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Abstract: This study investigates the effectiveness of robust estimators of location and dispersion,
used in proficiency testing and listed in ISO 13528:2015, in outlier detection. The models utilize
(a) kernel density plots, (b) Z-factors, (c) Monte Carlo simulations, and (d) distributions derived
from at most two contaminating distributions and one main Gaussian. The simulation parameters
cover a wide range of those commonly encountered in proficiency testing (PT) schemes, so the results
presented are of fairly general application. We chose a functional sub-optimal solution by grouping
and classifying the model settings, resulting in five matrices readily usable for selecting the best
robust estimator. Whenever at most half of the distribution of each contaminating population is
outside the central distribution, there is only one optimal estimator. For all other cases, the five
matrices provide the appropriate robust statistic. The proposed method applies to 95.1% of 144 results
for an existing PT for cement. These actual datasets indicate that the Hampel estimator for the mean
and the Q-method for the standard deviation provide the most appropriate performance statistic in
86.1% of the cases.

Keywords: proficiency testing; robust estimator; kernel density plots; Monte Carlo; optimization;
interlaboratory comparison

1. Introduction

Interlaboratory comparisons and schemes, where at least two laboratories measure
one or more characteristics of the same or similar items, are widespread worldwide. Eval-
uating participant performance against pre-established criteria through interlaboratory
comparisons is called proficiency testing (PT) [1]. Among other criteria, Z-score usually
expresses the performance of each participant. Its value depends on both the assigned
value and standard deviation for proficiency assessment [1]. Results appearing inconsistent
with the remainder dataset, called outliers, can impact the values of these two summary
statistics [1]. Using robust statistical methods minimizes this influence, defining as such
the insensitive ones to small departures from underlying assumptions surrounding a prob-
abilistic model [1]. Several authors contributed significantly with their research and books
in developing robust statistics (Hampel et al. [2], Huber et al. [3], Wilcox [4], and Maronna
et al. [5]). Hund et al. [6] in a detailed older review of interlaboratory studies in analytical
chemistry, pointed out the use of robust statistics in the outliers’ treatment. Daszykowski
et al. [7] performed an excellent review of some basic concepts of robust techniques and
their usefulness in chemometric data analysis. Recently, Shevlyakov [8] and Ghosh et al. [9]
further analyzed nonparametric statistics like the M-estimators, the influence function,
and the influence curve. Outlier detection stands at the core of robust statistics [10] and
particular rules for outlier detection were proposed, e.g., for the estimation of multivariate
mean and dispersion (i.e., covariance matrix) [11,12]. In the considered task to estimate
the mean and dispersion, it is also possible to use a variety of available robust regression
estimators including the least trimmed squares [13] or least weighted squares [14], but
such approaches are not available in the relevant ISO norms. ISO 13528:2015 [15] in Annex
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C analyzes a series of robust estimators for the population mean and standard deviation,
to be used in PT schemes as an alternative to the classical method provided by ISO 5725-
2:1994 [16]. The estimators of the population mean are the median value, MED; the average
according to algorithm A with iterated scale, Ax*; the Hampel estimator for mean, Hx*.
The corresponding estimates of the standard deviation are the scaled median absolute
deviation, MADe; the normalized interquartile range, nIQR; the estimator according to
algorithm A with iterated scale, As*; the estimator according to the Q method, Hs*. We note
that method A was first described in the much older ISO 5725-5:1998 [17] and carried over
to ISO 13528:2015. The population mean or assigned value, xPT, and standard deviation σPT
constitute the summary statistics of the population’s results. The respecting performance
statistic for the result Xi of each participating lab i is the Z-score provided by Equation (1)
according to 17043:2010 [1].

Z =
Xi − xPT

σPT
(1)

Despite the detailed description of both performance and summary statistics in the
mentioned standards and the widespread implementation of PT schemes, the number
of studies comparing these estimators for their optimality is limited. Some researchers
report comparative studies between the methods described in the statistical standards,
focusing on the performance criterion and the detection of outliers by referring to the
results of individual PT schemes [18–21]. For these particular cases and regardless of which
robust method they find optimal, most reject the classical one, according to ISO 5725-2:1994.
De Oliveira et al. [22] compared different statistical approaches, classical and robust, to
evaluate participants’ performance in a PT program for lead in blood determination, and
they concluded that a modification of Method A was the best one. Kojima et al. [23]
attempted a generalization in finding the best method using a Monte Carlo approach by
adding a contaminating Gauss distribution to the main one and restricting their study to
the next set of parameters. (a) The number of participants is 200; (b) the standard deviation
of the main population is 5% of the mean value; (c) the secondary population is 20% of the
total. They concluded that the robustness to outliers of the MED-nIQR is more significant
than the other methods, noticing simultaneously that the MED-nIQR does not always give
the best conclusion in the actual PT due to its reduced degrees of freedom.

The only common conclusion of the mentioned research is that the classic method,
described in 5725-2:1994, is insufficient to detect a relatively accurate number of outliers.
Additionally, there is no unique optimal robust method for all the considered PT schemes
in [18–23]. One of the main conclusions of Oliveira et al. [22] is that a PT provider should
conduct studies using different statistical approaches to get the best standard deviation
estimate since there is no consensus on which method is more suitable for the experimental
data. We ended up in the same judgment by comparing the robustness of PT statistical
estimators for a limited number of participants [24] by combining: (a) kernel density
plots [15]; (b) Z-factors; (c) Monte Carlo simulations using distributions derived from the
addition of one or two contaminating distributions and one main Gaussian, and fitting
to the kernel plots. The number of participants in this study ranged from 10 to 30. We
remarked that the selection of the best robust estimator is a function of (a) the fraction of
the contaminating populations; (b) the distances of the mean values of the distributions.
Therefore, the best estimator depends on the shape of the results’ distribution.

In this study, the same approach as in [24] is employed to assess the effectiveness
of the mentioned robust methods by selecting 10 to 100 participants and analyzing the
distribution of unsatisfactory results with |Z| > 3. To the author’s knowledge, while there
is extensive literature on the effectiveness of robust estimators in linear regression [25–30],
the same is not valid for the estimators proposed in ISO 13528. Actual results of cement’s
chemical, physical, and mechanical properties are also processed, belonging to a PT scheme
of cement organized by Eurocert S.A. The organizer performs the cement scheme nine
rounds a year with 11–14 participants per round, including all the tests defined by the
standard EN 197-1 [31]. Section 1 of [24] describes the PT schemes provided by this
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company. The interlaboratory comparison is a source of information for the product
evaluation process [32].

The structure of the paper is as follows. Section 2 presents kernel density plots as a
possibility to estimate the results’ distribution and applies the approximation of an actual
kernel density plot with the sum of, at most, three normal distributions of adjustable
parameters [24] to the long-term data of a PT scheme. As a result of the application of
this approach to 144 cases and six tests, the computed parameter distributions of the three
Gaussians are more general, i.e., they should apply to a wide range of PTs. Section 3
describes the model of measuring the effectiveness of robust estimators in outlier detection.
The algorithm applies Monte Carlo simulations and, considering all the unsatisfactory
results, computes the distance of their distribution from a reference value. Based on
the assumption that the samples are homogeneous and the PT scheme permits only one
analysis method per test, Section 4 implements the approach introduced in Section 3 for
various model parameters. The simulations result in a series of tables of the most suitable
estimators. These are of particular interest to PT experts when they have to choose the most
accurate and robust method to process the test results. The author developed all software
in C#.

2. Kernel Density Plots

The kernel density plots (KDP) provide the possibility of representing the result’s
distribution as a continuous curve and identifying bimodalities or lack of symmetry (ISO
13528:2015 [15]). A series of researchers indicated the importance of kernel estimation in ro-
bust statistics [33,34]. Adding one main normal distribution with one or two contaminating
ones provides an effective simulation of these curves, as proved in [24].

Table 1 shows the parameters of the three distributions. The software built the kernel
density plots by processing the results of six tests performed according to EN 197-1 by
the PT scheme for a time ranging from 2012 to 2020, with the aim of the study gaining
significant generality. Table 2 indicates the selected tests and the applied methods of testing.

Table 1. Parameters of the normal distributions.

Parameter Symbol

Main distribution mean value m1
Main distribution standard deviation s1

Second distribution mean value m2
Second distribution standard deviation s2

Third distribution mean value m3
Third distribution standard deviation s3

Fraction of surface of the main distribution fr1
Fraction of surface of the second distribution fr2
Fraction of surface of the third distribution fr3 = 1 − fr1 − fr2

Algebraic distance from m1 to m2 n2 = (m2 − m1)/s1
Algebraic distance from m1 to m3 n3 = (m3 − m1)/s1

Table 2. Tests and methods.

Test Method

Specific surface—Blaine method EN 196-6:2010 [35]
Loss on ignition, LOI EN 196-2:2013 [36]

Sulphates content, SO3 EN 196-2:2013
2-day, 7-day, and 28-day compressive strength EN 196-1:2016 [37]

Building the KDP with the results of each test makes it difficult to reveal the actual
distribution for participants ranging from 11 to 14 per round. For this reason, in [24],
we used all the results of nine consecutive yearly tests for each KDP, as participants are
the same during a year. The algorithm achieves normalization by using the difference
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of the assigned value from the mean value of each participant, Dij = xij − xpt,j, where i
is the participant and j is the round. Especially for the compressive strength in different
ages, constituting the most significant tests, the software created the kernel plots using
the results of nine moving rounds for the last three years of the PT scheme application.
The Generalized Reduced Gradient non-linear regression technique fitted the mix of three
normal distributions to each KDP and adjusted the parameters shown in Table 1 to achieve
the minimum distance between the two curves. The result of this processing was 144 kernel
density plots, based on multiple kinds of tests during the long-term operation of the
PT scheme, efficiently simulated using a mix of central and contaminating populations.
Figure 1 depicts an example of a kernel density plot implemented on 28-day strength results
of nine rounds. The location of the two contaminating distributions is on the left and the
right of the central one. The coefficient of determination, R2, between the mix of the three
distributions and the kernel density plot is 0.998, and the parameters’ values are as follows:
m1 = 0.12 MPa; s1 = 1.47 MPa; m2 = 4.54 MPa; s2 = 0.68; m3 = −3.47; s3 = 1.18; fr1 = 0.87;
fr2 = 0.024; fr3 = 0.106; n2 = 3.01; n3 = −2.45. The average coefficient of determination of the
fit of all 144 sets of KDP is 0.9917, with a standard deviation equal to 0.0051. The above
demonstrates that simulating kernel density plots with a sum of three normal distributions
is effective.
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Figure 1. Kernel density plot and simulation with a mix of three normal distributions. Dashed lines;
main and contaminating groups, and solid line; total population.

The large number of kernel density plots, based on various cement tests, and effectively
simulated by the reported method, necessitates a detailed investigation of the range and
distribution of the simulation parameters. The outcome of this processing will be input to
search for and define the best robust estimators. Figure 2 shows, for all the simulated KDF,
the algebraic distances from m1 to m2 and to m3 in s1 units, n2 and n3 correspondingly.
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Figure 2. n2 and n3 distances for all the simulated KDP.

The algorithm calculates n2, n3 so that always to be |n2|≤ |n3|. The data are divided
into three regions: (a) |n3| < 3.5; (b) 3.5 ≤ |n3| < 5.5; (c) |n3| ≥ 5.5. The computations
provide the following distribution of the three regions: (a) 68%; (b) 27.8%; (c) 4.2%. By
rounding the values of n2, and n3 to the nearest integer, the distribution of the three regions
has the following meaning. (a) 68% of the rounded values belong to the interval [–3,3]; only
4.2% of the population has n3 > = 6, or n3 < = −6; 27.8% of data has n3 = 4,5 or n3 = −4, −5.

Figure 3 illustrates the fractions f 2, f 3, and the sum f 2 + f 3 of the surfaces of contam-
inating populations. In 73.6% of cases, the points are down the diagonal, meaning that
f 2 ≥ f 3. Thus, in most data, the fraction of the second population with |n2| ≤ |n3| is
considerably higher than that of the third. Figure 3b indicates that the fraction f 2 + f 3 ≤ 20
represents 84.7% of the total population of contaminating distributions. Additionally,
76.4% of the results lie between 0.05 and 0.20, constituting the main fraction of the two
secondary distributions.
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Figure 3. Fraction of contaminating populations: (a) Full set of f 2, f 3; (b) Distribution of f 2 + f 3.

Standard deviations require normalization since they refer to tests whose results may
differ by two orders of magnitude. Typically, SO3 values range from 2.5% to 4%, while
specific surface values lie from 3000 cm2/g to 4500 cm2/g. Such a normalizing variable is
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the coefficient of variation, CV, which for each test takes into account the average of the
assigned values of the included rounds, AvVal, provided by Equation (2).

CVi =
si

AvVal
·100 i = 1, 2, 3 (2)

Rounding of the coefficients of variation to the nearest integer permits calculating
the distribution of CV triads for all simulated core density functions. Table 3 presents the
sixteen sets of rounded coefficients of variation with the highest frequency within this
distribution. On average, the coefficients of the main population are higher than those of
the contaminating ones. Searching for the most suitable robust estimators will rely on the
data presented in Figures 2 and 3, and Table 3.

Table 3. Distribution of coefficients of variation.

No CV1 CV2 CV3
Frequency

% No CV1 CV2 CV3
Frequency

%

1 3 2 1 9.0 9 2 2 1 4.2
2 2 1 1 8.3 10 4 1 2 4.2
3 2 1 2 8.3 11 1 1 2 3.5
4 3 2 2 7.6 12 3 1 1 3.5
5 2 2 2 6.3 13 3 3 1 2.8
6 3 1 2 6.3 14 4 3 2 2.8
7 4 2 1 5.6 15 1 1 1 2.1
8 4 2 2 4.9 16 2 2 3 2.1

3. Model Development Using Monte Carlo Simulation and Initial Simulations
3.1. Monte Carlo Simulation

The Monte Carlo approach utilizes the mix of three distributions implemented to
simulate the kernel density plot using the parameters of Table 1. Additionally, the following
data are inputs and independent variables of the algorithm.

• number of participating laboratories, Nlab;
• number of replicate analyses per laboratory, Nrep;
• repeatability standard deviation, sr;
• number of iterations, Niter;
• number of simulations, Ns;
• number of bins to create histograms, Nb.

Subsection 2.2 of [24] provides a full description of the Monte Carlo simulation. The
developed algorithm computes the mean values, standard deviations, and performance
statistics shown in Table 4 according to the analysis of ISO 13528:2015 [15] and EN ISO/IEC
17043:2010 [1]. For each Z factor, the table shows the respecting population’s mean, the stan-
dard deviation used to calculate it, and the clause of the standard applied. ISO 13,528 [15]
(p. 26) and EN ISO/IEC 17043 [1] use the following conventional interpretation of Z scores.
(a) A result that gives |Z| ≤ 2.0 is acceptable; (b) if 2.0 < |Z| < 3.0, the performance is
questionable; and (c) if |Z| ≥ 3.0, the performance is unacceptable, generating an action
signal. There are other arbitrary but reasonable bounds for Gaussian populations in the
literature. Rousseeuw et al. [13] use the rule |Z|>2.5 to label a value as an outlier for
normalized residuals in regression. In a strictly normal distribution, 0.27% and 1.24% of
the population have |Z| greater than 3 and 2.5, respectively. In this study, we use the
convention of ISO 13528: If |Z|>3, the laboratory performance is unsatisfactory, and the
result is an outlier.
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Table 4. Performance statistic and robust population mean and standard deviation.

Performance
Statistic Mean Value Standard Deviation Variable Name

Z-factor Median value, MED
ISO 13528:2015, C.2.1

Scaled median absolute
deviation, MADe

ISO 13528:2015, C.2.2
Z_MADe

Z-factor Median value, MED
ISO 13528:2015, C.2.1

Normalized interquartile
range, nIQR

ISO 13528:2015, C.2.3
Z_nIQR

Z-factor
Robust mean—Algorithm A

with iterated scale, Ax*
ISO 13528:2015, C.3.1

Robust standard
deviation—Algorithm A with

iterated scale, As*
ISO 13528:2015, C.3.1

Z_A

Z-factor
Hampel estimator for mean,

Hx*
ISO 13528:2015, C.5.3.2

Robust standard deviation—Q
method, Hs*

ISO 13528:2015, C.5.2.2
Z_Hamp

As demonstrated in [24], the estimators of location and dispersion described in ISO
5725-2:1994 [16] are not resistant to outliers. For this reason, we restricted this study to
the robust estimators analyzed in ISO 13528:2015. Supposing that a distribution of a large
number of results contains Zu% non-satisfactory results, the question is which robust
estimators most closely approach this value for a certain number of labs. As found in [24],
choosing the most reliable estimator depends on the number of participants and the actual
distribution of the results. This older study considered a limited number of participants,
up to 30, f 2 + f 3 < 0.10, and mean values of the Zu% distribution. Using robust estimators
to detect the outliers indicates that the approach is nonparametric. Therefore, using the
entire distribution of Zu% instead of its average constitutes a substantial improvement of
the method presented in [24]. The improved algorithm applies the Monte Carlo simulation
and follows the subsequent steps:

(i) It creates a main normal distribution D1 with mean value m1 and standard deviation
s1 and two contaminating distributions D2, D3 with mean values m2, m3, and standard
deviations s2, s3.

(ii) The fractions of the contaminating distributions are fr2 and fr3, and, depending on
these two values, the total distribution can be unimodal, bimodal, or trimodal.

(iii) The mean values m2 and m3 differ by an integer number of standard deviations s1
from m1, n2 and n3, shown in Equation (3). In the case of trimodal distribution, if
n2·n3 > 0, then D2 and D3 are both to the same side of the D1. Otherwise, one is to the
left and the other to the right of D1.

m2 = m1 + n2·s1 , m3 = m1 + n3·s1 with |n2|≤ |n3|, n3 ≥ 0, and n2 ≥ 0 or n2 < 0 (3)

(iv) According to the values of fr2, fr3, n2, and n3, the software calculates the values of
Zu%, which are unsatisfactory compared to the normal distribution function with
mean and standard deviation m1 and s1 correspondingly. These values are the initial
values. For example, if m1 = 0, s1 = 2, s2 = s3 = 1, n2 = −5, n3 = 7, fr2 = 0.05, and
fr3 = 0.05, then Zu% = 0.24 (from D1) + 5.0 (from D2) + 5.0 (from D3) = 10.24.

(v) The algorithm calculates all the estimators for the mean and standard deviation
shown in Table 4 and the Zu% for the absolute values of the four Z-factors presented
in the same table using a Nlab = 1000. For this number of participants, all estimators
converge to their final value. As demonstrated in [24], Nlab = 400 is adequate for such
convergence.

(vi) This previous study found that Z_MADe was the closest estimator of unacceptable
Z-factors to the estimation based on the main normal distribution of step (iv). Its
values corresponding to Nlab = 1000 represent the reference values, Zref.
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(vii) The simulations implemented all the settings shown in Table 5 for participants up to
100. The populations correspond to unimodal, bimodal, and trimodal distributions
with a maximum total fraction of secondary distributions up to 0.2.

(viii) For each mix of the three normal distributions, the software performs Niter iterations
and Ns simulations for each Nlab. Then it calculates the differential distribution of each
of the four Zu% in at least twenty bins. The algorithm compares these results with the
reference value using the distance of the distribution’s points from Zref provided by
Equation (4). The Z-factor with the closest distance to the reference value is optimal.

ZMj =
Nmax

∑
i=1

∣∣∣ZDij − Zre f

∣∣∣·Xij , ZMopt = min
(
ZMj

)
f or j = 1 to 4 (4)

Table 5. Simulation settings.

Setting Value

Nlab 10, 15, 20, 30, 40, 60, 80, 100 and 1000 1

Nrep 2
sr 0.01
m1 100
s1 1, 2, 3, 4
m2 m2 = m1 + n2·s1, n2 = −8 to 8 and step 1
fr2 0, 0.05, 0.1, 0.15, 0.20 2

m3 m3 = m1 + n3·s1, n3 = 1 to 8 and step 1 3

fr3 0, 0.05, 0.1, 0.15
s2 1, 2, 3
s3 1, 2

Niter 1000
Ns Up to 25 4

Nb 20 5

1 If Nlab = 1000, then the Ns = 5. 2 If fr3 = 0, then the maximum value of fr2 is 0.2. Otherwise fr2Max = 0.15 and
fr2 + fr3 ≤ 0.2. 3 If n3 < 0, the distribution is symmetric about the Y-axis with that of n3 > 0 and n2 of opposite sign
and the same absolute values. Therefore, the simulation results will be the same. 4 The algorithm stops earlier
than 25 simulations if the new value of the average of each unacceptable Z-factor differs from the previous one by
less than 0.1%. 5 If the number of distribution non-zero fractions is higher than 20, then Nb = 30 or 40.

There are five components to this equation. ZMj, Xij, ZDij, Zref, and Nmax. ZMj denotes
the mean of distances between the distribution of estimator j and Zref, Xij is the fraction
of the differential distribution at point i with a ZDij value on the X-axis, and Nmax is
the maximum i with a non-zero Xij value. The best estimator is the one whose index j
corresponds to ZMj’s minimum. If the ZM value of another estimator differs by less than 1%
from the minimum ZM, this also estimator is optimal. Figure 4 illustrates the above method
of finding the most suitable estimator using the following model parameters. Nlab = 20;
s1 = 2; n2 = −2; n3 = 5; s2 = 1; s3 = 1; fr2 = 0.1; fr3 = 0.05.
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Figure 4. Illustration of the method calculating the optimal estimator: (a) Frequency distributions of
the outliers detected by the four estimators; (b) Average distances and optimal estimator.

3.2. Initial Simulations

Monte Carlo simulation was first applied to study the distribution of the two statistics
affecting the Z factors: the population’s mean and standard deviation. The algorithm
created the frequency distributions of all the estimators in Nb bins, using the Niter·Ns
results of each statistic. These histograms, designed to investigate the symmetry of the
distributions, are highly reliable because they incorporate up to 25,000 simulations. Figure 5
depicts such an example for MED and MADe. There is an asymmetry in both distributions,
indicating that this skewness should be explored further. The skewness metric must be
nonparametric because the approach used to detect outliers is. Additionally, all studied
distributions are unimodal, sometimes with few frequency fractions over 0.01. In this study,
we implement the simple formula provided by Groeneveld et al. [38] using the mean value,
µ, and the median value, ν, of the distribution. The measure of dispersion in this formula,
E(|X−ν|), is the mean value of the absolute differences between distribution values and
the median. In this way, we avoid utilizing the more complicated formula described in
many textbooks [39], involving the use of second and third-order moments. Equation (5)
expresses the selected skewness measure, SK.

SK =
µ− ν

E(|X− ν|) (5)
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It is well known from very early research [40] that the nonparametric skewness always
lies between −1 and +1. For symmetric distributions its value is zero. It is positive for
right skewed distributions (µ > ν) and negative for left skewed distributions (µ < ν). For
each robust statistic, the algorithm computes the mean value, µ, by summing the products
of each differential fraction fi, for I = 1 to Nb, with the average Xi of each interval of
the histogram X-axis using Equation (6). The calculation of median value, ν, utilized
linear interpolation between the points Xp, Xp+1, where fp < = 0.5 and fp+1 > = 0.5. Finally,
Equation (7) provides the estimation E(|X−ν|).

µ =
Nb

∑
i=1

Xi· fi (6)

E(|X− ν|) =
Nb

∑
i=1
|Xi − ν|· fi (7)

Figures 6 and 7 present the SK values for various simulations: Nlab = 10, 20, 40, 80;
s1 = 2; n3 = 7; n2 = −7 to +7; s2 = 1; s3 = 1; fr2 = 0.1; fr3 = 0.05; from which one can conclude
the following:

(i) The distributions of mean are continuously positively skewed due to the assumption
|n2| < |n3|. If n3 =−7, and supposing the same condition between n2, n3, the
distributions are symmetrical to the ones shown, but µ < ν and SK < 0.

(ii) We classified SK values into four regions: (a) 0 ≤ |SK| < 0.2; (b) 0.2 ≤ |SK| < 0.4;
(c) 0.4 ≤ |SK| < 0.7; (d) 0.7 ≤ |SK| ≤ 1. As a rough guide, we can consider that if
|SK| < 0.2, the departure from symmetry is low [41]. The skew is moderate for |SK|
values in (b). The distribution is highly skewed for |SK| values in (c). Finally, the
skew is very high for |SK| ≥ 0.7.

(iii) The skewness of the estimators of mean increases, increasing n2 from −7 to 7. For
these estimators, the skewness decreases, increasing the number of participants. The
distributions are highly symmetric for Nlab ≥ 40 and n2 ≤ 0.

(iv) The estimators of the mean have less skewness than those of standard deviation for
the same Nlab and n2. The best symmetry in the distributions of the latter occurs for
Nlab ≥ 40 and n2 between −1 and 1.

(v) For low and high n2 values, the skewness standard deviation sometimes becomes
very high.

(vi) The asymmetry of the two distributions indicates that the search for the best method
regarding outliers should focus on their distribution for each performance statistic
mentioned in Table 4.
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Figure 6. Nonparametric skewness values of the robust estimators of population’s mean.
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Figure 7. Nonparametric skewness values of the robust estimators of population’s standard deviation.

4. Optimal Robust Estimators for Outlier Detection
4.1. Shape of the Outliers Distribution

The distributions of outliers are not only skewed but sometimes not bell-shaped. Fur-
thermore, they are discrete. For a certain number of participants, Nlab, each value ZD on the
X-axis corresponds to an integer number of unsatisfactory results. For example, for Nlab = 40
and ZD = 5%, the outliers are 5/100·40 = 2. Figure 8 illustrates the above by implementing
the four performance statistics in Table 4 and using six sets of model parameters.
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Figure 8. Distribution of outliers using the performance statistics of Table 4 and parameters: s1 = 2;
s2 = 1; s3 = 1; fr2 = 0.1; fr3 = 0.05; and (a) Nlab = 20; n2 = −3; n3 = 4; (b) Nlab = 40; n2 = −3; n3 = 4;
(c) Nlab = 20; n2 = −2; n3 = 5; (d) Nlab = 40; n2 = −2; n3 = 5; (e) Nlab = 20; n2 = −2; n3 = 6; (f) Nlab = 40;
n2 = −2; n3 = 6.



Standards 2023, 3 121

Equation (4) defines the variables shown in Figure 8. The shape of the distribution of
outliers strongly depends on the number of participants, the model parameters expressing
the distribution of the results, and the performance statistic selected. All curves have a
long right tail, but its thickness in each distribution depends on the performance estimator.
In general, Z_Hamp shows thinner tails, thus a lower percentage of outliers significantly
higher than the reference value, Zref. Figure 8 shows the mean distances ZM between each
performance estimator and Zref. Z_Hamp is the most effective estimator for the examples
presented. An intriguing case appears in Figure 8b: Z_Hamp and Z_A estimators are both
optimal, despite their distinct distributions. It results from using the objective criterion of
the mean distance of the distribution from Zref, which is particularly effective for strongly
non-normal distributions.

4.2. Implementation of the Simulator

In the author’s experience, 10 to 100 labs participate in most PT schemes. Additionally,
if the total contaminating population is more than 20% and very distant from the center,
one of two things usually happens. (a) The samples are not homogenous enough, or (b) the
labs use different measurement methods for the same analyte or property. ISO 13528:2015
dedicates a complete sub-section and an Annex to the first case [15]. The same standard
suggests using a distinct assigned value for each measurement method for the second
case [15]. As a result, the settings in Table 5 are of particular practical interest to those with
expertise in PT schemes since they apply to most PT schemes with homogeneous test items,
permitting one properly described measurement method per test.

The simulation implements Equation (4) to all the settings of Table 5 to find the best
estimators for detecting outliers. The combination of s1, s2, and s3 provides 4·3·2 = 24
triads. The simulation uses 12 out of 24, referred to as [s1, s2, s3], where the three standard
deviations are integers. For example [s1, s2, s3] = 111 it means that s1 = 1, s2 = 1, and s3 = 1.
The set of applied [s1, s2, s3] is as follows: 111, 211, 212, 222, 311, 321, 312, 322, 421, 412, 422,
432. The combination of fr2 and fr3 provides ten couples of [fr2, fr3], the following: [0, 0.05],
[0, 0.10], [0, 0.15], [0, 0.20], [0.05, 0.05], [0.05, 0.10], [0.05, 0.15], [0.10, 0.05], [0.10, 0.10],
[0.15, 0.05]. The simulator utilized all these combinations to obtain various unimodal,
bimodal, and trimodal distributions. The maximum selected number of n3, n3MAX, depends
on the value of s1 as follows: (a) for s1 = 1, 2, n3MAX = 8; (b) for s1 = 3, n3MAX = 6; (c) for
s1 = 4, n3MAX = 5.

Figures A1 and A2 of Appendix A demonstrate two descriptive maps of optimal
estimators for [s1, s2, s3] = 222. The main conclusions from these results are the following:

(i) For n3 ≤ 3 and |n2|< = 3, i.e., for relatively low differences between the mean values of
contaminating and central distributions, Z_Hamp is almost always the best estimator.

(ii) Considering all the combinations of [s1, s2, s3] and [fr2, fr3], Z_Hamp is almost always
the best in this range of n2, n3. Therefore, when at most half the distribution of each
contaminating population is outside, left or right, of the central distribution, there is
only one optimal estimator.

(iii) For higher values of n3 and |n2|, determining the most suitable estimator is a function
of (a) the number of participants; (b) the distribution of the results, expressed by f 2,
f 3, n2, and n3.

4.3. Simulation Results

The simulator calculates the results for all combinations [s1, s2, s3] X [fr2, fr3], resulting
in 120 matrices similar to those in Figures A1 and A2, which are the exact solution of the
optimization problem applying the criterion of Equation (4). Instead of this solution, we
chose a functional sub-optimal one by grouping and classifying the parameters as follows:

(i) The algorithm initially generates two groups: (a) a small population of participants,
NLOW, with Nlab = 10, 15, 20, and 30; (b) a large one, NHIGH, with Nlab = 40, 60, 80,
and 100.
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(ii) It then creates at most seven regions of n2 by keeping|n2| < n3, the following:
(a) −7 ≤ n2 ≤ −8; (b) −6 ≤ n2 ≤ −5; (c) −4 ≤ n2 ≤ −3; (d) −2 ≤ n2 ≤ 2
(e) 3 ≤ n2 ≤ 4 (f) 5 ≤ n2 ≤ 6 (g) 7 ≤ n2 ≤8. It is seven regions when n3MAX is 8,
but five when n3MAX is less.

(iii) Afterwards, it counts the occurrences of each estimator as optimal in each region and
calculates their percentages.

(iv) An optimal estimator is the one with the highest percentage and those whose percent
of appearance differs by up to 10% from the maximum.

(v) Next is the creation of tables with the results per n3 and [s1, s2, s3].

Figures 9–11 show the most accurate estimators for [s1, s2, s3] = 111, 211, 212, 222 and
7 ≤ n3 ≤ 8, 5 ≤ n3 ≤ 6, n3 = 4. Appendix B contains all the remaining results for s1 = 3 and
4. We do not show the results for n3 = 2,3 since Z_Hampel is always much superior to the
second estimator, i.e., Z_Hampel is the best. Figure 9 shows that the four estimators are
numbered and colored. Two columns are present for each [s1, s2, s3] because two optimal
estimators exist for some parameter sets.
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Figure 9. Best estimators for 7 ≤ n3 ≤ 8 and [s1, s2, s3] = 111, 211, 212, 222.
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Figure 10. Best estimators for 5 ≤ n3 ≤ 6 and [s1, s2, s3] = 111, 211, 212, 222.

The main conclusions derived from the five results maps of Figures 9–11, A3 and A4
are as follows:

(i) For n3 > 3 and |n2| > 3, determining the optimal estimator depends on (a) the number
of participants; (b) the distribution of the results, expressed by the model parameters,
verifying absolutely the conclusion derived from the examples in Figures A1 and A2.

(ii) For the same n3, the distribution of the most accurate performance statistics as a
function of n2 is not symmetrical around the center. For all n3, the estimators for
−8 ≤ n2 ≤ −7 and −6 ≤ n2 ≤ −5 differ significantly from the ones for 7 ≤ n2 ≤ 8 and
5 ≤ n2 ≤ 6. More symmetrical patterns appear in zones −4 ≤ n2 ≤ −3 and 3 ≤ n2 ≤ 4.

(iii) With the same model parameters, the results are similar for the two groups NLOW and
NHIGH, but not in all cases. For example, for 7 ≤ n3 ≤ 8 and −7 ≤ n2 ≤ −8, Z_Hampel
appears as the optimal performance statistic much more in the NHIGH group than in
NLOW. In contrast, this estimator is found significantly more frequently in the low
number of labs than in NHIGH when n3 = 4.

(iv) The selection of the most appropriate estimator is not so sensitive to the choice of the
mixture of standard deviations, [s1, s2, s3]. When comparing Figures 10, 11, A3 and A4,
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one finds that in enough cases, the optimal statistic is the same for the same group of
labs, n3, n2, f 2, and f 3, concluding that the impact of [s1, s2, s3] is less strong than that
of the other parameters.

(v) With a contaminating population fraction f 3 of 0.05 and distribution diverging rel-
atively little from the bimodal with −2 ≤ n2 ≤ 2, the Z_Hamp is most often found.
However, this rule is not absolute. Figure A4 demonstrates that for the group NHIGH,
n3 = 4, and s1 = 3 or 4, Z_A is the most suitable.

(vi) In some cases, there are expanded zones where one estimator outperforms the others,
increasing the robustness of the suggested solution. For example, in Figures 10 and A3,
for 5 ≤ n2 ≤ 6, the first choice is the Z_MADe. In Figures 10, 11, A3 and A4, for
−2 ≤ n2 ≤ 2 and f 3 = 0.10 the correct selection is Z_A.

(vii) For NLOW and NHIGH groups, Figure 12 illustrates a rough tendency for the preferred
statistics as a function of the zones of n2, n3, and f 3. For each region, the algorithm
counts the occurrences of each estimator in the maps depicted in Figures 9–11, A3 and A4.
It calculates their percentages and considers as optimal statistics those that are up to
10% below the maximum.

(viii) The results of Figure 12 are only a rough guide to choosing the most appropriate
estimator, demonstrating that there is no unique solution, and the best selection
depends on the data distribution.
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Figure 11. Best estimators for n3 = 4 and [s1, s2, s3] = 111, 211, 212, 222.

Although a machine learning technique, like the Support Vector Machine [42], could
better classify the data, the presented solution is directly applicable. The PT schemes can
apply the following procedure to implement the presented technique of finding the most
appropriate robust estimator. Following verification of the homogeneity of the test items
and the use of the same method of analysis per test, the PT expert should build the kernel
density plot, enabling him to find the optimal mix of at most three Gaussian approximating
this plot. If the PT scheme organizer executes the test several times a year, selecting
the results of the latest and several recent rounds to generate kernel plots is preferable.
The latest data have a significant probability of belonging to a population similar to the
recent results population, especially if the same or almost the same laboratories participate.
However, if PT scheme experts used only the last round to build the distribution, the
parameters could have severe uncertainty, especially if Nlab is small. The next step is to
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normalize the parameters of the found normal distributions based on the mean value of
the central one using Equation (8).

mi =
mi, Act

m1, Act
·100 si =

si, Act

m1, Act
·100 i = 1, 2, 3 (8)

The symbols mi,Act and si,Act, for I = 1,2,3, denote the mean value and the standard de-
viation of the three normal distributions simulating the kernel density plot. The parameters
fr1, fr2, fr3, and n2, n3 in Table 1 are independent of normalization.
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Figure 12. Trend maps of robust performance estimators as a function of n3, n2, and f 3 regions.

Rounding the algebraic distances n2, n3, and the three standard deviations to the
nearest integer follows. The same is done with the fractions fr2 and fr3 to the nearest
multiple of 0.05. Next is to check if all the parameters are within the ranges given in
Figures 9–11, A3 and A4. If n3 < 0, and |n3| > |n2|, the symmetrical case by changing
the signs of n2 and n3 provides the same optimal estimator. If this check is positive, the
choice is the estimator that the Figures demonstrate. If f 2 + f 3 ≥ 0.25 but |n2| ≤ 3 and
|n3| ≤ 3, Z_Hamp is the most appropriate selection, as already shown in 4.2. Otherwise,
the figures are not applicable to such a high percentage of contaminating populations. The
same happens if |n3| > n3MAX, as provided in Section 4.2.

The 144 kernel density plots analyzed in Section 2 represent a sufficiently large sample
to apply the simulation results of the mentioned five figures to the actual conditions of
a PT scheme operating systematically for years. Figures 2 and 3 summarize the model
parameters found. In case some real [s1, s2, s3] sets are not present in the simulation results,
we selected from the figures those [s1, s2, s3] that are closest to the actual ones. The group
chosen is always the NLOW, as 11–14 labs participate in each test. Table 6 summarizes the
best estimators for detecting outliers for model parameters computed from actual and
multiple tests.

Table 6. Percentages of estimators for each |n3| region and for all sets.

Percentages
Estimator |n3| ≤ 3 4 ≤ |n3| ≤ 5 |n3| ≥ 6 All n3

Z_MADe 0 2.5 0 0.7
Z_nIQR 0 0 0 0

Z_A 0 30 0 8.3
Z_Hamp 100 55 66.7 86.1

Not Applicable 0 12.5 33.3 4.9
Percentage of

each |n3| region 68 27.8 4.2 100
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The low population of results with |n3| ≥ 6 shows that participants try to improve
their performance and the PT scheme is well organized and mature. Only in 4.9% out of the
144 cases the parameters of the kernel density plots are outside the studied range. Z_Hampel
significantly outperforms the other estimators when applied to multiple distributions of
the results of a well-performing PT scheme. The conclusion is not general, but one can
assume that in continuous and mature PT schemes with a limited number of participants,
the Z_Hampel estimator is the suitable choice.

5. Conclusions

This study investigated the robust estimators of PT schemes in outlier detection,
listed in ISO 13528:2015, using tools developed in [24] and analyzing the distribution
of unsatisfactory results with |Z| > 3. The approach combines various techniques and
criteria: (a) robust estimators of the population mean and dispersion; (b) kernel density
plots; (c) distributions derived from the mix of at most three Gaussians; (d) Monte Carlo
simulations; (e) Z-factors.

One portion of the algorithm created kernel density plots for 144 datasets of cement’s
chemical, physical, and mechanical properties, belonging to a continuous PT scheme of
cement. It approximated each KDP by summing suitable fractions of the Gaussians, which
have adjustable parameters. The fit is sufficiently efficient for all the sets, with a coefficient
of determination of 0.9917 ± 0.0051. While the central distribution is the primary one, the
others contaminate it. The fractions of the three Gaussians, their standard deviations, and
the algebraic distance of the mean of the contaminating ones from the center define the
shape of the results’ kernel density plot. The distribution of these variables determined the
minimum range of the simulation’s parameters.

Assuming a distribution of a large number of results containing Zu% unsatisfactory
results according to EN ISO/IEC 17043:2010, the simulator can find the best estimators.
For each PT round, the simulator considers a wide range of parameters and takes into
account between 10 and 100 participants. The fraction of the two contaminating Gaussians
is up to 0.20 of the total. The model was applied to study the distribution of the mean
and the standard deviation of the population. We found that both are unimodal but
skewed. For the standard deviation, the skewness ranges from moderate to very high. The
distributions of outliers are not only skewed but sometimes not bell-shaped. The metric
to find the best robust estimator must be nonparametric because the approach used to
detect unsatisfactory results is. The software calculates the differential distribution of each
estimator and compares these results with the reference value using the distance of the
distribution’s points from Zref. The estimator with the minimum value is the best.

The simulator calculates the optimal statistics for all combinations, resulting in 120 ma-
trices of results. Instead of this solution, we chose a functional sub-optimal one by grouping
and classifying the model parameters according to the number of participants, the distance
of the secondary distributions from the central one, and the standard deviation of the
Gaussians. In each region, the estimators appearing most often are the best. Whenever
at most half of the distribution of each contaminating population is outside the central
distribution, the Z_Hamp estimator is the most suitable. For all other cases, we concluded
with five result tables, which form a building block of this study and a robust tool for
choosing the most accurate statistic. Z_Hamp is most frequently found for distributions that
diverge relatively little from the bimodal, and the fraction of the most distant population
from the center is 0.05.



Standards 2023, 3 127

We applied the suggested method to the referred 144 datasets of a continuous PT
scheme for cement. We used their kernel density plots and the parameters of the Gaussian
populations to approximate them. The parameters of the KDPs fall outside the studied
range only in 4.9% of these data. Z_Hampel is the most suitable estimator in 86.1% of this
population of results derived from a stably performing PT scheme.

In the author’s experience, 10 to 100 labs participate in most PT schemes, so the results
presented are of fairly general application. One can use the reference values derived from
Z_MADe when there are more participants. After ensuring that the same method of analysis
is used per test and verifying the homogeneity of the samples, the technical expert of a PT
can apply the estimators generated by the sub-optimal solution. It is first necessary to build
the kernel density plot per test and round, or over the recent rounds if the participants are
limited, and then to adjust the parameters of the three Gaussian. If these are within the
range presented in this study, then the estimator given in the corresponding Figure is most
likely the best one.

Based on the above arguments, the novelty of this study is the generalized assessment
of the effectiveness of the robust statistics listed in 13528:2015 in detecting outliers. We
generated tables of optimal estimators for a wide range of participants and distributions of
results, especially useful for existing and new PT schemes. The proposed method applies
to 95.1% of the results for an existing PT for cement. The data cover nine years. The
investigation of the best estimators can continue in the following two directions:

� direct use of the kernel density plots in determining the best statistic
� estimators’ comparisons for Z-factors of absolute value between two and three.

Furthermore, ISO 13528:2015 in Section C.6 states that the PT provider may use other
robust estimators, subject to demonstrating their efficiency in fulfilling the particular
requirements of the PT scheme. The simulation developed and the rich dataset of PT
results used in this study could assist in investigating and comparing the effectiveness of
regression or multivariate models when applied to PT schemes.
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Appendix A

Figures A1 and A2 show the best estimators in detecting outliers for [s1, s2, s3] = 222.
The algorithm also calculates the sum per estimator and n3 value. If a cell contains multiple
findings, the color is that of the estimator of the highest ranking in the row.
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Figure A1. Best estimators for [s1, s2, s3] = 222, f2 = 0.10, and f 3= 0.05. 

Z_MADe Z_nIQR Z_A Z_Hamp

1 2 3 4

f2=0.10 f3=0.05 n2

n3 Nlab –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 Z_MADe Z_nIQR Z_A Z_Hamp

8 10 234 3 3 3 23 4 4 4 4 4 24 2 23 13 13 13 13 4 5 10 7

8 15 4 34 3 3 34 4 4 4 4 4 4 24 3 3 3 3 3 0 1 9 10

8 20 4 4 3 3 3 4 4 4 4 4 4 24 3 13 13 3 3 2 1 8 9

8 30 4 4 4 3 3 4 4 4 4 4 4 4 3 13 3 3 34 1 0 7 11

8 40 4 4 4 3 3 4 4 4 4 34 4 34 3 13 3 3 3 1 0 9 10

8 60 13 4 4 3 3 4 4 34 4 4 34 34 3 13 3 3 13 3 0 11 9

8 80 24 4 4 3 3 34 4 4 34 24 4 3 3 123 3 3 2 1 4 9 9

8 100 14 4 4 3 3 3 4 134 34 34 4 3 23 123 34 23 234 3 4 12 10

7 10 3 13 13 23 4 4 4 4 4 4 2 23 13 1 13 5 3 7 6

7 15 34 3 3 3 4 4 4 4 4 4 4 3 13 13 3 2 0 8 8

7 20 4 3 3 3 4 4 4 4 4 4 24 3 1 13 3 2 1 6 8

7 30 4 3 13 3 4 4 4 4 4 4 4 3 1 3 3 2 0 6 8

7 40 4 4 3 3 4 4 4 4 4 4 34 3 1 3 3 1 0 6 9

7 60 4 3 12 3 34 4 4 4 34 4 34 3 1 3 3 2 1 8 8

7 80 4 4 3 3 3 4 4 4 234 34 34 3 3 3 3 0 1 10 8

7 100 4 4 3 3 3 4 4 4 34 3 3 13 1 3 23 2 1 9 6

6 10 13 13 3 24 4 4 4 4 4 2 23 13 13 4 3 6 6

6 15 3 3 3 4 4 4 4 4 4 23 3 1 13 2 1 6 6

6 20 3 13 3 4 4 4 4 4 4 23 3 1 1 3 1 5 6

6 30 3 3 3 4 4 4 4 4 4 3 3 1 13 2 0 6 6

6 40 3 3 3 4 4 4 4 4 4 3 13 1 13 3 0 6 6

6 60 1 3 3 34 4 4 4 34 34 3 13 1 13 4 0 8 6

6 80 4 3 13 3 4 34 4 4 4 3 1 1 13 4 0 6 6

6 100 4 3 13 3 4 4 4 34 4 3 1 1 3 3 0 6 6

5 10 13 23 24 4 4 4 4 4 24 23 13 2 4 4 7

5 15 3 3 34 4 4 4 4 4 234 3 1 1 1 5 7

5 20 13 3 34 4 4 4 4 34 3 3 1 2 0 6 6

5 30 13 3 3 4 4 4 4 4 3 13 1 3 0 5 5

5 40 13 3 3 4 4 4 4 34 3 13 1 3 0 6 5

5 60 3 3 3 4 4 4 4 34 3 1 1 2 0 5 5

5 80 3 3 3 4 4 4 4 3 3 1 1 2 0 5 4

5 100 123 1 3 4 4 4 4 3 3 1 1 4 1 4 4

4 10 2 4 4 4 4 4 4 4 2 0 2 0 7

4 15 3 4 4 4 4 4 4 4 23 0 1 2 7

4 20 3 34 4 4 4 4 4 4 3 0 0 3 7

4 30 3 3 4 4 4 4 4 4 3 0 0 3 6

4 40 3 3 4 4 4 4 4 34 3 0 0 4 6

4 60 3 3 4 4 4 34 4 3 3 0 0 5 5

4 80 3 3 4 34 4 34 3 3 1 1 0 6 4

4 100 3 3 34 4 4 34 34 3 1 1 0 6 5

3 10 4 4 4 4 4 4 4 0 0 0 7

3 15 4 4 4 4 4 4 4 0 0 0 7

3 20 4 4 4 4 4 4 4 0 0 0 7

3 30 4 4 4 4 4 4 4 0 0 0 7

3 40 3 4 4 4 4 4 4 0 0 1 6

3 60 3 4 4 4 4 4 4 0 0 1 6

3 80 3 4 4 4 4 4 34 0 0 2 6

3 100 3 34 4 4 4 4 3 0 0 3 5

2 10 4 4 4 4 4 0 0 0 5

2 15 4 4 4 4 4 0 0 0 5

2 20 4 4 4 4 4 0 0 0 5

2 30 4 4 4 4 4 0 0 0 5

2 40 4 4 4 4 4 0 0 0 5

2 60 4 4 4 4 4 0 0 0 5

2 80 4 4 4 4 4 0 0 0 5

2 100 4 4 4 4 4 0 0 0 5
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Figure A1. Best estimators for [s1, s2, s3] = 222, f 2 = 0.10, and f 3 = 0.05.
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Figure A2. Best estimators for [s1, s2, s3] = 222, f2 = 0.05, and f3 = 0.10. 
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Figure A2. Best estimators for [s1, s2, s3] = 222, f 2 = 0.05, and f 3 = 0.10.
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Appendix B

Figures A3 and A4 show the best estimators for both groups NLOW, NHIGH, [s1, s2, s3]
= 311, 321, 312, 322, 421, 412, 422, 432 and 5 ≤ n3 ≤ 6, n3 = 4.
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Figure A3. Best estimators for 5 ≤ n3 ≤ 6 and [s1, s2, s3] = 311, 321, 312, 322, 421, 412, 422, 432.
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−2≤ n2≤2 0 0.05 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3

0.05 0.05 4 3 4 3 4 4 4 3 4 4 4 3 3 3 3 3 4 3 3 3

0.1 0.05 4 4 4 4 4 4 4 4 3 3 4 4 3 4 3 3

0.15 0.05 4 4 4 4 4 3 4 4 4 3 3 4 3 3 3 4 3 3

0 0.1 3 3 3 3 3 3 3 3 1 3 1 3 3 1 3 3 3

0.05 0.1 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3

0.1 0.1 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3

0 0.15 3 3 3 3 3 2 3 2 1 3 2 1 1 1 3 1 1 1 1

0.05 0.15 3 1 3 3 4 4 3 4 2 3 2 3 4 3 3 3 1 3 3 3

0 0.2 1 4 4 4 2 4 1 2 1 1 4 4 4 4 4 1 4 1

3≤ n2≤4 0.05 0.05 3 3 4 3 3 4 3 3 3 1 3 3 3 3 3 3 3

0.1 0.05 4 3 4 4 4 4 4 3 4 4 1 3 4 1 3 1 3 1 3

0.15 0.05 4 1 4 4 4 4 4 4 4 4 1 4 4 4 3 4 4 4 4

0.05 0.1 3 3 4 3 3 3 2 3 3 2 3 2 1 3 3 3 3 1 1 3 3 1

0.1 0.1 4 1 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4

0.05 0.15 4 1 4 3 4 4 4 4 4 4 1 4 4 4 4 4 4 4

422 432311 321 312 322 421 412

Group NLOW Group NHIGH

311 321 312 322 421 412 422 432

Figure A4. Best estimators for n3 = 4 and [s1, s2, s3] = 311, 321, 312, 322, 421, 412, 422, 432.
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