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Abstract: The present study provides and examines an experimental and CFD simulation to predict
and accurately quantify the individual phase holdup. The experimental findings demonstrated that
the increase of solid beads has a significant influence on the (Umf), as comparatively small glass
beads particles require a low (Umf) value, which tends to increase as the diameter of the beads
increases. Besides that, the expansion ratio is proportional to the velocity of the liquid. Even though,
the relationship becomes inversely proportional to the diameter of the beads. The liquid holdup was
found to increase with increasing liquid velocity, however, the solid holdup decreased. The Eulerian–
Eulerian granular multiphase flow technique was used to predict the overall performance of the
liquid–solid fluidized beds (LSFBs). There was a good agreement between the experimental results
and the dynamic properties of liquid–solid flows obtained from the CFD simulation, which will
facilitate future simulation studies of liquid–solid fluidized beds. This work has further improved
the understanding and knowledge of CFD simulation of such a system at different parameters.
Furthermore, understanding the hydrodynamics features within the two-phase fluidization bed,
as well as knowing the specific features, is essential for good system design, enabling the systems to
perform more effectively.

Keywords: two-phase fluidization; pressure drop; phase holdups; CFD simulation

1. Introduction

Liquid and solid fluidization have received a considerable amount of attention in re-
cent years, since it has been used in a variety of industrial applications, such as granulation
in the pharmaceutical industry, chlorination in the semiconductor industry, hydrometal-
lurgy and food technology, biochemical processing, and water treatment [1,2]. (LSFBs) have
several benefits, including a high heat transfer rate system, well-mixing, a large contacting
surface area, and a high fluid/solid relative velocity [3]. Moreover, fluidization is the
process of converting solid particles into liquids by allowing liquid to flow upward. Solid
particles suspended in water have seemed to be “fluidized” [4–6]. LSFBs are essential and
effective process equipment that operate at high fluid velocities while maintaining homo-
geneous particle distribution. The flow system is usually denoted as the homogeneous
regime when the mass and heat transfer between the two phases occur with high rates and
efficiency in the system. Due to the enormous efficient mixing processes, the two-phase
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liquid–solid fluidized process, in which the liquid is used as a continuous liquid, has a
broad array of applications. It also allows for efficient mass or energy transfers [7,8].

In recent decades, many investigations explained the liquid–solid fluidized process,
however, the influence of different particle sizes experimentally and numerically was
poorly addressed in the literature, Table 1 identifies the sources of experimental and nu-
merical studies in the literature. For instance, Hussein Zbib [9] created a linked (CFD)
and a discrete element method (DEM) model to investigate fluid–solid and solid–solid
interactions in a 3D (LSFB). The Electrical Resistance Tomography (ERT) experimental
approach validated the CFD-DEM model in which 4.74 percent disparity between simula-
tions and experiments. The bed-average particle volume fraction was measured using ERT.
Aghajani et al. [10] utilized liquid–solid fluidization as a hydrometallurgical process for
heat transfer improvements in the desalination plant. Four types of particles with different
properties were tested by Wang et al. [11] in a narrow rectangular fluidized bed equipped
with a high-speed video. Calibration curves of these different particles were achieved
by correlating the grayscale of the digital images with the corresponding solids holdup.
Furthermore, in the work of Tang et al. [3], visual measurements were used to observe the
expanded fluidization behavior in liquid–solid mini-fluidized beds (MFBs). The presence
of wall effects in liquid–solid MFBs was identified and explained and found that a ratio of
the solid particle diameter to the bed diameter varied from 0.017 to 0.091; the measured
incipient/(Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Er-
gun equation. Furthermore, the ratio of the Richardson–Zaki (R–Z) exponent derived using
the R–Z correlation to that obtained by fitting with experimental data ranged from 0.92 to
0.55. Additionally, several experiments were conducted by Mandal [8] to investigate the hy-
drodynamic properties of particles in a liquid–solid fluidized bed. Factors such as particle
size, the percentage of interstitial void volume, and the temperature of the bed wall were
examined. The results show that particles in a liquid–solid packed fluidized bed are lower
(Umf) than those in a mono liquid–solid fluidized bed. In most cases, the solids bed is “fixed”
or limited within a specific device in an immobile state. When a flowing medium generates
the forces, solids are no longer fixed by mechanical constraints and are instead allowed
to move freely. Both experiments and simulations were employed by Nijssen et.al. [12] to
gain insight into the heterogeneous behavior of drinking water softening reactors. Accord-
ing to literature, (LSFB) systems are often considered homogeneous at modest velocities.
Nevertheless, local voids were observed in the experiments with calcite grains at relatively
low fluid velocities and significant heterogeneous particle–fluid patterns at higher fluid
velocities. Peng et al. [13] used an Eulerian–Eulerian two-phase model (kinetic theory of
granular flow) to study the hydrodynamic characteristics and fluidization behaviors of the
particles. CFD model was validated by comparing the experimental data and simulation
results regarding the expansion degree of low and high density. A CFD-DEM simula-
tion model was used, and its results were compared with expansion measurements and
high-speed videos and images. Many numerical approaches have simulated the flow and
hydrodynamics generation within LSFBs. Numerical analysis and modeling of fluidized
processes have significantly and effectively contributed to estimating and understanding
the complex hydrodynamics generated by two- or three-phase fluidization. CFD offers
several approaches and models through which fluidization beds are studied, modeled,
and analyzed. The most important techniques are the Eulerian–Lagrangian model, called
the discrete particles model, and the Eulerian–Eulerian model called the granular flow
model. The relationships between solid holdup (εS) and liquid holdup (εL) in a liquid–solid
fluidized bed system are represented by the expressions Equations (1)–(3) [14]:

εS + εL = 1 (1)

The solid holdup can be calculated using the following formula:

εS = Ms/ρS Ac He (2)
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where Ac represents the cross-sectional area of the column, He describes the expanded bed
height, and Ms represents the solid mass of the column.

In the absence of frictional pressure drop, the static pressure gradient (∆P) is defined as:

∆P/He = g (ρLεL + ρSεS ) (3)

Individual holdups can be calculated using Equations (1)–(3). In these equations,
the bed height is measured visually. The (Umf) of the fluidized beds is an essential hydro-
dynamic property. It is necessary to design reactors or other contacting devices based on
fluidized bed technology. That is because it represents the transition from the behavior of a
solids-packed bed to the conduct of a fluidized bed. The (Umf) is determined experimentally
by plotting the bed pressure drop against the liquid velocity. During fluidization, the pres-
sure drop across the bed would no longer change with the increase in liquid flow rate.
Thus, the (Umf) is equal to the flow rates at which a curve break occurs [15,16]. It is essential
to mention that visual observations characterize the (Umf) as either the velocity at which
the bed first begins to expand or the velocity at which every particle in the bed continually
shifts position with adjacent particles [3]. Given Equation (4), the Ergun expression is used
to calculate the (Umf).

U2
m f =

∅ dp (ρs − ρL)

1.75 ρL
g εm f

3 (4)

Previous investigations poorly investigated the influence of different particle sizes
experimentally and numerically in liquid–solid fluidized beds. Therefore, the experimental
analysis and simulation of hydrodynamics in LSFBs using CFD techniques are the main
objective of this research. Time-dependent simulations of liquid–solid two-phase flows
are carried out using commercial software, FLUENT 4.5.6 (ANSYS Academic Research &
Teaching Licenses). The effects of operating conditions and particle diameter on hydrody-
namics are examined and compared to experimental data. The goal is to create a strong
foundation for reactor simulation.

Table 1. Some of the sources of previous studies in a fluidized bed for experimental investigations
and CFD simulation.

Authors Year System Solid Material Measuring System Key Findings

1
Jack T.

Cornelissen,
et al. [17]

2007 Liquid–Solid Glass beads Liquid–solid
fluidization system

A liquid–solid fluidized bed is
simulated using a multifluid
Eulerian computational fluid
dynamics (CFD) model with
granular flow extension.

2
Md. Saifur
Rahaman,
et al. [18]

2017 Liquid–Solid Polydisperse
struvite crystals

A fluidized bed,
built of Plexiglas
with diameter
100 mm and height
1392 mm

The simulated bed expansion
behavior of struvite crystals of
various sizes was found to be
consistent with experimental
results. The six different size
groups of struvite investigated in
this study were found to be
classified according to their sizes
at steady state, with limited
intermixing between
successive layers.

3
Yupeng

Xua,
et al. [19]

2017 Gas–Solid
polyethylene

(HDPE)
particles

A small-scale
full-loop circulating
fluidized bed (CFB)

The effect of different drag laws
used in CFD simulations is
considered in this work through a
detailed and direct comparison
with experimental data from a
small-scale, full-loop circulating
fluidized bed.
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Table 1. Cont.

Authors Year System Solid Material Measuring System Key Findings

4

Lipak
Kumar
Sahoo,

et al. [20]

2021 Gas–Solid Silica-gel beads
A two-dimensional
gas–solid tapered
fluidized bed

Using an image analysis method,
the hydrodynamic behavior of
tapered beds was investigated
experimentally. The overlapping
of binary images was used to
quantify the peripheral
unfluidized region.

5
Yusuf H.

Bello,
et al. [21]

2021 Gas–Solid Silica sand
In a lab-scale
fluidized bed
reactor (FBR)

The size and number of air
distributor orifices in a lab-scale
fluidized bed reactor (FBR) are
applied to enhance
biomass conversion.

Classification of Particles for Liquid Fluidization

The principle for transformation from particulate to the aggregate performance of
fluidized beds can be established in dimensionless formula according to Gibilaro et al. [22],
represented by Equations (5) and (6).

(
3 CDDe

4(2 + De)

)0.5
− 0.4n(1− ε)0.5εn−1 × α =


+ve , particulate

0, particulate and aggregate
−ve, aggregate

(5)

α =

√
1 +

(
3De

2 + De

)
·( (1− n(1− ε))2

n2ε(1− ε) ) (6)

For the dense fluidization bed, Equation (5) gives a satisfying prediction by compar-
ing the predicted behavior and experimental results. Di-Felice [23] used Equation (5) to
construct a flow map in dimensionless form for particles fluidized by any fluid.

2. Experimental Setup

The hydrodynamics and interaction between liquid and solid phases were studied
experimentally. Furthermore, the effect of the superficial liquid velocity and solid particle
diameter on the (Umf), pressure drop, bed expansion, and individual phase holdup in
a fluidized bed column are investigated. As indicated in Figure 1, all experiments were
carried out in a two-phase fluidization bed system. Glass beads of various sizes and uniform
shapes with diameters of 0.003 m, 0.004 m, and 0.006 m and a density of 2500 kg/m3 were
used to represent solid-bed systems, with water as the liquid phase.

The scale of the experiments in this study is listed in Table 2. The fluidized column is
formed by two essential parts: the test section and the liquid distributor box, which also
support the glass beads.
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Figure 1. Schematic diagram of the experimental rig.

Table 2. The experimental data used in this investigation.

Materials dp (m) ρS (kg/m3) Initial Static Bed Height (m)

Properties of bed materials
Glass beads 0.003 2500 0.12
Glass beads 0.004 2500 0.121
Glass beads 0.006 2500 0.126

Properties of medium fluidizing
Materials µL (pa s) ρS (kg/m3) Superficial velocity (m/s)

Water at 30 ◦C 0.000891 997.15 0.0–0.1

The major component of the test unit, in which the fluidization process happens,
is a vertical cylindrical Perspex column with an inner diameter of 0.115 m and a height
of 1.7 m. The lowest part of the column has a distributor constructed of Perspex sheet
with a thickness of 0.004 m. The distributor plate was designed using the orifice theory
(Kunii) [17]. It was created to connect the two parts of the test section and support the beads
of the bed. The plate was drilled with 274 holes, each with a diameter of 2 mm, to ensure
that liquid flowed uniformly throughout the bed. Water is pumped into the test column
via a pipe in the lower part of the column by a water pump with a capacity of 0.0015 m3/s
and a maximum head of 30 m, connected to a 0.1 m3 water tank. The water flow rate
may be accurately controlled and measured using needle valve rotameters on the feed and
bypass lines. In the current study, the pressure drop in the bed was measured using five
Keller type PA 21Y/4 differential pressure transducers (KELLER AG Druckmesstechnik,
Switzerland) placed at a specific interval up the column wall. Each pressure reading was
recorded on a laptop. A pressure transducer is a novel device that converts pressure into
an electrical signal. Ordeal model UDL 100 data loggers were utilized to convert analog
signals to numerical values. The UDL 100 (Universal Design License) Model devices
convert various analog signals used in industrial applications into digital values that can
then be transmitted to a laptop. These devices have been configured on the laptop, and then
the DALi 08 software is used to store device values and configure them on the laptop.
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3. Computational Model

CFD is widely used in previous studies and process engineers to assess the flow and
performance of process equipment [17,24–27]. Momentum transfer between particles and
fluid is essential when simulating fluidized beds. Drag force and particle-phase rheology
have been demonstrated to impact bed hydrodynamics in previous simulations of liquid–
solid systems significantly. As a result, different drag force models are covered in the
following section.

3.1. Simulation Details

The simulation program ANSYS, version 2019.R1, was used in this study. The bound-
ary layer mashed the boundary of the shapes. The rest of the geometry was auto meshed
with schema called tetrahedral, triangular, and quadrilateral (QUAD) for 2D geometry
involves simulation of two-phase fluidization phenomena types, as shown in Figure 2.
The number of nodes is 73,400, and the number of elements is 72,568, with 1.35 mm.
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3.2. Governing Equations

Governing equations signify the essential values of CFD. The conservation of mass or
the continuity can be expressed as shown in Equation (7) [28,29]:

∂ρL
∂t

+
(
∇·ρ f u

)
= 0 (7)

For incompressible fluids (Newtonian), the conservation of momentum expression
can be written as the Navier–Stokes Equation (8) [29,30]:

ρL

(
∂u
∂t

+ u·∇u
)
= (−∇p) + µL∇2 + ρLg (8)

To solve the Navier–Stokes equations, it needs a perfect description of the boundary
conditions. There are several boundary conditions in fluid mechanics which are frequently
used [29].

3.3. Drag Models

The dynamic force for fluidization is generated mainly from the drag force [31].
Many experimental relationships and computer model methods were established to define
the particle–fluid drag force. These are generally known as “drag models”. Some are based
on bed pressure drop or bed expansion experiments, such as the Zaki–Richardson drag
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model [32]. Other models depend on Lattice–Boltzmann computer simulations, such as the
Hill Koch Ladd model [33]. The following Syamlal and O’Brien [34] drag is the drag model
used in this study.

The Syamlal–O’Brien drag model can be expressed as shown in Equations (9)–(13)

βpL =
3
4

εsεLρL

vt2dp
CD

(
Rep

vt

)
|u− v| (9)

CD =

0.63 +
4.8√

Rep
vt

2

(10)

vt = 0.5
(

A− 0.06Rep +

√(
0.06Rep

)2
+ 0.12Rep(2B− A) + A2

)
(11)

where A and B are a function of εf.

A = εL
4.14, B = 0.8εL

4.14, εL ≤ 0.85 (12)

A = εL
4.14 , B = εL

2.65, εL > 0.85 (13)

and particle Reynolds number (Rep) can be expressed as:

Rep = ρL uL dp/µL (14)

4. Discussion

Experiments with a fluidized bed of water–glass beads have been carried out with
varying liquid velocities and particle sizes, and the results are graphically represented.

4.1. Bed Pressure Drop and Minimum Fluidization Velocity (Umf)

Pressure drop in the fluidized bed was measured in this study using a pressure
transducer linked to Ordeal model UDL 100 data loggers, as detailed in Section 2. All of
the experiments began with the column filled with water and glass beads, which had been
raised to the necessary height. The rate of liquid flow was increased gradually. It has been
observed that the pressure drop at the bed shows two behaviors for two phases (water–
solid): The first point, due to the fluidization process, bed pressure drop was strongly
influenced by superficial water velocity, and bed pressure drop rose as superficial water
velocity increased. The second point is that once the bed has been fluidized, the pressure
drop continues to stabilize without being affected by an increase in the superficial water
velocity [19,35,36]. When fluid is forced through the glass beads bed, the beads remain static,
causing more pressure to be lost by allowing the bed particles to fluidize. The pressure
drop becomes constant because the fluid (liquid) resistance decreases as the bed fluidizes.
Figure 3 shows the relationship between pressure drop and liquid velocity for various
particle sizes.

The pressure drop increase as the diameter of glass beads increases; this is because the
pressure drops required counterbalancing the weight of the bed particles increase as the
diameter of the beads increases. Figure 4 shows the relationship between different particle
sizes and (Umf).

The (Umf) increases as the particle size increases, starting at 0.0385 m/s for granules
with a diameter of 3 mm and increasing to 0.0417 m/s, 0.061 m/s for particles with a
diameter of 4 and 6 mm, respectively. As shown in Figures 3 and 4, the pressure drop
increases as the diameter of glass beads increases; this is because the pressure drops
required to counterbalance the weight of the bed particles increases as the diameter of the
beads increases. Thus, the (Umf) increased as the diameter of the particles increased.
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4.2. Bed Expansion

The fluidized bed height to the static bed height ratio is the bed expansion ratio (R).
When it regards system sizing, knowing the expanded bed height is important [37–40].
This work determined the bed expansion ratio using visual inspection when dealing with
the two-phase flow (liquid–solid). Figure 5 shows the variation of bed expansion ratio and
liquid velocity concerning particle diameter.
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The bed remained static as the water velocity increased until it reached the (Umf).
According to the statement, as particle diameter increases, the (Umf) increases, and thus the
bed expansion ratio increases as the liquid velocity for a given particle diameter increases.
As particle diameter rose, the bed expansion ratio decreased. This is due to the high specific
weight of large-diameter particles.

4.3. Phase Holdup

In a multiphase system, the phase holdup is described as the volume fraction occupied
by the system phase considered [41–44].

4.3.1. Solid Holdup

Equation (2) was used to calculate the solid holdup values. Figure 5 shows these
results for various particle diameters.

It can be seen in this Figure that the relationship between liquid velocity and solid
holdups remained constant from fixed bed to (Umf) and then steadily decreased as the
fluidizing velocity increased. Furthermore, before (Umf), there was no numerical variation in
solid holdup for different particle diameters because solid holdup is completely dependent
on the height of bed particles. The bed expands as the superficial liquid velocity increases;
the liquid holdups increase, resulting in a decrease in the solid holdup in the bed. The solid
holdup in the beds of the particles (3 mm) is slightly higher than that of other glass beads
particles, as shown in Figure 6. Due to the buoyancy forces acting on the particles, it is
well known that relatively light particle beds can easily expand in two-phase fluidized
beds [21,45].
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4.3.2. Liquid Holdup

The values of solid holdup were calculated from Equation (1). The variation in fraction
liquid holdup and liquid velocity for various particle diameters is represented in Figure 7.

The figure shows that liquid holdup remained constant until (Umf) and increased after
(Umf) with increasing liquid velocity for all particles. Since the volume of liquid pumped
into the riser increases [46,47], this increases the liquid velocity that increases liquid volume
throughout the bed and expansion of the bed, resulting in an increase in the liquid holdup
in the bed.



ChemEngineering 2022, 6, 37 10 of 18

ChemEngineering 2022, 6, x FOR PEER REVIEW 10 of 19 
 

4.3.2. Liquid Holdup 
The values of solid holdup were calculated from Equation (1). The variation in 

fraction liquid holdup and liquid velocity for various particle diameters is represented in 
Figure 7. 

 
Figure 7. Variation liquid holdup with liquid velocity for various particle diameters. 

The figure shows that liquid holdup remained constant until (Umf) and increased 
after (Umf) with increasing liquid velocity for all particles. Since the volume of liquid 
pumped into the riser increases [46,47], this increases the liquid velocity that increases 
liquid volume throughout the bed and expansion of the bed, resulting in an increase in 
the liquid holdup in the bed. 

4.4. CFD Simulation Results 
The CFD simulations were performed under the transient model for 10 s, the time 

step size was 0.001 s and the number of time steps was 10,000. The Eulerian multiphase 
model was used to represent the two-phase fluidization bed. The liquid velocity was 
constant for all case studies with 0.16 m/s, and the glass beads’ diameters were 3 mm, 4 
mm, and 6 mm, and a constant density of 2500 kg/m3; the fluidization phenomenon 
occurs under different (Umf) as a result of the effect of drag forces applied on the glass 
beads. 

4.4.1. Particle Volume Fraction 
Figure 8 shows the particle volume fraction at a different time of the fluidization 

process for a particle diameter of 3 mm. The effect of the water flow velocity on the 
behavior of the solid particles and the phenomenon of fluidization can be observed. 

Figure 7. Variation liquid holdup with liquid velocity for various particle diameters.

4.4. CFD Simulation Results

The CFD simulations were performed under the transient model for 10 s, the time step
size was 0.001 s and the number of time steps was 10,000. The Eulerian multiphase model
was used to represent the two-phase fluidization bed. The liquid velocity was constant for
all case studies with 0.16 m/s, and the glass beads’ diameters were 3 mm, 4 mm, and 6 mm,
and a constant density of 2500 kg/m3; the fluidization phenomenon occurs under different
(Umf) as a result of the effect of drag forces applied on the glass beads.

4.4.1. Particle Volume Fraction

Figure 8 shows the particle volume fraction at a different time of the fluidization
process for a particle diameter of 3 mm. The effect of the water flow velocity on the
behavior of the solid particles and the phenomenon of fluidization can be observed.
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Since a state of equilibrium is attained between the buoyant forces induced by in-
creasing water flow and the gravitational forces that operate to keep the solid particles
stable and fixed. As the velocity of the water increases, the buoyant forces overcome the
gravitational forces, and the solid particles begin to move with the fluid and gain the same
speed and direction of flow as the fluid, the particles start to rise through the fluidization
column. Due to the impact of gravity’s direction, the solid particles were not compelled
to rise to the top, despite the physical fact that velocity reduces with increasing height.
The velocity of the particles becomes minimal, causing them to fall to the bottom, and this
process occurs regularly, resulting in the repetition of the process of rising and falling the
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solid particles continuously with the flow of water. Figures 9 and 10 show the volume
fraction of glass particles of diameters 4 and 6 mm, respectively. The effect of particles
diameter is observable as the diameter of the particles increases the volume expansion
decreases, so there is less volume expansion involved with 6 mm beads particles [48,49].
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The performance of the proposed CFD mathematical model was validated by com-
paring with the experimental data and the CFD simulation results in terms of the solid
holdup. Figures 11–13 present variations of the solid holdup with superficial liquid ve-
locity for particle diameters 3, 4, and 6 mm, respectively. In Figures 11 and 12 when the
superficial liquid velocity increased from 0.032 m/s for the particle diameters 3 and 4 mm,
the solid holdup decreased, while in Figure 13 when the superficial liquid velocity in-
creased from 0.055 m/s for the particle diameter 6 mm, the solid holdup decreased. As can
be seen from Figures 11–13, the CFD simulation results are in good agreement with the
experimental data.
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4.4.2. Particle Velocity

Figure 14 shows the velocity contours of particles of 3 mm diameter. It is noteworthy
that the velocity of the particle varied with time.
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Figure 14. The velocity contour of particles with a diameter of 3 mm with time.

As shown in Figure 14, at a time of 0.1 s, the highest particle velocity occurs as a
high-pressure drop. This is because the particles just started to be in dynamic conditions.
After all, the liquid velocity reaches the (Umf). Bed heights increase as particles move
upward with the flow direction until it reaches a certain height. Then the particles move
down and return upward again until the bed height rests at a certain height. Figures 15
and 16 show the velocity contours of particles at diameters 4 mm and 6 mm, respectively.
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Figure 16. The velocity contour of particles with a diameter of 6 mm with time.

The effect of particle diameter is observed in Figure 17. The bed expansion affects
the particle’s diameter. Therefore the particles with a diameter of 3 mm have the most
significant bed expansion than other diameters. Furthermore, it can be noted that the
particles with a diameter of 4 mm are more with the fluidization process. Figure 17 shows
the velocity vectors of particles with 4 mm. It can be seen that the velocity vectors give a
good and understanding explanation for particles behaving with time.

The particles were subjected to the drag force and acted like a liquid flow with an
increase in the drag force. The gravity forces the particles to move upward at the first of
the fluidization phenomenon until the liquid velocity decreases as its direction is opposite
to gravity. Then the particles move downward, many collisions occur between particles as
they interact. Thus, eddy formation considers a consequence of the fluidization process,
which leads to an enhancement mixing process [49,50].
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5. Conclusions

The hydrodynamic properties of a two-phase fluidized bed with different solid particle
sizes were investigated through experiments. The key findings from the experimental
results are summarized in the following:

The pressure drop across the bed increases as the liquid velocity increases before
reaching the (Umf). After fluidization, the pressure drop is generally unaffected by the rise
in water velocity and remains stable.

The particle size has a significant impact on the pressure drop and (Umf); as the particle
size increases, thus increases the pressure drop and the (Umf).

The expansion ratio has a significant relation with liquid velocity and an inverse
relationship with particle size. Therefore, the liquid holdup maintains a direct linear form
with liquid velocity.

Furthermore, increasing the liquid velocity resulted in a higher liquid holdup.
The numerical solution provides a good prediction of how particles and fluid behave

during the fluidization process and facilitates the development of a good fluidization
column design.
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Nomenclature

Symbols Used
AC m2 Cross-sectional area of the column
CD – Drag reduction
CFD – Computational fluid dynamics
dp m Particle diameter
De – Density number, (ρf/ρs)
g m/s2 Gravitational acceleration
He m Expanded bed height
Ms kg Mass of solid phase
N – Richardson and Zaki exponent
∆P kpa Pressure drop throughout the bed
t s Time
uL m/s Liquid velocity
umf m/s Minimum fluidization velocity
ut m/s Terminal velocity
Greek Letters
βρf – Bed expansion ratio
ρL kg/m3 Density of liquid
ρS kg/m3 Density of solid
ε – Holdup
εL – Liquid holdup
εs – Solid holdup
µL Ns/m2 Liquid viscosity
Ø – Sphericity of the solid particle
A – Volume fraction in the liquid–nanoparticles suspension
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