)edges fedges ]

RT =

= ge−
a[(∆GA,adsorption+∆GAB,adsorption−∆GB,adsorption)terraces ]

RT ∗ e−
a[(∆xA+∆xAB−∆xB) fedges ]

RT =

= k′e−
a[(∆xA+∆xAB−∆xB) fedges ]

RT

(16)

where k’ is the cluster size independent rate constant and ∆xA corresponds to differ-
ences in Gibbs energy of adsorption on A on terraces and edges, etc.

Similarly, for the reaction given by Equation (9)

kreaction, eq.(9) = ge−
a[(∆GROH−∆GRH )]

RT ∗ e−
a[−∆Gadsorption, O)terraces ]

RT ∗ e−
a[−∆xO ] fedges

RT = k′e−
a[−∆xO ] fedges

RT (17)

With ∆xO corresponding to differences in Gibbs energy of oxygen atom adsorption on
terraces and edges, etc.

In [7], the fraction of edges was related to the cluster size fedges ≈ 1/dcluster when d is
in nm, thus allowing the introduction of the cluster size dependence directly into the rate
expressions of different types.
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3. Christiansen Sequence

As an example of the utilization of the above-described methodology to the derivation
of rate equations, two examples will be considered. The first one corresponds to the
Christiansen sequence, containing only linear steps [13,14]. The latter implies that, on
both sides of an equation of the elementary surface reactions, only one adsorbed species
(or vacant sites) is present. The second example treated in the section below addresses
a mechanism of ethanol oxidative dehydrogenation with several nonlinear steps. For
the Christiansen sequence in Equation (18), the intermediates I1 and I2 are generated in
subsequent steps 1 and 2, while in the third step the vacant sites * are recovered

1.* + A1 ↔ *I1 + B1

2.*I1 ↔ *I2

3. *I2 + A2 ↔ * + B2

A1 + A2 ↔ B1 + B2

(18)

For the third step, which is essentially the same as the reaction in Equation (9), the rate
expression for the forward and reverse reactions are

r+3 = k′+3e−
a3(−∆xI2

) fedges
RT θI2 CA2 = ω+3θI2 (19)

r−3 = k′−3e−
a3(∆xI2

) fedges
RT θVCB2 = ω−3θV (20)

where θI2 ; θV are the coverage of I2 and the fraction of vacant sites; CA2 and CB2 are,
respectively, concentrations of A2 and B2; ω+3; ω−3 are frequencies of step 3 in the forward
and reverse directions; and α3 is the Polanyi parameter of step 3.

The first step of Equation (18) in the forward and reverse directions takes the form

r+1 = k′+1e−
a1(∆xI1

) fedges
RT θVCA1 = ω+1θV (21)

r−1 = k′−1e−
a1(−∆xI1

) fedges
RT θI1 CB1 = ω−1θI1 (22)

Finally, for the second step in Equation (18), from a general expression of the Equation (16) type

r+2 = k′+2e−
a2(∆xI2

−∆xI1
) fedges

RT θI1 = ω+2θI1 (23)

r−2 = k′−2e−
a2(∆xI1

−∆xI2
) fedges

RT θI2 = ω−2θI2 (24)

The overall expression for the three-step Christiansen sequence with linear steps
containing the frequencies of steps is derived assuming the steady-state approximation for
all intermediates. The detailed derivation is rather tedious, being, however, explained in
detail in the literature [10,13]. For the three-step sequence, an expression for TOF takes the
following form

TOF =
ω+1ω+2ω+3 −ω−1ω−2ω−3

ω+2ω+3 + ω−3ω+2 + ω−3ω−2 + ω+3ω+1 + ω−1ω+3 + ω−1ω−3 + ω+1ω+2 + ω−2ω+1 + ω−2ω−1
(25)

Introducing the frequencies of steps from Equations (19) to (24) into Equation (25)
results in

TOF =
k′+1k′+2k′+3e−

(a1∆xI1
+a2(∆xI2

−∆xI1
)+a3(−∆xI2

)) fedges
RT CA1 CA2 − k′−1k′−2k′−3e−

(a1(−∆xI1
)+a2(∆xI1

−∆xI2
)+a3(∆xI2

)) fedges
RT CB1 CB2

Dthree_step
(26)
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where

Dthree_step = k′+2k′+3e−
a2(∆xI2

−∆xI1
)+a3(−∆xI2

) fedges
RT CA2 + k′−3k′+2e−

(a3(∆xI2
)+a2(∆xI2

−∆xI1
)) fedges

RT CB2 + k′−3e−
(a3(∆xI2

)+a2(∆xI1
−∆xI2

)) fedges
RT CB2 k′−2+

+k′+1k′+3e−
(a3(−∆xI2

)+a1(∆xI1
)) fedges

RT CA2 CA1 + k′−1k′+3e−
(a1(−∆xI1

)+a3(−∆xI2
)) fedges

RT CB1 CA2 + k′−1k′−3e−
(a1(−∆xI1

)+a3(∆xI2
)) fedges

RT CB1 CB2+

+k′+1k′+2e−
(a1(∆xI1

)+a2(∆xI2
−∆xI1

)) fedges
RT CA1 + k′−2k′+1e−

(a2(∆xI1
−∆xI2

)+a1(∆xI1
)) fedges

RT CA1 + k′−2k′−1e−
(a2(∆xI1

−∆xI2
)+a1(−∆xI1

)) fedges
RT CB1

(27)

Some simplifications could be made considering that the value of the Polanyi parame-
ter is equal to 0.5 [10], implying that α1 = α2 = α3 = α = 0.5, and introducing the cluster
size dependence fedges ≈ 1/dcluster:

TOF = (k′+1k′+2k′+3CA1 CA2 − k′−1k′−2k′−3CB2 CB1)/D′three_step (28)

with

D′three_step = k′+2k′+3e
−

a(−∆xI1
)

RTdcl CA2 + k′−3k′+2e
−

a(2∆xI2
−∆xI1

)

RTdcl CB2 + k′−3e
−

a∆xI1
RTdcl CB2 k′−2+

+k′+1k′+3e
−

a(−∆xI2
+∆xI1

)

RTdcl CA2 CA1 + k′−1k′+3e
−

a(−∆xI1
−∆xI2

)

RTdcl CB1 CA2 + k′−1k′−3e
−

a1(−∆xI1
+∆xI2

)

RTdcl CB1 CB2+

+k′+1k′+2e
−

a∆xI2
RTdcl CA1 + k′−2k′+1e

−
a(2∆xI1

−∆xI2
)

RTdcl CA1 + k′−2k′−1e
−

a(−∆xI2
)

RTdcl CB1

(29)

4. Kinetics of Ethanol Oxidation on Gold Catalyst

A kinetic model of ethanol oxidation (EtOH) to acetaldehyde (AcH) over gold catalyst
has been proposed recently in the literature [15] based on the following sequence of steps:

1. O2 + *ΞO2* 1

2. EtOH + *ΞEtOH* 2

3. EtOH* + O2*↔EtO* + OOH* 1

4. OOH* + *→O* + OH* 1

5. O* + EtO*→AcH+* + OH* 2

6. 2OH*↔O* + H2O+* 2

7. EtOH* + O*→EtO* + OH* 1

2EtOH + O2→2AcH + 2H2O

(30)

In Equation (28), the stoichiometric (Horiuti) numbers of the steps are given. The
overall equation corresponds to the sum of all steps multiplied by these numbers.

The model was discussed in [15], invoking DFT calculations and the experimental
data. The derivation of the kinetic equation for the mechanism in Equation (28) was
presented in detail in the original contribution; therefore, only the cluster size dependence
will be considered below. Equation (28) exhibits a combination of reversible (steps 3 and
6), irreversible (steps 4, 5 and 7) and quasi-equilibria steps (steps 1 and 2), making this
example very illustrative. The fraction of vacant sites is expressed by

θV =
1

1 + K2CEtOH + K1CO2 +
2k7K2CEtOH

k5
+

k3k4K1CO2

k7(k4+k−3
k7
k5

CEtOH)
+

√
2
k6
(

k3k4K1K2CO2 CEtOH

k4+k−3
k7
k5

CEtOH
+

k−6k3k4K1CO2 CH2O

k7(k4+k−3
k7
k5

CEtOH)
) +

k3K1K2CO2 CEtOH

k4+k−3
k7
k5

CEtOH

=
1
D

(31)
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While the overall rate for acetaldehyde formation r(acetaldehyde) is

r(acetaldehyde) =
k3k4K1K2CO2 CEtOH

(k4 + k−3
k7
k5

CEtOH)D2
(32)

An approach to the derivation of the kinetic equations for such a complex case could
be the first to identify the expressions for the Gibbs energy of quasi-equilibria steps, giving
in a particular case Equation (28) for the first two steps

∆G1 = ∆GO2,ads ,terraces + fedges(∆GO2,ads ,edges − ∆GO2,ads ,terraces) = ∆GO2,ads ,terraces + fedges(∆xO2,ads) (33)

∆G2 = ∆GEtOH,ads ,terraces + fedges(∆xEtOH,ads) (34)

Subsequently, the equilibrium constants can be described through Kt
1 and Kt

2, which
correspond to the adsorption constants for the first and second steps on terraces and
parameters ∆xO2,ads , etc., reflecting the difference between the Gibbs energy of dioxygen
adsorption on edges and terraces, etc.

K1 = e−∆G1/RT = e−∆GO2,ads ,terraces/RTe− fedges∆xO2,ads
/RT

= Kt
1e−∆xO2,ads

/RTdcl (35)

K2 = e−∆G2/RT = e−∆GEtOH,ads ,terraces/RTe− fedges∆xEtOH,ads
/RT

= Kt
2e−∆xEtOH,ads

/RTdcl (36)

For the third step in Equation (28), not containing any species present in the reaction
mixture, the Gibbs energy of the surface reaction is

∆G3 = ∆GEtOads + ∆GOOHads − ∆GEtOHads − ∆GO2, ads = ∆G3,terraces + fedges(∆xEtO,ads + ∆xOOHads − ∆xEtOHads − ∆xO2, ads ) (37)

Analogously, for the fourth and seventh steps

∆G4 = ∆G4,terraces + fedges(∆xO,ads + ∆xOHads − ∆xOOHads) (38)

∆G7 = ∆G7,terraces + fedges(∆xEtO,ads + ∆xOHads − ∆xEtOHads − ∆xOads) (39)

Steps 5 and 6 contain reactants, giving

∆G5 = ∆GAcH + ∆GOH,terraces − ∆GO,terraces − ∆GEtO,terraces + fedges(∆xOH,ads + ∆xOads − ∆xEtOads) (40)

∆G6 = ∆GH2O + ∆GO,terraces − 2∆GOH,terraces + fedges(∆xO,ads − 2∆xOHads) (41)

The rate constants of step 3 in the forward direction is expressed directly from Equation (15)

k3 = g3e−α3∆G3,terraces/RTe−α3(∆xEtO,ads
+∆xOOHads

−∆xEtOHads
−∆xO2,ads

)/RTdcl (42)

Or
k3 = k′3e−α3(∆xEtO,ads

+∆xOOHads
−∆xEtOHads

−∆xO2,ads
)/RTdcl (43)

Analogously, for other steps of the similar type

k4 = k′4e−α4(∆xO,ads
+∆xOHads

−∆xOOHads
)/RTdcl (44)

k7 = k′7e−α7(∆xEtO,ads
+∆xOHads

−∆xEtOHads
−∆xOads

)/RTdcl (45)

where

k′3 = g3e−α3∆G3,terraces/RT ; k′4 = g4e−α4∆G4,terraces/RT ; k′7 = g7e−α7∆G7terraces/RT (46)

For steps 5 and 6, in the forward direction

k5 = k′5e−α5(∆xOH,ads
+∆xOads

−∆xEtOads
)/RTdcl (47)
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k6 = k′6e−α6(∆xO,ads
−2∆xOHads

)/RTdcl (48)

With

k′5 = g5e−α5(∆GAcH+∆GOH,terraces−∆GO,terraces−∆GEtO,terraces)/RT ; k′6 = g6e−α6(∆GH2O+∆GO,terraces−2∆GOH,terraces)/RT (49)

The only reversible steps in this reaction mechanism are steps (3) and (6), whose rate
constants are apparently

k−3 = g3Kα3−1
3 ; k−6 = g6Kα6−1

6 (50)

resulting in

k−3 = g3e(1−α3)∆G3,terraces/RTe(1−α3)(∆xEtO,ads
+∆xOOHads

−∆xEtOHads
−∆xO2,ads

)/RTdcl =

= k′−3e(1−α3)(∆xEtO,ads
+∆xOOHads

−∆xEtOHads
−∆xO2,ads

)/RTdcl
(51)

k−6 = g6e(1−α6)(∆GH2O+∆GO,terraces−2∆GOH,terraces)/RTe(1−α6)(∆xO,ads
−2∆xOHads

)/RTdcl =

= k′−6e(1−α6)(∆xO,ads
−2∆xOHads

)/RTdcl
(52)

With

k′−3 = g3e(1−α3)∆G3,terraces/RT ; k′−6 = g6e(1−α6)(∆GH2O+∆GO,terraces−2∆GOH,terraces)/RT (53)

Some simplifications are possible if the values of Polanyi parameters are considered
to be the same for all steps. Instead of Equation (30), an expression with the cluster size
dependence is obtained

r(acetaldehyde) =
k′3k′4Kt

1Kt
2CO2 CEtOHe−α(∆xEtO,ads

−∆xEtOHads
−∆xO2,ads

+∆xO,ads
+∆xOHads

)−(∆xEtOH,ads
+∆xO2,ads

)/RTdcl

T0D2 (54)

where the denominator is also dependent on the cluster size

T0 = k′4e−α(∆xO,ads+∆xOHads−∆xOOHads )/RTdcl + k′−3
k′7
k′5

CEtOHeα(∆xEtOHads+2∆xOads )+(1−α)(∆xEtO,ads+∆xOOHads−∆xEtOHads−∆xO2, ads )/RTdcl (55)

D = 1+Kt
2e−∆xEtOH,ads

/RTdcl CEtOH +Kt
1e−∆xO2,ads

/RTdcl CO2 +T1 +T2 +
√

T3 + T4 +T5 (56)

Additionally, the terms in Equation (54) are

T1 =
2k′7Kt

2CEtOH

k′5
e(−2α(∆xEtO,ads

−∆xOads
)+(α−1)∆xEtOHads

)/RTdcl (57)

T2 =
k′3k′4Kt

1CO2

k′7T0
e((α−1)∆xO2,ads

−2α∆xO,ads
)/RTdcl (58)

T3 =
2k′3e/RTdcl k′4Kt

1Kt
2CO2 CEtOH

k′6T0
e((a−1)(∆xO2,ads

+∆xEtOH,ads
)−α(∆xEtO,ads

+3∆xOHads
))/RTdcl (59)

T4 =
2k′−6k′3k′4Kt

1CO2 CH2O

k′7k′6T0
e((1−2α)∆xO,ads

−2∆xOHads
+(α−1)∆xO2,ads

)/RTdcl (60)

T5 =
k′3Kt

1Kt
2CO2 CEtOH

T0
e(−α(∆xEtO,ads

+∆xOOHads
)+(α−1)(∆xO2,ads

+∆xEtOH,ads
))/RTdcl (61)

5. Analysis of Selectivity in Parallel Reactions

Apparently, the kinetic expression developed in the previous section is cumbersome,
making the analysis of the rate dependence on the cluster size rather challenging. However,
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in many cases when kinetics is less complicated, the general methodology described
here can be utilized quite easily. As an example, an analysis of a reaction network with
two parallel routes with a common adsorption step and mechanistically different rate-
determining steps (i.e., mono- and bimolecular) is presented below

1. * + H2Ξ*H2

2. * + A Ξ *A

3. *A + *H2→2* + B

4. *A→* + C + E

A + H2 -> B; A -> C + E

(62)

This mechanism, which assumes noncompetitive adsorption of hydrogen and the
reactant A, was applied in [16] for analysis of the activation energy dependence on the Ru
cluster size in furfural (A) hydrogenation to furfuryl alcohol (B) and decarbonylation to
furan (C) and CO2 (E) [17].

For this mechanism, the rate expressions are [16]

rA→B =
k+3K1K2CACH2

(1 + K2CA + K1CH2)
2 (63)

rA→C+E =
k+4K2CA

1 + K2CA + K1CH2

(64)

Selectivity to furfuryl alcohol is thus

SA→B = rA→B
rA→B+rA→C+E

=

k+3K1K2CACH2
(1+K2CA+K1CH2

)2

k+3K1K2CACH2
(1+K2CA+K1CH2

)2
+

k+4K2CA
1+K2CA+K1CH2

=

= 1

1+
k+4(1+K2CA+K1CH2

)

k+3K1CH2

(65)

The equilibrium constant of the first step is similar to the one presented above in
Equation (33) for oxygen. In the case of hydrogen adsorption, it takes the form

K1 = Kt
1e−∆xH2,ads

/RTdcl (66)

where ∆xH2,ads corresponds to the difference between the Gibbs energy of dihydrogen
adsorption on edges and terraces. For the second term, the corresponding constant
is apparently

K2 = Kt
2e−∆xA,ads

/RTdcl (67)

From the Gibbs energy for steps 3 and 4, it follows

∆G3 = ∆GB − ∆GAads − ∆GH2,ads = ∆G3,terraces + fedges(−∆xAads − ∆xH2,ads) (68)

∆G4 = ∆G3,terraces + fedges(−∆xAads) (69)

The corresponding rate constants are therefore (with fedges ≈ 1/dcl , where the cluster
size is in nm)

k+3 = k′+3eα3(∆xA,ads
+∆xH2ads

)/RTdcl ; k+4 = k′+4eα4∆xA,ads
/RTdcl (70)

resulting subsequently in the expression for the cluster size dependent selectivity
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SA→B =
1

1 +
k′+4(1+Kt

2e
−∆xA,ads

/RTdcl CA+Kt
1e
−∆xH2,ads

/RTdcl CH2 )

k′+3Kt
1CH2

e((α4−α3)∆xA,ads
+(1−α3)∆xH2ads

)/RTdcl

(71)

As demonstrated in [16], if the adsorption terms in the denominators of Equations (61)
and (62) are neglected, the dependence of selectivity to the reactants vs. the metal cluster
size cannot be correctly accounted for. However, some simplifications of Equation (68) can
be performed to make it more tractable. The Polanyi parameters of steps 3 and 4 can be set
equal to each and, moreover, equal to 0.5, as often reported in the literature [13]. This leads
to the following expression of selectivity

SA→B =
1

1 +
k′+4

k′+3Kt
1CH2

e0.5∆xH2ads
/RTdcl +

k′+4Kt
2CA

k′+3Kt
1CH2

e(0.5∆xH2ads
−∆xA,ads

)/RTdcl +
k′+4
k′+3

e−0.5∆xH2ads
/RTdcl

(72)

which can describe selectivity in a correct way (Figure 1).
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Figure 1. Dependence of selectivity to furfuryl alcohol in transformations of furfural over Ru on silica
catalyst at 100 ◦C. Experimental data digitalized from [17].

Equation (69), although capable of an adequate description of selectivity, is over
parametrized because of too many parameters, which correlate with each other. Analysis of
the physico–chemical validity of the parameters based on available data cannot be properly
performed. Such analysis is in any case outside of the scope of the current work aimed
at presenting a general approach for deriving the rate equations of structure-sensitive
reactions with arbitrary kinetics.

6. Conclusions

A general methodology for the derivation of kinetic equations in the case of structure-
sensitive heterogeneous catalytic reactions was developed following the linear free energy
approach for elementary steps. First, the expressions for the Gibbs energy of the elementary
steps constituting the mechanism are identified considering the Gibbs energy of adsorption
rather than the Gibbs energy of formation for the catalyst and the adsorbed species. This is
followed by defining the equilibrium constants of the steps through the respective Gibbs
energy. The Gibbs energy of adsorption for surface species is calculated through the
contribution of the Gibbs energy on terraces and edges, with the fraction of edges in turn
defined as a reciprocal value of the cluster size.

Finally, the rate constants of various steps are expressed as a function of the cluster
size with the aid of the linear free energy relationship linking them with the equilibrium
constants of the corresponding steps. The resulting rate constants are directly incorporated
into the rate equations.

The methodology presented here was illustrated for the three-step generic sequence of
all linear steps as well as a multistep mechanism of ethanol oxidative dehydrogenation to
acetaldehyde, comprising several linear, nonlinear and quasi-equilibria steps. The resulting
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equations can be rather complicated, reflecting, on the other hand, the complexity of the
reaction mechanisms. For much simpler cases, like the analysis of selectivity in a parallel
reaction of different reaction order, the proposed methodology can be efficiently applied,
demonstrating very good correspondence between the experimental data on furfural
transformations used as a case study and the calculations.
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