

1 Supplementary Materials

2 Circumventing Unintended Impacts of Waste N95

3 Facemask Generated during the COVID-19

4 Pandemic: A Conceptual Design Approach

5 Economic assumptions, CAPEX and OPEX estimation approaches

1	1			
I	P	٦	۱	
1	ι	ų	,	
1	۰	-	٢.	

Table S1. Economic assumptions employed in the study.

Parameters	Value	Remark
Economic indicator	Net present value	
Annual operating hours	7200 h	300 days per year
Project life	30 y	
Discount webs	10% for real term	
Discount rate	DCF analysis	
Equity	100%	
Income tax rate	30%	Income tax rate for the USA as of 2019
Depreciation	Straight line	
Salvage value	0	
Morling appital	5% of fixed capital	
working capital	investment,	
Cost year	2020	
Selling price ethanol	US\$0.735 per kg	[1] (average selling prices before COVID-19 pandemic)
Selling price of HTL oil product	US\$0.92 per kg	 [1] (average selling prices before COVID-19 pandemic, pure gasoline is US\$0.967)
Selling price of low pressure steam	US\$ 5.83 per ton	[2]
Chemical Engineering Plant Cost Index (CEPCI), year 2020	607.5	

7

Table S2. Capital cost components employed in TCI (CAPEX) determination [3,4].

Cost component	Estimation approach
Warehouse (W)	4% of SIC
Site Development (SD)	9% of SIC
Additional Piping (AP)	4.5% of SIC
Total direct cost (TDC)	AP+SD+W+TEIC
Prorateable Expenses (PE)	10% of TDC
Field Expenses (FE)	10% of TDC
Home Office & Construction (HC)	20% of TDC
Project Contingency (PC)	10% of TDC
Other Costs (O)	10% of TDC
Total Indirect Cost (TIC)	
Fixed Capital Investment (FCI)	TDC+TIC
Location Factor (plant assumed to be sited in USA)	1
Working Capital (WC)	5% of sum of FCI
Total Capital Investment (TCI)	Sum of FCI+WC

8

chemengineering

9 10 **Table S3.** Operating cost components employed in TOC (OPEX) determination (all costs used are available in the associated reference sources).

Cost component	Estimation approach	Some notes	Remarks	Reference
Calarias for	**	$N_{W} = \left(6.29 + 31.7 p^{2} + 0.23n\right)^{0.5}$		
labour and supervision (LS)	<i>N</i> ^w ×average individual salary	N_w denotes the number of workers, p is the number of processing steps involving solids and n is the number of other processing steps.	Workers paid USD12.29 per h	[5]
Labour burden (LB)	90% of total salaries	Additional labour costs in addition to the salary.	It may include costs such as retirement benefits, health benefits etc.	[6]
Maintenance (M)	3% of purchased equipment cost	Cost necessary to maintain the plant for sustained productivity		[7]
Property insurance (PI) Fixed	0.7% of Sum of FCI	Cost incurred to insure the plant		[3,4]
operating cost (FOC)	PI+M+LB+LS			
Raw materials	Based on unit market prices and mass consumed	Cost of feedstock, chemical, organic and inorganic inputs		[8]
Utilities	Based on unit market prices and energy and mass consumed	Cost of high pressure steam and electricity	Electricity cost: USD0.11 per kwh, High pressure steam: USD6.71 per ton	[1,2,9]
	Based on unit			
Waste disposal	market prices and energy and mass consumed	Additional cost incurred in facilitating the disposal of any wastewater stream	USD1.31 per ton	[9]
Variable operating cost (VOC) Total				
operating Cost (TOC)	FOC + VOC			

Table S4. Data employed in developing the cash flow table.

Waste N95 facemask conversion case	Fixed capital investm ent (US\$)	Worki ng capital (US\$)	Annual sales (US\$)	Operati ng cost (US\$)
Waste N95 facemask conversion to the heat energy and	7239530.	361976	8330841.	17/1/20
electrical power	2	.5	3	1741429
Waste N95 facemask conversion to an energy dense (gasoline-	4079630.	203981	1138201	2749306.
like) oil product	6	.5	2.1	9
Waste N95 facemask conversion to ethanol via syngas	8355826.	417791	7615485.	1339619
fermentation	1	.3	8	2.7

14

 Table S5. Thermodynamic model inputs and major reaction equations.

ASPEN reactor models (RYIELD reactor for de-volatilisation: splitting the feed in elements as determined by ultimate analysis results in Table 1 and RGIBBS react for approximating gasification reaction steps; i.e. $C + O_2 \rightarrow CO_2$, $C + 0.5O_2 \rightarrow CO$ $+ CO_2 \rightarrow 2CO$, $C + H_2O \rightarrow CO_2 + H_2$, $C + H_2O \rightarrow CO + H_2$ Pressure: 1.013 bar Hydrate check: rigorous Temperature: 1000 °C Phase equilibrium and chemical equilibrium assumed Products: CO ₂ , CO and H ₂ Cogeneration system Heat generationFuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	
Gasification processelements as determined by ultimate analysis results in Table 1 and RGIBBS reaction for approximating gasification reaction steps; i.e. $C + O_2 \rightarrow CO_2$, $C + 0.5O_2 \rightarrow CO_2$ $+ CO_2 \rightarrow 2CO$, $C + H_2O \rightarrow CO_2 + H_2$, $C + H_2O \rightarrow CO + H_2$ Pressure: 1.013 bar Hydrate check: rigorous Temperature: 1000 °C Phase equilibrium and chemical equilibrium assumed Products: CO ₂ , CO and H ₂ Cogeneration system Heat generationFuel (syngas)combustion: RSTOIC reactor model with reaction equations impose as follows;	nto
Gasincation processfor approximating gasification reaction steps; i.e. $C + O_2 \rightarrow CO_2$, $C + 0.5O_2 \rightarrow CO_2$ $+ CO_2 \rightarrow 2CO$, $C + H_2O \rightarrow CO_2 + H_2$, $C + H_2O \rightarrow CO + H_2$ Pressure: 1.013 barHydrate check: rigorousTemperature: 1000 °CPhase equilibrium and chemical equilibrium assumedProducts: CO ₂ , CO and H ₂ Cogeneration systemHeat generationFuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	or
$+ CO_2 \rightarrow 2CO, C + H_2O \rightarrow CO_2 + H_2, C + H_2O \rightarrow CO + H_2$ $Pressure: 1.013 bar$ $Hydrate check: rigorous$ $Temperature: 1000 °C$ $Phase equilibrium and chemical equilibrium assumed$ $Products: CO_2, CO and H_2$ $Fuel (syngas) combustion: RSTOIC reactor model with reaction equations imposed as follows;$, C
Pressure: 1.013 bar Hydrate check: rigorous Temperature: 1000 °C Phase equilibrium and chemical equilibrium assumed Products: CO2, CO and H2 Fuel (syngas)combustion: RSTOIC reactor model with reaction equations impose as follows;	
Hydrate check: rigorous Temperature: 1000 °C Phase equilibrium and chemical equilibrium assumed Products: CO2, CO and H2 Cogeneration system Heat generation Fuel (syngas)combustion: RSTOIC reactor model with reaction equations imposed as follows;	
Temperature: 1000 °C Phase equilibrium and chemical equilibrium assumed Products: CO ₂ , CO and H ₂ <u>Cogeneration system</u> Heat generation Fuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	
Phase equilibrium and chemical equilibrium assumed Products: CO ₂ , CO and H ₂ Cogeneration system Heat generation Fuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	
Products: CO2, CO and H2 Cogeneration system Heat generation Fuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	
Cogeneration system Heat generation Fuel (syngas)combustion: RSTOIC reactor model with reaction equations impos as follows;	
Heat generation Heat (syngas) combustion: KSTOIC reactor model with reaction equations impos as follows;	ad
as follows,	ea
$2CO + O_2 \rightarrow 2CO_2$; fractional conversion of CO: 1	
$2H_2 + \Omega_2 \rightarrow 2H_2\Omega$; fractional conversion of H ₂ : 1	
Valid phases: Vapor-Liquid	
Temperature: 1000 °C	
Pressure: 1.013 bar	
High pressure pump Pressure: 100 bar	
for water supply Flash option: liquid only	
Pump efficiency: 0.9	
Heater for boiler Operating at a pressure: 100 bar. Heat supplied from the combustion reactor	
Turbines Method used : Isentropic using ASME method	
Discharge pressure: 25 bar (turbine 1), 1.013 bar (turbine 2).	
Isentropic efficiency: 1	
Valid phases: Vapor-Liquid	
Fermentation Temperature: 37 °C	
Pressure: 1.013 bar	
Reactor model: RSTOIC	
Reactions [10]	
$4CO + 2H_2O \rightarrow CH_3COOH + 2CO_2$, fractional conversion of CO: 0.9	
$2CO_2 + 4H_2 \rightarrow CH_3COOH + 2H_2O$, fractional conversion of H ₂ : 0.7	
$6CO + 3H_2O \rightarrow C_2H_5OH + 4CO_2$, fractional conversion of CO: 0.9	
$2CO_2 + 6H_2 \rightarrow C_2H_5OH + 3H_2O$, fractional conversion of H ₂ : 0.7	
First distillation	
concentration of Number of stages: 10	
ethanol in the	
distillate 83.5 wt %)	
Condenser type: Total	
Calculation type: Equilibrium type	
Pressure in the column: 1.013 bar	
Valid phases: Vapor-liquid	
Reflux ratio: 1 (mole basis)	
Boilup ratio: 1 (mole basis)	
Second distillation	
column	
(concentration of Number of stages: 10	
ethanol in the	
uisiiiaie 07.4 Wi. %) Condenser tyne: Total	
Calculation type: Fourilibrium type	
Pressure in the column: 1.013 bar	

Valid phases: Vapor-liquid Distillate rate: 1246.7 kg/h (mass basis) Boilup ratio: 1 (mole basis)

Hydrothermal liquefaction reactor

Temperature: 425 °C

Pressure: 230 bar Reactor model: RGIBBS

Valid phases: Vapor-liquid

ASPEN models (RYIELD reactor for de-volatilisation: splitting the feed into elements as determined by ultimate analysis results in Table 1 and RGIBBS reactor for approximating complex polymerisation reactions i.e.

15 References

- Globalpetrolprices, Retail Energy Price Data. 2020. Available online: https://www.globalpetrolprices.com/
 (accessed on 10 May 2020).
- TLV, Calculator: Steam Unit Cost. 2020. Available online: <u>https://www.tlv.com/global/TI/calculator/steam-unit-cost.html</u>? (accessed on 10 July 2020).
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.;
 et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid
 Pretreatment and Enzymatic Hydrolysis of Corn Stover: NREL Technical Report: NREL/TP-5100-47764; National
 Renewable Energy Laboratory: Golden, CO, USA, 2011.
- van Zyl, M. Valorisation of Bio-aromatics from Pulp Mill Residues and Commercial Forest Species in South
 Africa. Master's Thesis, Stellenbosch University Stellenbosch, *Stellenbosch*, South Africa, 2017.
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaewitz, J.A.; Bhattacharyya, D. Analysis, Synthesis, and Design of
 Chemical Processes; Prentice-Hall: Upper Saddle River, NJ, USA, 2012.
- TDT, Fourth Quarter 2007 Guide to Labor Burden. Texas department of transportation: 2007. Available online:
 ftp.dot.state.tx.us/pub/txdot-info/cst/tips/CST_TIPS_07_4QTR_LaborBurden.pdf (accessed on 10 June 2020)
- 31 7. Okoro, O.V.; Faloye, F.D. Comparative Assessment of Thermo-Syngas Fermentative and Liquefaction
 32 Technologies as Waste Plastics Repurposing Strategies. *AgriEngineering* 2020, *2*, 378–392.
- Benevenuti, C.; Botelho, A.; Ribeiro, R.; Branco, M.; Pereira, A.; Vieira, C.A.; Ferreira, T.; Amaral, P.
 Experimental Design to Improve Cell Growth and Ethanol Production in Syngas Fermentation by
 Clostridium carboxidivorans. *Catalysts* 2020, 10, 59.
- BigFishenvironmental, Basic Waste Water Treatment Cost. Available online: https://www.mi wea.org/docs/The%20cost%200f%20Biosolids.pdf (accessed on 10 May 2020).
- Phillips, J.R.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L. Biological production of ethanol from coal synthesis
 gas. *Appl. Biochem. Biotechnol.* 1993, 39, 559-571. doi:10.1007/BF02919018.

40