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Abstract: In this article, the optimization of a realistic oil and gas separation plant has been studied.
Using Latin Hypercube Sampling (LHS) and rigorous process simulations, surrogate models
using Kriging have been established for selected model responses. The surrogate models are used
in combination with an evolutionary algorithm for optimizing the operating profit, mainly by maximizing
the recoverable oil production. A total of 10 variables representing pressure and temperature at various
key places in the separation plant are optimized to maximize the operational profit. The optimization
is bounded in the variables and a constraint function is included to ensure that the optimal solution
allows export of oil with a Reid Vapor Pressure (RVP) < 12 psia. The main finding is that, while a high
pressure is preferred in the first separation stage, apparently a unique optimal setting for the pressure
in downstream separators does not appear to exist. In the second stage separator, apparently different,
yet more or less equally optimal, settings are revealed. In the third and final separation stage
a correlation between the separator pressure and the applied inlet temperature exists, where different
combinations of pressure and temperature yields equally optimal results.

Keywords: oil and gas separation plant; surface facility; process simulation; production optimization;
evolutionary algorithms; surrogate modeling

1. Introduction

Separation of hydrocarbon reservoir fluids into oil, gas, and water prior to further transport
and downstream processing and refining is performed in surface facilities where the multiphase fluids
are passed through a number of separators, in which the pressure is gradually decreased to a level
where the final oil product is stabilized to a certain degree. This is normally specified as a maximum
allowed True Vapor Pressure (TVP) or Reid Vapor Pressure (RVP) value. The surface separation
ensures that transportation via pipeline can commence with the crude in the liquid single phase
state, without flashing. Further, when reaching the downstream refining facilities, the vapor losses
are minimized. Some flashing will occur, and this may provide fuel gas for the refining facilities.
However, excessive flashing will occur, if the crude has not been properly stabilized upstream
and eventually this may lead to increased flaring, to the harm of the environment.

Depending on a number of parameters such as reservoir fluid inlet pressure, ease of separation
due to fluid properties such as density, viscosity etc. and surface facilities space constraints—often
experienced on off-shore facilities—the number of separation stages is normally set between 2 to 4 [1].
The first stage pressure is normally set as high as possible without limiting the flow from the reservoir
due to back pressure. This minimizes the power requirements for compressing the flash gas for export.
The final separation stage pressure is normally set low enough to meet TVP/RVP specifications,
or set at stock tank conditions. The intermediate stage pressure(s) are then set in-between, often
with consideration to the gas compression system specification and performance.

ChemEngineering 2020, 4, 11; doi:10.3390/chemengineering4010011 www.mdpi.com/journal/chemengineering

http://www.mdpi.com/journal/chemengineering
http://www.mdpi.com
https://orcid.org/0000-0003-0475-323X
http://www.mdpi.com/2305-7084/4/1/11?type=check_update&version=1
http://dx.doi.org/10.3390/chemengineering4010011
http://www.mdpi.com/journal/chemengineering


ChemEngineering 2020, 4, 11 2 of 21

The challenge is to specify the operating conditions for the separation train which maximizes
the profit, which is normally dominated by the export quantity of crude oil [1]. Having a relatively
high pressure up to the final separation stage will result in a high quantity of methane (C1)/ethane
(C2) being dissolved. These light components flash off in the final separation stage, also attracting
some of the valuable middle propane (C3)–pentanes (C5) components. On the other hand, if pressure
is too low, the C1–C2 is already flashed off before the final separation stage, but when doing so, some
of the C3–C5 may have been lost as well [2]. From this notion, it seems as though setting the pressure
just right will preserve as much of the middle components in the crude, while the content of C1
and C2 is low enough when the crude leaves the final separation stage to meet the crude export
specifications in terms of RVP/TVP. Besides maximizing the crude production, operating conditions
may be optimized in order to reduce the Capital Expenditure (CAPEX), in case of a new design, or
to stay within the design capacity of the existing equipment, in case of a plant already in operation.

The complexity in terms of process plant configuration and number of controllable variables
is increased with a compression system on top of the separation train. The compression system
is responsible for collecting and pressurizing the gas liberated in each of the separation stages,
usually a compressor for each stage. The gas pressure is increased enough to allow commingling
with the gas liberated in the previous/upstream separation stage. The gas from the first separation
stage commingled with gas from all the downstream stages may or may not need further compression.
This depends on the operating pressure of the first stage separator, the requirements for gas export pressure,
etc. For each compressor the gas is often cooled and any liquid condensed is collected. These condensate
streams from compressor suction scrubbers are normally routed back into the separation train.

The selection of separator pressure for optimum stabilized crude production has been the subject
of numerous studies. Campbell and Whinery [3] developed a correlation for the optimal second
stage pressure in a three stage separation train with the relative molecular weight of the hydrocarbon
mixture and a correlating parameter given as a function of C1–C3 content and molecular weight.
In a more recent study, Al-Jawad and Hassan [4,5] developed correlations for separation trains with 2–5
stages, and the correlations provide optimal separator pressure for all separators, except the final stage.
The required inputs are separator temperatures, methane and impurity content, and upstream separator
pressures. Ling et al. [6] investigated the optimum separator pressures assuming constant temperature
and well fluid composition for two, three, and four stage separation by successive optimization from
the first to last separation stage. Bahadori et al. [7] also made an optimization of separator pressure
for a four stage separation train using a commercial process simulator for the flash calculations.
Unfortunately, details on the optimization procedure was not provided. Al-Farhan and Ayala [8]
trained an Artificial Neural Network (ANN) for a three stage separation train in order to predict
optimal second stage separator pressure. First stage pressure as well as fluid composition was varied,
providing a exhaustive number of data sets.

Some recent studies employ optimization methods by coupling a commercial process simulator
to an optimization routine. Ghaedi et al. [2] coupled a genetic algorithm with a commercial process
simulator in order to optimize the crude oil production in a four stage separation train for both
a crude oil and a gas condensate well stream, respectively. By optimizing the pressure in the first
three separators, it was found that the oil production could be increased by approximately 2% and 8%,
for crude and gas condensate, respectively. Motie et al. [9] made a comprehensive study investigating
the optimum separator pressure in a multistage separation train, studying the effect of the number
of stages, both in terms of operating conditions, but also in terms of an NPV analysis in order
to investigate to which extent the added cost of additional equipment for additional separation
stages can be justified. The optimization of separator pressures was carried out by means of a
genetic algorithm.

Common for [2–9] is the lack of a compression system providing condensate recycle streams
i.e., these studies assume a simple straight-through process with the number of controllable variables
normally not exceeding 2 to 5.
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Kim et al. [1] used a commercial process simulator coupled to an evolutionary algorithm (CMA-ES)
in order to optimize separator pressure in both three and four stage separation both with and without
condensate recycle streams from the compression system included. When the condensate recycles
from the compression system are included, a total of 10 variables are adjusted. The optimization
is constrained by a maximum allowed RVP and the objective function is a profit function being maximized.

Andreasen et al. [10] studied a complete oil and gas separation plant with three separation stages,
a compression system, as well as hydrocarbon dew point control (cold process) including condensate
recycles. Process optimization in terms of minimizing gas compression system power consumption
was conducted using constrained optimization using the SLSQP algorithm. Optimization was done
on a surrogate model derived by multiple linear regression developed using a commercial process
simulator, Design and Analysis of Computer Experiments (DACE) and response surface methodology.

In this paper, optimal operating conditions are investigated for a realistic and complex oil and gas
separation plant with: multiple separation stages, a compression system for compressing the flash
gas from all separators including condensate recycles, and a cold process for export gas hydrocarbon
dew point control. By representing the separation plant with a process simulation model, the means
to achieve optimal operating conditions i.e., maximizing the profit, is investigated. An elaborate
study taking the full plant complexity into account when studying not just optimal separation stage
pressures, but plant-wide operating conditions in general, will contribute to the state-of-art technology.

2. Methodology

2.1. System Description

The process flow sheet forming the basis for the studies presented in the present paper is depicted
in Figure 1. In the following, the process configuration is elaborated. The well fluid is routed via an inlet
heat exchanger, 20-HA-01, to the first stage separator, 20-VA-01, in which oil and gas is separated.
The oil is routed via a level control valve and inter-stage heater, 20-HA-02, to the second stage separator,
20-VA-02, operated at a lower pressure. In the separator, oil and gas is separated. The oil is routed via
a level control valve and the second inter-stage heater, 20-HA-03, to the third (final) separation stage.
The separated oil is routed via a crude cooler, 21-HA-01, to the oil export pump, 21-PA-01.

The flash gas from the third stage separator is routed via the LP (3rd stage) compressor
suction cooler, 23-HA-03, to the LP compressor suction scrubber, 23-VG-03. Condensed liquid
is pumped by the condensate recycle pump, 23-PA-01, and discharged upstream to the third
stage separator and second inter-stage heater. The gas from the scrubber is compressed in the LP
compressor, 23-KA-03, and the compressed gas is commingled with the flash gas from the second
stage separator, 20-VA-02. The commingled gas is cooled in the MP compressor suction cooler,
23-HA-02, and routed to the MP (2nd stage) compressor suction scrubber, 23-VG-02, where condensed
liquid is knocked out and commingled with the liquid from the second stage separator as well
as condensate from the condensate recycle pump, 23-PA-01. The gas from the MP compressor suction
scrubber is compressed in the MP compressor, 23-KA-02, and commingled with the gas from the first
stage separator, 20-VA-01. The commingled gas is further commingled with condensate from the LT
knock-out drum, 25-VG-01 (part of the dew point control unit), before being cooled in the HP (1st stage)
compressor suction cooler, 23-HA-01, and with subsequent condensate knock-out in the HP compressor
suction scrubber, 23-VG-01.
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Figure 1. Processflow diagram implemented in the process simulator flow sheet.
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The compressed gas is cooled in the dehydration inlet cooler, 24-HA-01, and condensed liquid
is collected in the dehydration inlet scrubber, 24-VG-01. The gas is dehydrated in the glycol contactor,
24-VB-01. Dry gas is used as fuel gas. The dehydrated gas is further processed in the dew point control
unit, consisting of heat exchangers 25-HA-01 and 25-HA-02. The former is used for heat recovery
with cross exchange with the dew point controlled dry gas, and 25-HA-02 is for simplicity assumed
to be cooled by mechanical refrigeration. Typical alternatives employed especially in off-shore oil
and gas facilities includes both Joule–Thomson (J-T) cooling using a simple valve, and sometimes
a turbo-expander/re-compressor on a common shaft for deeper Natural Gas Liquid (NGL) recovery,
and severe hydrocarbon dew point suppression. In the present study, a refrigeration process is assumed.
The cooled gas is routed to the LT knock-out drum, 25-VG-01, where condensed liquid is collected
and routed to the HP compressor suction cooler. The cold dew point controlled gas is used for cooling
of the water dry gas in the heat exchanger 25-HA-01 before being further pressurized in the export
compressor 27-KA-01. Before leaving the facilities, the gas is cooled in the export gas cooler, 27-HA-01.

2.2. Fluid Description

The reservoir fluid investigated in the present study has been adapted from [7] and the composition
and fluid characterization in terms of hypotheticals/pseudo-components are shown in Table 1.

Table 1. Wellfluid composition and hypothetical characterization for the investigated well fluid [7].

Pseudo-Component
Component Mole Fraction (%) Molecular Weight (kg/kmole) Specific Gravity (–)

H2O 0.0
N2 0.0

CO2 1.5870
CH4 52.51
C2H6 6.24
C3H8 4.23

i-C4H10 0.855
n-C4H10 2.213
i-C5H12 1.1240
n-C5H12 1.271
n-C5H12 2.2890

C7+∗-CUT1 0.8501 108.47 0.7411
C7+∗-CUT2 1.2802 120.4 0.755
C7+∗-CUT3 1.6603 133.63 0.7695
C7+∗-CUT4 6.5311 164.79 0.799
C7+∗-CUT5 6.3311 215.94 0.8387
C7+∗-CUT6 4.9618 274.34 0.8754
C7+∗-CUT7 2.9105 334.92 0.90731
C7+∗-CUT8 3.0505 412.79 0.9575

The phase envelope of the fluid is depicted in Figure 2. The cricondentherm is 469 ◦C, and the
cricondenbar is 289.1 barg. The GOR is 200 Sm3/Sm3.

2.3. Simulation Setup

All process simulations were carried out using the Aspen HYSYS ver. 10 (AspenTech, Bedford,
MA, USA) process simulator. The process flow diagram shown in Figure 1 is modeled in the process
simulation flow sheet. The fluid was described using the Peng–Robinson equation of state [11],
and liquid density was estimated using the Corresponding States Liquid Density (COSTALD)
method [12]. The process simulation file is included in the Supplementary Materials.
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Figure 2. Phase envelopes for the applied well fluid.

A common simulation case was setup with a standard setting of parameters as displayed in Table 2.
Further, assumed bounds for the variables are also included and shown in the table.

Table 2. Processsimulation parameter settings for base case simulations. The gas export pressure
was set to 188 barg for all simulations.

Bounds

Parameters Unit Base Case Low High

Profit ($/day) 6,307,920 – –
Oil (m3/d) 15,905 – –

Power (kW) 12,019 – –
RVP (psia) 10.08 – –
TSep1 ( ◦C) 70 50 70
PSep1 (barg) 32 11 32
PSep2 (barg) 8 2.5 10
TSep3 ( ◦C) 65 40 75
PSep3 (barg) 1.5 0.5 2

TScrub1 ( ◦C) 32 25 40
TScrub2 ( ◦C) 32 25 40
TScrub3 ( ◦C) 32 25 40
PComp1 (barg) 90 60 90
TRefrig ( ◦C) 10 −5 28

Along with parameter settings, key process simulation output is also included i.e., calculated
operating profit, oil export rate, power, and oil export RVP. In the following, when referring to
RVP, it is implicitly assumed that it is at a temperature of 37.8 ◦C. The parameter settings were set
with the following considerations in mind: The 1st stage separator (20-VA-01) pressure was set as
high as possible in order to reduce compression cost (assuming that the flowing wellhead pressure
was higher), the 3rd stage separator (20-VA-03) pressure was set to 1.5 barg (arbitrary), the 2nd
stage separator (20-VA-02) was set in order to have an equal pressure ratio between 1st to 2nd stage
and 2nd to 3rd. The pressure after the HP/1st stage compressor (23-KA-01) was set to 90 barg, in order
to provide a reasonable high pressure ratio. The remaining parameters were arbitrarily set. The bounds
applied to the variables in the present study are based on offshore facilities and practical considerations
for e.g., cooling a medium system (assuming North Sea conditions). For such facilities, the lower
cooling medium temperature is limited by the ambient seawater temperature.

An internal calculation was setup in the process simulation, whereby the total power
was summarized, taking both direct process consumers into account as well as indirect consumers (not
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modeled in the flow sheet) such as cooling medium pumps, sea water lift pumps for cooling medium
cooling and heating medium pumps (if required). In order to calculate the required cooling medium
flow and related pumping power, a Cooling Medium (CM) duty balance was made by summing up all
the individual cooling duties. Further, a CM density of 1000 kg/m3, a temperature rise ∆ T = 20 ◦C,
and a specific heat capacity of 3.8 kJ/kg was assumed. A similar approach was made for the HM
balance, but with a slightly higher heat capacity of 3.9 kJ/kg. The exchangers 20-HA-01 and 20-HA-03
can function as either coolers or heaters, depending on the specified variables.

For seawater, the assumed heat capacity was 4.0 kJ/kg and ∆ T = 10 ◦C was assumed and the
duty was equated to the CM duty. Utility pumping power was based on a pump efficiency of 75%
and a pump head of 55 m for CM and HM pumps and 100 m for SW lift pumps. The power required
for refrigerant compression was assumed to be 25% of the refrigeration cooling duty. This corresponds
roughly to an evaporator temperature of −5 ◦C and a condenser temperature of 30–35 ◦C using
propane in a single stage refrigeration process [13].

Based on the calculated total power consumption of main process and utility consumers,
the corresponding amount of fuel gas needed for fueling a gas turbine power generator was calculated
based on the fuel gas LHV (downstream glycol contactor 24-VB-01) and an assumed total electrical
efficiency of ε = 32%. The fuel gas flow of the corresponding stream was automatically adjusted
in order to reflect loss of revenue due to reduced gas export flow.

For the main heat exchanger, modeling details are summarized in Table 3. All pumps
and compressors have been specified with an adiabatic and polytropic efficiency of 75%, respectively.

Table 3. Applied modeling details for unit operations. For 20-HA-02 the duty is assumed to be zero
i.e., no inter-stage heating applied between first and second separation stage. A fixed temperature
is applied for the discharge of the dehydration inlet cooler, 24-HA-01, of 30 ◦C.

∆P (bar)

20-HA-01 0.5
20-HA-03 0.5
21-HA-01 0.5
23-HA-01 0.3
23-HA-02 1.0
23-HA-03 1.0
24-HA-01 1.0
25-HA-01 0.5
25-HA-02 0.5
27-HA-01 0.0

2.4. Sampling and Surrogate Modeling

A surrogate model of the complex process simulation model was constructed by making
a sampling plan, where the process simulation input parameters were varied, running the process
simulation model for each combination of variables and recording the output. Using the sampling
with the recorded output, a surrogate model was constructed.

An optimized Latin-Hypercube sampling plan [14,15] was generated by the pyKriging
package [16] for Python. The sampling plan is available in the supplementary material. It is suggested
that for up to 10 variables, a sampling size of 10–15 times the number of variables should suffice [17,18].
In the present study, the 10 variables are sampled by 200 unique combinations of the variables.
Appropriate sampling of the parameter space is important in order to obtain a good quality
of the surrogate model trained to the responses of the sampling plan [19].

An automated process of running all the computer experiments defined by the sampling plan
was made by combining the process simulator with Python (programming language) via COM
(Microsoft Component Object Model) [20]. A black-box wrapper was made in Python, exposing the process
simulation as a simple callable object/function, taking the 10 variables as input, and providing the desired
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output when the simulation has converged. See implementation schematic in Figure 3. A similar
black-box approach has been used by others [1,21,22] using either VBA or Matlab. For each sample
in the sampling plan, a corresponding simulation is made and the results recorded. Convergence
is checked both for the tear streams (recycle operations), the adjuster operation (adjusting fuels gas
extracted, based on power consumption), and by an overall mass balance check. In case convergence
is not obtained, or if the simulation fails in other ways, the tear streams are reset (mass flow set
to a predefined low value) in an attempt to obtain a converged simulation. If this also fails, the current
simulation case is closed, and a fresh start is made from the base case simulation.

Figure 3. Calculationflow for Latin-Hypercube sampling using the process simulation.

The sampling plan and associated output generated by the process simulation is used to train
a Kriging model [23–25] using the pyKriging package [16,26,27]. See also [22,28,29] for more information
about Kriging in chemical engineering applications. Kriging models were trained for the responses
of interest i.e., the objective function (profit) and the constraint function (RVP), but also for total
power and crude oil recoverable/export flow. The Kriging models for the objective function
and the constraint function was then used with the optimization algorithms in order to obtain optimal
operating conditions.

All implementations, calculations, optimization, data handling/analysis, and representation
was performed in Python 2.7 with the software stack of NumPy [30,31], SciPy [32], and Matplotlib [33].

2.5. Optimization Methods

The optimization objective can be formulated in many different ways. The target can be to maximize
oil/condensate production [2,6–8], minimize power consumption [10], maximize profit (sales
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subtracted OPEX) [1,34], etc. Further, the variables are subject to bounds, either external, such as minimum
flowing wellhead pressure (FWHP), flowing wellhead temperature (FWHT), or practical/design limits on
equipment such as cooling/heating medium design. Finally, the process may be subject to a manifold
of constraints [10,35] such as export specifications for crude oil, usually RVP/TVP [1,10], but also
Basic Sediment and Water (BS&W), salt content, etc., and gas export requirements such as max. dew
point, combustion quality (HHV, Wobbe Index, and specific gravity) [10], minimum requirements
to export pressure(s), and restrictions on compressor performance (max head, discharge temperature,
etc.). Taking all this into account, realistic scenarios must be treated as a general bounded, constrained
optimization problem. Thus, we shall treat a general optimization problem:

min( f (x)) (1)

Subject to the constraints
gi(x) = 0 for i = 1, . . . , p (2)

hi(x) ≥ 0 for i = 1, . . . , q (3)

Lr < xr < Ur for r = 1, . . . , n (4)

The objective function f (x) is minimized, subject to p equality constraints g(x), q inequality
constraints h(x), and n bounds (upper and lower) on the variables.

Further, the optimization of a complex process simulation model is often non-linear, and either
derivative free methods are required for black-box optimization or alternatively numerical derivatives
can be estimated. However, depending on the complexity of the model and the number of variables,
the latter may lead to excessive time consuming evaluations of the objective function.

In the present study we define our main objective function as the daily operational profit based
on sales of stabilized oil and gas export.

fpro f it(x) = πoil(x) + πgas(x)− ψenvironment(x) (5)

In the above equation the profit from oil sales, πoil(x), is based on the calculated oil
recoverable/flow for the parameter settings, x, using an oil price of 60 $/barrel. The profit from gas
sales πgas(x), is calculated using a value of 2.8 $/MMBtu. The revenue loss associated with utilities
i.e., electricity, cooling system, etc., is indirectly accounted for by subtracting the required fuel gas
consumption for power generation from the total produced gas, before calculating πgas(x). It is thus
assumed that OPEX is simply a matter of consumables for power generation. This is a reasonable
assumption for off-shore facilities which seldom purchase external utilities (such as electricity, cooling
water etc. Other utilities such as e.g. production chemicals are assumed to be insensitive to changes
in process parameters). In the present study, labor, maintenance, indirect expenses, etc. are not
accounted for, as these will be less sensitive to changes in variables than the direct cost for power
generation. A penalty is included in Equation (5), ψenvironment(x) , in order to reflect environmental
taxation. In the current simulations, a penalty of 0.13 $/Sm3 of fuel gas was applied [36]. This
corresponds to the CO2 taxation applicable for offshore facilities on the Norwegian continental shelf
and roughly corresponds to 55 $/tCO2 emitted. The price of oil and gas is volatile, and in the short
term they may display opposite trends in price development, though on a longer time scale they seem
to correlate. Further, the profit for the chosen fluid is highly dominated by the oil sales price, hence
it is considered that the conclusions obtained using the above objective function will be generally
applicable and relatively insensitive to oil and gas price fluctuations.

Further, the main constraint for the crude oil quality can be written as

gRVP(x) ≥ 0 (6)

with
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gRVP(x) = 12− RVP(x) (7)

where RVP(x) is the simulated crude oil RVP value at the variable settings x. An upper acceptable limit
of 12 psia (37.8 ◦C) is chosen, which is a representative crude oil quality specification. No constraint
function is applied for the gas export hydrocarbon dew point in the present study.

A number of evolutionary algorithms can be applied: Non-dominated Sorting Genetic Algorithm
(NSGA-II) [37], GDE3 [38], SPEA2 [39], ε-MOEA [40], CMA-ES [41], and NSGA-III [42] to mention
a few. While some of the afore mentioned alternatives to the NSGA-II algorithm might provide
optimization with less iterations, the NSGA-II algorithm is considered a good starting point for
multi-objective optimization. In the present study, the NSGA-II algorithm was used as implemented
in the platypus package [43], and bounds and constraints are handled seamlessly.

3. Results and Discussion

In the following, the aggregate single objective profit function Equation (5) is optimized using
the surrogate models in conjunction with the NSGA-II algorithms. The algorithm was terminated after
10,000 objective function evaluations, and a population size of 100 was applied i.e., 100 generations
are evaluated.

A high-level evaluation of the performance and convergence of the optimization algorithms
is provided by depicting the development in objective function value as a function of the number
of generations evaluated along with the input variables in Figures 4 and 5. Included in Figure 5
is also the RVP constraint function. The graphs display the average, minimum, and maximum within
each generation. Data within each generation where the constraint function is violated has been
filtered out. As seen from Figure 4, the profit is maximized within approximately 30–40 generations.
Generally, the most of the input variables also seem to converge to a relatively stable value within
the same number of generations.
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Figure 4. Convergence of objection function and variables as a function of generation number for
surrogate models with the Non-dominated Sorting Genetic Algorithm (NSGA-II) algorithm.
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Figure 5. Convergence of variables and constraint function as a function of generation number for
surrogate models with the NSGA-II algorithm.

A total of 10 consecutive runs were made with the evolutionary algorithm and the best solutions
found for each run is summarized in Table 4. The table summarizes both the main objective profit
function, the constraint (RVP) function, the response functions for stabilized oil export and power
requirements, as well as all input variables. For all parameters, the average values as well as standard
deviations (σ) across all runs are included for comparison.

Table 4. Resultsfor main objective function, constraint function, supporting responses, and model
variables from 10 consecutive runs using surrogate models in the NSGA-II algorithm.

Run No.

1 2 3 4 5 6 7 8 9 10 Mean σ σ (%)

Profit (mill. $/d) 6.3751 6.3751 6.3738 6.3726 6.3749 6.3751 6.3751 6.3748 6.3751 6.3749 6.3747 8.0 × 10−4 0.013
RVP (psia) 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 3.1 × 10−4 0.003
Oil (Sm3/d) 16,137.6 16,137.2 16,135.3 16,133.8 16,136.0 16,137.3 16,136.2 16,135.5 16,136.9 16,136.0 16,136.2 1.1 0.007
Power (kW) 13,599 13,597 13,627 13,672 13,305 13,580 13,391 13,285 13,557 13,280 13,489 156 1.154
Tsep1 ( ◦C) 50.72 51.29 52.63 51.89 51.07 51.02 51.54 51.20 51.30 50.96 51.36 0.55 1.07
Psep1 (barg) 32.00 32.00 32.00 32.00 32.00 32.00 31.99 31.99 32.00 32.00 32.00 0.00 0.01
Psep2 (barg) 7.84 7.86 7.69 5.18 7.96 7.87 7.87 7.96 7.85 7.82 7.59 0.85 11.21
Tsep3 ( ◦C) 41.85 42.15 62.52 67.56 44.99 41.76 42.10 44.97 41.88 43.58 47.34 9.49 20.04
Psep3 (barg) 0.89 0.90 1.64 1.83 1.00 0.89 0.91 1.00 0.90 0.96 1.09 0.34 31.45
Tscrub1 ( ◦C) 39.79 39.97 39.99 33.79 31.13 39.71 33.67 30.02 37.73 29.80 35.56 4.33 12.19
Tscrub2 ( ◦C) 25.00 25.01 25.00 25.00 25.00 25.00 25.00 25.03 25.00 25.00 25.01 0.01 0.03
Tscrub3 ( ◦C) 28.03 26.93 27.70 28.27 27.98 25.52 28.33 37.46 27.98 28.32 28.65 3.21 11.22
Pboost (barg) 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 0.00 0.00
Trefrig ( ◦C) −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 −5.00 0.00 −0.01

As seem from Table 4, the variation in profit between runs is insignificant, which is comforting
and seems to support that the global optimum is found within the applied parameter bounds.
The maximum profit is realized at maximum RVP, which is due to the fact that the oil production
is maximized at the highest RVP of 12 psia and because oil export sales is a strong factor in the profit
function. Further, it is seen that the optimum profit is realized at the maximum pressure (32 barg upper
bound) in the 1st stage separator (reducing power requirement for gas compression), the minimum
temperature in the 2nd stage scrubber (25 ◦C lower bound), minimum pressure after the 1st stage
compressor/booster (60 barg lower bound), and the minimum temperature in the refrigeration
unit/cold process (−5 ◦C lower bound) thereby recovering more NGL. For the remaining variables,
a higher variation is observed between runs, with the temperature and pressure in the 3rd stage
separator showing the largest variation. The pressure in the third stage separator varies between 0.89
and 1.83 barg and the temperature varies between 42 and 67 ◦C with an apparent positive correlation
between pressure and temperature. It is also noted that the second stage separator shows some
variance, with most of the runs at 7.7–8 barg; a single run stands out with a pressure of 5.2 barg.
For these varying input variables, they are all clear from the variable bounds. The first stage scrubber
seems to favor a temperature at or near the upper bound of 40 ◦C, but with some runs between
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30–38 ◦C. The third stage scrubber varies from near the lower bound of 25 ◦C with most runs at
27–30 ◦C and a single run at 37.5 ◦C.

In order to verify the quality of the Kriging surrogate models, the solutions from the 10 runs
in Table 4 were given as input to the full process simulation model. The results are summarized
in Table 5. Comparing with Table 4 the results are both, in terms of mean and standard deviation,
matching to a high degree. The RVP and oil export responses have a little higher variance using the full
simulation model, whereas the power variance is slightly lower.

Table 5. Processsimulation output using the 10 NSGA-II optimal solutions found using the surrogate
models cf. Table 4.

Run Profit (Mill. Dollars/Day) RVP (psia) Oil (Sm3/d) Power (kW)

1 6.3749 12.00 16,137 13,617
2 6.3745 11.99 16,136 13,605
3 6.3728 11.93 16,130 13,543
4 6.3724 11.93 16,128 13,613
5 6.3743 11.97 16,133 13,416
6 6.3746 11.99 16,136 13,609
7 6.3741 11.99 16,134 13,489
8 6.3732 11.95 16,131 13,397
9 6.3746 12.00 16,136 13,569

10 6.3735 11.97 16,132 13,401
Mean 6.3739 11.97 16,133 13,526

Std. Dev. 0.000857478 0.025 2.907 92.477
Std. Dev. (%) 0.013452961 0.205 0.018 0.684

From the results in Table 4, it is observed that there is apparently not a unique optimal pressure
in the 2nd and 3rd stage separators. This is somewhat in contradiction to the common perception
that there is one set of optimal settings for separator pressure. In the present study, different levels
appear to be more or less equally good, as observed for the 3rd stage separator and also for the 2nd
stage separator pressure. The multiple levels appear to be realized due to flexible settings for the inlet
temperature to the separators. This may not always be a control option in real applications due
to equipment constraints, etc. Previous studies, in relation to determining the optimal separator
pressures, often assume that the temperature is constant or without heating/cooling equipment i.e.,
not controllable [1,2,7,8]. Nevertheless, Ghaedi et al. [2] found that, for a three stage separation
train under summer conditions, the optimal operating pressure was higher when compared to
winter conditions, where the crude had a lower temperature which is a similar correlation as seen
for the third stage separator in the present study. At higher temperatures, the oil is more volatile
and lighter components evaporate. At a constant pressure, the RVP/TVP of the stabilized oil would
decrease. Utilizing the RVP specification fully, it is possible to compensate by having a higher pressure
in the final separator.

The apparent plurality in optimal pressure in the separators is investigated further, by visualizing
the profit as a function of 2nd and 3rd stage separator pressure, for two levels of the temperature
in the 3rd stage separator. The results are shown in Figure 6. The contour plots have been masked
by the RVP constraint i.e., only regions where the constraint is met is visible. It is noticed that the higher
the temperature, the higher feasible pressure in the 3rd stage separator. Also, it is noted that the 3rd
stage separator pressure is capped by the RVP constraint. On the other hand, the RVP does not limit
the 2nd stage separator pressure noticeably. The most interesting part is the relatively flat/horizontal
contours between 4–9 barg. In other words, it seems that the profit objective in some regions is a
relatively weak function of the pressure.
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Figure 6. Profitfunction as a function of 2nd and 3rd stage separator pressure using the surrogate model.
Objective function calculated with 52 ◦C and 32 barg in the 1st stage separator, 25 ◦C in all compressor
suction scrubbers, 60 barg after the HP compressor, and −5 ◦C in the refrigeration/dew point
control unit. The profit function has been masked for Reid Vapor Pressure (RVP) > 12 psia. The upper
figure is obtained with a 3rd stage separator temperature of 40 ◦C, and the lower figure with 60 ◦C.

Results applying the Sequential Least SQuares Programming (SLSQP) algorithm [44] as implemented
in scipy [32] is also included for comparison. It is interesting to note that the SLSQP algorithm
is actually successful (after taking the square root of the objective function). There may be different
reasons for the apparent success of the SLSQP algorithm for this type of problem. It may suggest
that the objective function is not too non-convex. Further, the use of a surrogate model instead
of optimizing the black-box process simulation model directly, is likely very helpful in avoiding
noise [21,22] in estimation of numerical derivatives by finite difference. This noise may arise from finite
convergence criteria for recycles/tear streams, basically this means that an obtained solution from one
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run to another with identical input, may generate slightly different output. The SLSQP optimization
is run using the base case settings from Table 2 as starting guess. The result is a profit function value
of 6,375,088$/day with the optimum found at second stage separator pressure of 7.9 barg, a third
stage separator temperature and pressure of 41.2 ◦C and 0.87 barg, a first stage scrubber temperature
of 40 ◦C, and a third stage scrubber temperature of 28 ◦C. Other parameters are more or less identical
to the results from the NSGA-II algorithm in Table 4. Looking at the profit function in Figure 6, it also
seems that the profit at the lower third stage separator pressure and temperature is marginally higher
than at the higher pressure and temperature, which, interestingly, is the optimum found by the SLSQP
algorithm. Also worth noting from the contours, it appears as if a 2nd stage separator pressure
of around 8 barg is slightly better than a pressure around 5 barg.

To summarize, apparently more levels of pressure in the final separation stage may provide
more or less equal profit, due to compensation by the separator temperature and the cap provided
by the RVP constraint. Further, the 2nd stage separator pressure has little influence on the profit
function (the optimum is a flat bottomed well), where small perturbations may determine if one or
the other pressure is determined as the optimal.

In order to verify that the above conclusions regarding the apparent non-unique optimal settings
of the separator pressures are not just an artifact of the surrogate modeling, optimization is performed
directly using the black-box process simulation model. The results are summarized in Table 6. A total
of five runs are made, each with a population size of 100 and 40 generations.

Table 6. Profitmaximum obtained by optimization of the black-box model (process simulation) directly
using the NSGA-II algorithm.

Run No.
1 2 3 4 5 Mean Std. Dev. Std. Dev. (%)

Profit 6.3753 6.3735 6.3741 6.3739 6.3739 6.3741 0.0007 0.010
RVP 11.99 12.00 12.00 12.00 12.00 12.00 0.0022 0.018

Tsep1 50.6 53.4 54.7 52.0 50.0 52.1 1.9 3.707
Psep1 31.2 31.6 31.6 31.1 31.3 31.4 0.2 0.713
Psep2 8.21 6.46 7.05 6.70 5.42 6.77 1.01 14.92
Tsep3 41.85 60.63 54.43 60.10 65.75 56.55 9.14 16.17
Psep3 0.90 1.58 1.35 1.55 1.76 1.43 0.33 22.91

Tscrub1 34.74 32.99 35.07 39.46 38.84 36.22 2.80 7.72
Tscrub2 30.98 32.71 26.07 27.42 25.01 28.44 3.28 11.54
Tscrub3 36.46 32.26 29.77 38.34 33.28 34.02 3.40 10.00
Pboost 60.95 60.48 60.42 60.14 60.11 60.42 0.34 0.56
Trefrig −4.99 −4.99 −5.00 −4.99 −4.99 −4.99 0.00 −0.06

As seen from the Table 6, the results display many similarities with the results using the surrogate
models in Table 4. The variability of the profit function is the same as for the surrogate models
with the average value being the same (statistically not different). This again confirms the quality
of the Latin Hypercube Sampling (LHS) and Kriging surrogate modeling approach. Again, the cold
process (refrigeration) temperature and first stage compressor discharge pressure is close to the lower
bound and the first stage separator pressure is at the higher bound. The first stage scrubber is at
the same level as in the surrogate model optimization and the second and third stage scrubbers are at
slightly higher values. Inspecting the optimal values for the second stage separator pressure and third
stage separator temperature and pressure, the variability seen with the surrogate models is reproduced
with the full simulation black-box model.

The correlation between the 3rd stage separator pressure and the 3rd stage separator temperature
is further investigated in Figure 7. In the figure, the profit function (contour) is shown as a function
of pressure and temperature in the separator as calculated by the surrogate models. The contour
has been masked for profit functions where the RVP constraint is exceeded. The found optimal settings
by the direct black-box optimization are shown as points. As seen from the figure, the profit iso-curves
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follows the shape of the RVP cut-off. This means that more or less equally good optimal conditions
can be made with different 3rd stage separator pressure, as long as the corresponding temperature
is changed accordingly to compensate, with higher pressure requiring higher temperatures in order not
to violate the RVP constraint. Likewise, if the pressure is lowered, so shall the temperature be in order
not to obtain sub-optimal profit.

Figure 7. Profitfunction as a function of 3rd stage separator pressure and temperature. Profit function
contour calculated using the average settings from the optimization for all other parameters cf. Figure 6.
Red points are the optimal settings from the direct black-box optimization. Profit function has been
masked for RVP > 12 psia.

Early attempts to predict the optimal middle separator pressure in a three stage separation train
used the geometrical mean pressure i.e.,

p2 =
√

p1 · p3 (8)

The above Equation (8) results in equal pressure ratios between the various separator stages.
Also, the geometric mean is smaller than the arithmetic mean pressure [8]. Al-Farhan et al. [8] discuss
various correlations for predicting the optimal middle stage separator pressure and compare Equation (8),
both with the method of Whinery and Campbell [3] and with optimization using thermodynamic flash
calculations for a range of different fluid compositions and parameter settings. They observe that using
the correlation of Whinery and Campbell for a crude oil almost always results in a third stage
separator pressure being lower than the geometric mean. The same applies when performing
optimization using flash calculations. These observations are consistent with the work of Ling et al. [6]
and Bahadori et al. [7], who also find optimal values below the geometric mean/constant pressure
ratio relation. The second stage separator pressures obtained in the present study is compared
to the geometric mean value in Figure 8. As seen from the figure, in this study it is observed that
the optimal second stage separator pressure can acquire values both near the geometric mean and below
in agreement with the findings of others [6–8]. Interestingly it is also found that the optimal separator
pressure can be significantly higher than the geometric mean value. It should be noted that the other
referenced works [6–8] did neither include the flexibility of inter-stage heating, nor was condensate
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recycle streams from the compression system included. This added complexity and hence added
degrees of freedom is likely responsible for this apparently more complex behavior in the present
study. It also implies that care should be taken when optimizing separator pressures. It is not possible
to do this independently of all other process parameters, and correlations developed for a simple
separator train cannot necessarily be directly applied to a more realistic and complex process with both
inter-stage heating and significant condensate recycle streams from the compression system and dew
point control unit.
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Figure 8. Optimal 2nd stage separator pressure as a function of the geometric mean separator pressure.
Points shown for both optimal settings found using surrogate models as well as using the full black-box
process simulation model.

In order to evaluate the levels of expected improvements in case optimization is performed,
the results of the present study is compared with previous similar studies. Obviously, the level
of improvement highly depends on the starting point i.e., base case. Some processed are far from optimal
parameter settings and some will be closer to optimal settings to begin with. Basically, this means
that two studies using the same methods, the same process, parameter bounds, and constraints
may conclude different potential improvements if the base case settings are different. Nevertheless,
an attempt to quantify expected optimization improvements is provided in Table 7. In refs. [2,7,9,45]
an improvement in terms of increased liquid production is explicitly stated compared to a non-optimized
liquid production. The improvement observed in the present study is estimated using the difference between
the base case and optimized profit cf. Tables 2, 4 and 6. As seen from Table 7, it seems that separation train
optimization may provide between approximately 0.1–2 % increase in liquid production/operating profit
depending on the process topology, fluid characterization, and base case level of optimization.

Table 7. Possibleachievable improvement potential when optimizing an oil and gas separation train.

Source ∆ (%) With Condensate Recycle

Ghaedi et al. [2] 1.20–2.02 No
Bahadori et al. [7] 0.09–0.10 No

Motie et al. [9] 0.1 No
Kylling [45] 0.07–0.11 Yes
This work 1.05 Yes
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4. Conclusions

In the course of this study, the optimization of a realistic oil and gas separation plant has been
investigated. Using DACE, utilizing LHS, and a rigorous process simulation model, surrogate models
using Kriging have been established for selected model responses. The surrogate models have
been used in combination with an evolutionary algorithm for optimizing the operating profit. The
optimization is bounded in the variables and a constraint function is included to ensure that the optimal
solution allows export of oil with an RVP < 12 psia.

It has been demonstrated that a surrogate model based on LHS and Kriging performs very
well for optimizing an oil and gas separation plant. For some variables there seem to be unique
settings, which are optimal. This mainly applies to the first stage separator pressure, which is optimal
at its higher bound. The recovery of condensate from the dew point control unit is optimal when
both the pressure and temperature is at the lower bound. The temperature in the compressor suction
scrubber inlet (cooling) appears to be less sensitive in terms of applied settings. One of the more
interesting findings in the present work is the fact that the pressure in the second and third stage
separators apparently does not have unique optimal values. A range of third stage separator pressures
may be equally optimal, as long as the temperature in the separator is also controlled. The higher
the temperature the higher, yet more or less equally optimal, pressure and vice versa. The findings
using the surrogate models for optimization is confirmed by black-box optimization by coupling
the process simulation model directly to the optimization algorithm. The existence of multiple optimal
separator pressures has not been observed in previous studies, where a unique optimal pressure
for each separation stage is advocated.

The reason that this apparently more complex behavior, has not been seen previously,
may be due to a number of reasons. Firstly, many previous studies did not take the compression
system into account, and if doing so, often the normally recycled condensate streams were ignored,
Further, inter-stage heating/cooling between the separation stages has also not been considered.
Finally, many previous studies assume close to atmospheric pressure in the final separation stage
(stock tank). For example, in many offshore installations the final separation stage is often at somewhat
elevated pressure (two to three times atmospheric pressure), while the RVP export specification
is controlled by the inlet temperature.

The implication of the results from the present study is that one should never focus only on finding
optimal separator pressure settings when optimizing oil recovery/profit. One should always use
a plant wide optimization approach and consider the entire process. There is a strong interplay
between certain variables, which offers both some flexibility, but obviously also increases the number
of variables that needs to be tuned.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-7084/4/1/11/s1.
The LHS DACE plan, including simulation output, is available as supplementary material. The two process
simulation file is also available as supplementary material.
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BS&W Basic Sediment & Water
ANN Artificial Neural Network
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C1 Methane
C2 Ethane
C3 Propane
C4 Butanes
C5 Pentanes
CAPEX Capital Expenditure
CM Cooling Medium
CMA-ES Covariance Matrix Adaptation Evolution Strategy
COM Microsoft Component Object Model
COSTALD Corresponding States Liquid Density
DACE Design and Analysis of Computer Experiments
ε Efficiency
FWHP Flowing Wellhead Pressure
FWHT Flowing Wellhead Temperature
GDE3 The third evolution step of Generalized Differential Evolution
GOR Gas Oil Ratio
HHV Higher Heating Value
HM Heating Medium
HP High Pressure
LHS Latin Hypercube Sampling
LHV Lower Heating Value
LP Low Pressure
LT Low Temperature
ε-MOEA epsilon-domination based Multi-Objective Evolutionary Algorithm
MP Medium Pressure
MSE Mean Square Error
NGL Natural Gas Liquid
NPV Net Present Value
NSGA Non-dominated Sorting Genetic Algorithm
OPEX Operating Expenditure
RVP Reid Vapor Pressure
SLSQP Sequential Least SQuares Programming
SPEA Strength Pareto Evolutionary Algorithm
SW Seawater
TVP True Vapor Pressure
VBA Visual Basic for Applications
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