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Abstract: An in-depth experimental study of the matrix effect of antifreeze (ethylene glycol) and
water contamination of engine oil through FT-IR spectroscopy. With a comparison of the percent by
volume concentration of contaminated fresh 15W-40 engine oil, there appeared to be a noticeable
reduction in the O–H stretching signal in the infrared spectrum when ethylene glycol based antifreeze
was included as a contaminant. The contaminants of distilled water, a 50/50 mixture of water and
commercial ethylene glycol antifreeze, and straight ethylene glycol antifreeze were compared and
a signal reduction in the O–H stretch was clearly evident when glycol was present. Doubling the
volume of the 50/50 mixture as compared to water alone still resulted in a weaker O–H stretching
signal. The possibility that this signal reduction was due to the larger ethylene glycol molecule
having fewer O–H bonds in a given sample size was eliminated by comparing samples with the same
number of O–H bonds per unit volume. The strong hydrogen bonding between that of water and
glycol appeared to reduce the O–H stretching signal, even after comparing the different sample types
at concentrations with the same number of O–H bonds per unit volume. Tukey’s highly significant
difference was used to show that samples of the 50/50 mixture and straight glycol were not reliably
distinguishable from one another when comparing the same number of O–H bonds per unit volume
but readily distinguishable from that of water as the lone contaminant.

Keywords: infrared spectroscopy; sonication; emulsion; glycol; antifreeze contamination; matrix
effect; engine’s lubrication oil

1. Introduction

Contamination of engine oil by glycol can yield severe damage to engine components
within a short period [1]. While a reasonable threshold limit exists for small amounts of
other harmful engine oil contamination, such as water, dirt, soot, fuel contamination, etc., in
engine oil [2,3], differing sources have more caution against glycol contamination. Sources
have suggested anywhere from a cautionary 200 ppm contaminate level [4], a maximum
allowable value of 100 ppm [5], or having no safe limit of glycol contamination in engine
lubricating oil at all [6].

Glycol-based engine coolants or antifreeze can contaminate engine oil through faulty
engine seals, head gaskets, a cracked engine block, cracked cylinder heads, a defective water
pump seal, or head bolts that have been improperly torqued [1,7]. When engine coolant is
exposed to the engine’s lubricating oil under the high heat of a running engine, the glycol
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breaks down into glycolic acids that can react with metallic surfaces forming metal salts
leading to corrosion or pitting [1,8] or combine with oil additives and water to form a filter
plugging sludge [1,8–10]. Glycol contamination can be nearly ten times more damaging
than water alone [8]. In addition, research has shown that adding TiO2 nanoparticles to
engine oil could reduce friction between components [11–15]. However, when ethylene
glycol was used as a nanofluid dispersant for the TiO2 nanoparticles in engine oil, this
caused the oil to gelatinize after just 10 h of use, whereas a paraffin oil dispersant did not
have the same effect and actually reduced friction between components [12,13].

To detect glycol contamination in engine oil, currently available methods include the
blotter test, which simply involves placing a drop of oil on blotter paper and checking the
results in a couple of hours after the oil has been well absorbed into the paper. The presence
of glycol can interfere with oil dispersancy, and often a definitive black ring of soot forms
around a center that is yellow or brown in color [1,8]. Another method is the Schiff’s reagent
test (ASTM D2982), where a sample of oil is pipetted into a solution of iodic (HIO3) and
hydrochloric (HCl) acids that oxidize glycol present in the oil, and the resulting aldehyde
production turns the Schiff’s reagent a pink or purple color indicating the presence of
glycol [1,8,9,16]. However, the Schiff’s reagent test can result in false positives with some
new oils and like the blotter test, involves some subjectivity in reading the results [1,8]. Gas
chromatography (ASTM 4291) has often been employed to detect glycol contamination in
used engine oil, whereby water is used to help extract glycol and is centrifuged out, and
the precipitates are introduced into a gas chromatographer to separate and detect the polar
compounds [1,8]. A terahertz time domain spectrometer (THz-TDS) has also successfully
been used to detect glycol contamination in engine oil down to the 300 ppm range [17].
Fourier-transform infrared (FT-IR) spectroscopy (ASTM E2412) has been used for a wide
range of applications [18–23], and it has been commonly used to analyze engine oil in
order to detect water contamination [24,25], oxidation [26], and also the absorption bands
associated with glycol contamination [27], which is why it is used by several laboratories
that perform oil analysis [1,8,28]. Even though ethylene glycol has four different peaks
that show up in oil analysis, three of these peaks can have such strong overlap with other
products potentially present in the virgin lubricant sample that one of the least prominent
peaks (CH2 rocking peak at 883 cm−1) is the one used for quantification and the others are
just used for verification purposes [28].

FT-IR analysis of glycol’s possible intrusion into engine oil involves looking for four
distinct peaks within the oil. According to the ASTM International standards, the O–H
stretching that is seen with water around 3400 cm−1 is indicative of glycol, but glycol
also has verification peaks in the ranges of 1098–1069 cm−1 and 1050–1030 cm−1 (skeletal
vibration modes of the C–C and C–O stretching [10,29,30]), along with a peak used in
quantification at 883 cm−1 (CH2 rocking [29]) that has some overlap with diesel fuel
contamination [28]. Even though the peaks centered around 1040 cm−1 and 1080 cm−1

tend to be more prominent than the peak at 883 cm−1, they have such strong overlap with
other products potentially present in oil that they are used for verification [28].

As previously mentioned, some tests used for glycol detection in engine oil include
the blotter test, Schiff’s reagent test, gas chromatography, and FT-IR analysis. However, a
drawback to the previously mentioned tests is that molecular glycol needs to be present. If
the glycol has already broken down in the oil, then elemental analysis can be employed to
detect the telling signatures of the unique antifreeze additives left behind in the oil matrix.
To that end, inductively coupled plasma spectroscopy and rotating disc electrode elemental
spectroscopy are used to detect elements such as sodium, boron, and potassium within
the oil that are common in antifreeze additives [1,8]. In the heated oil matrix, sodium
and potassium compounds may be the most stable of the antifreeze additives but have a
risk of being filtered out by the oil filter [1]. To combat this effect of causing potentially
unreliably low measurements due to the filtration of the key additives, at an oil change,
a piece of used oil filter can be sonicated in an ultrasonic bath of a solvent (e.g., mineral
spirits or kerosene) at which point an acid digestion method may help determine the key
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elements, or the subsequent residue may be filtered through a membrane and then analyzed
with X-ray fluorescence spectroscopy, or the residual constituents analyzed with chemical
microscopy [1].

As noted in the ASTM International standard, it states that when glycol is present
within the oil, water cannot be properly quantified with FT-IR analysis, and glycol standards
are prepared using a 50/50 ratio of glycol to water since this is considered the recommended
ratio for most applications in coolant systems [28]. Studying this glycol/water interaction
within oil would be of interest to aid in improving the quantification of the minimum level
of glycol contamination.

This study explores the use of an FT-IR spectrometer to point out some of the complex-
ities of the matrix effects of the glycol/water interaction within the oil and demonstrate
the difficulties in quantifying the contaminant concentration when glycol and water both
contaminate the engine oil.

2. Material and Methods
2.1. Sample Preparation

A container of a common diesel engine oil (Shell Rotella T, SAE 15W-40), a container
of concentrated antifreeze (Prestone Concentrate Antifreeze/Coolant), and a container of
50/50 water to antifreeze solution (Prestone Prediluted 50/50 Antifreeze/Coolant) were
purchased from a domestic retail market in Carbondale, IL, USA. A pipette was used to
make different contaminated sample concentrations by volume of fresh oil with distilled
water, fresh oil with concentrated antifreeze, and from fresh oil with the 50/50 premixed
antifreeze solution. The treatments included different proportions of the aforementioned
sample types that contaminated the fresh engine oil, as seen in Table 1a–c.

The ASTM International standard for FT-IR measurements of glycol contamination in
used or in-service engine oil states that in the preparation of glycol standards, the samples
need to be adequately mixed and indicate that mixing or mechanical shaking for 15 min is
considered adequate [28]. It has been shown in an earlier study of creating oil standards
with water contamination for FT-IR analysis that mechanical rotary mixing for two hours is
still not adequate to accurately quantify the water present, even though the water standard
mixing description is identical to that of glycol [25,28].

Within this study, an ultrasonic probe was employed to directly sonicate the samples
to deliver high-energy mixing very quickly in order to ensure proper emulsification for
clarity of IR measurements. The samples were emulsified with an ultrasonic processor
(Sonic Vibra-CellTM, model: VCX750, Sonics & Materials Inc., Newtown, CT, USA) with
a probe (model: CV33, Sonics & Materials, Newtown, CT, USA) diameter of 13 mm at a
frequency of 20 kHz ± 50 Hz and power output of 750 W. A detailed description of the
sample preparation used for this study can be found in a previous publication [24].

2.2. FT-IR Spectroscopy Analysis

The infrared spectra were recorded with an FT-IR spectrometer (Thermo-Nicolet
Nexus 670, Nicolet Instrument Corporation, Madison, WI, USA) with a wavenumber range
of 400 to 4000 cm−1. Purging the system with dry air took place before each measurement
of background or sample to minimize interference from atmospheric humidity. Potassium
bromide (KBr) windows were used for their minimal infrared damping and similar index of
refraction to oil, such that fringe corrections would be unnecessary, unlike with zinc selenide
(ZnSe) windows [25,28]. Moreover, the KBr windows’ solubility by a water/oil emulsion
has a negligible effect on experimental results, more so than indeterminate errors such
as sampling and instrument noise [25]. Before each sample measurement, a background
measurement of the KBr windows alone was performed. From each respective sample,
3 µL was pipetted from the horizontal and vertical center of the sample vessel and dropped
onto a 1-inch diameter KBr window. The same type of KBr window was used to cover
the first and rotated 90 degrees to ensure an even spread of oil across both window faces.
Two separate spectra measurements were recorded with 4 consecutive runs per spectrum
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for each sample concentration. After spectrum acquisition of the oil emulsion, the KBr
windows were cleaned using methylene chloride before procuring the next background,
followed by data collection of a sample.

Table 1. (a) The three different contaminant types are listed by the total percent volume of the
contaminant in the oil samples for the purposes of comparing equal volumes of the different con-
taminants; (b) The concentrated antifreeze and the 50/50 premixed antifreeze samples are listed by
the total percent volume of the contaminant that corresponds to the percent volume of concentrated
antifreeze that contaminates the oil samples for the purposes of comparing the equal amount of
antifreeze concentration by different contaminants; (c) The three different contaminant types are
listed by percent volume of contamination corresponding to an equal number of O–H bonds per
cubic centimeter as normalized to those found in the concentrated antifreeze sample for the purposes
of comparing equal amounts of O–H concentration by different contaminants. The normalization
procedure is discussed in Section 2.4.

(a) Comparing equal volumes of different contaminants

Amount of Concentrated
Antifreeze Contaminant

(% v/v)

Amount of 50/50 Premixed Antifreeze/Water Contminant
(% v/v)

Amount of Distilled Water
Contaminant

(% v/v)

0 0 0
0.1 0.1 0.1
0.2 0.2 0.2
1.0 1.0 1.0
2.0 2.0 2.0

(b) Comparing equal amount of antifreeze concentration by different contaminants

Concentration of Antifreeze
by Contaminant (% v/v)

Amount of Concentrated Antifreeze
(% v/v)

Amount of 50/50 Premixed
Antifreeze/Water

(% v/v)

0 0 0
0.05 0.05 0.1
0.1 0.1 0.2
0.2 0.2 0.4
1.0 1.0 2.0
2.0 2.0 4.0

(c) Comparing equal amount of O-H concentration by different contaminants

Concentration of
O–H bonds in

contaminant (a.u.)

Amount of Concentrated
Antifreeze

(% v/v)

Amount of 50/50 Premixed
Antifreeze/Water

(% v/v)

Amount of Distilled Water
(% v/v)

0 0 0 0
0.5 0.5 0.244 0.161
1.0 1.0 0.487 0.322
2.0 2.0 0.975 0.645
4.0 4.0 1.95 1.289

8.21 8.21 4.0 2.646

2.3. Data Preprocessing and Analysis

Before analysis, the baselines of each spectrum were initially autocorrected using
the accompanying FT-IR Omnic software (version 5.1) to minimize the effects of baseline
shifting between FT-IR measurements, which can still leave some baselines shifted slightly.
Thusly, where each spectrum typically lacks any detectable signals and flattens (3970 to
3995 cm−1), each was shifted to zero on the absorbance scale, which was applied to the
entire baseline of each respective spectrum. To enhance the signal-to-noise ratio over what
is typically obtained from the equipment software, it was decided to do baseline corrections
by fitting the baseline section-by-section with a polynomial function using an in-house
built Python program that had also been previously reported in detail by author [31]. This
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technique was utilized to avoid the baseline anomalies that can result from fitting a single
polynomial over different spectral regions; however, care has to be taken to ensure that
phantom baseline correction peaks do not appear where the sections of baseline corrections
join. This Python-based program is a semi-automated, graphical user interface (GUI) that
allows for visual confirmation of the program’s ability to fit the data’s baseline without
anomaly, and correction parameters can be manually optimized if needed. Then, the areas
used in this study were found by integration.

Comparisons of the peak areas, and in some instances, the maximum peak heights,
were investigated by analysis of variance (ANOVA) [32] to determine if there was a signifi-
cant difference (α = 0.05) in absorbance among the contaminant levels by percent volume
contamination (water, concentrated glycol, and a 50/50 mixture of glycol and water), by
percent of glycol contamination, and by the number of O–H bonds per unit volume. Four
measurements from each of the three trial replications were averaged prior to analysis, and
Tukey’s highly significant difference (HSD) was used to determine the differences between
sample type and concentrations.

2.4. Results and Discussion

Aberrant behavior is observed within the FT-IR results of water in engine oil, glycol in
engine oil, and a 50/50 mixture of water and glycol in engine oil. While some frequency shift
should be expected as there is a difference between free hydrogen bonds and intramolecular
hydrogen bonding [33–38], a matrix effect appears to suppress the stretching signal of the
O–H functional group.

For clarity in observing the matrix effect, the number of O–H bonds of the three
different mixtures have been calculated per cubic centimeter and normalized to ethylene
glycol’s ratio. Ethylene glycol and water essentially have the same number of O–H bonds
per molecule, so a direct ratio between the two substances in moles per cubic centimeter
was determined by

water mol
cm3

ethyleneglycol mol
cm3

,

such that the number of O–H bonds per unit volume for concentrated ethylene glycol
is defined to be 1 with 1% glycol contamination, water is therefore 3.1 with 1% glycol
contamination, and 50/50 glycol & water would be 4.1 with 2% 50/50 (glycol/water)
contamination.

It can be seen in Figure 1 that the average spectra of a 2% contamination of a 50/50 mix-
ture of glycol and water (1% of water and 1% of glycol) in 15W-40 engine oil has an O–H
stretching peak that is less than that of 1% of water as the lone contaminant despite having
the same amount of water. Even though there should be more O–H bonds in the 50/50 mix-
ture of glycol and water exposed to the incident light, the amount of absorption around the
3400 cm−1 O–H peak is appreciably less than that of 1% water contamination alone. The
concentrated glycol has a small signal (1% concentrated glycol in Figure 1), but due to the
structure of ethylene glycol, it has less than a third of the total O–H bonds per unit volume,
as does water alone. The other peaks of interest for glycol or glycol/water contamination
in engine oil are the peaks of 883 cm−1 (CH2 rocking), 1040 and 1080 cm−1 (C–C and C–O
stretching), 1640 cm−1 (O–H bending). Two of the more prominent peaks in the spectra
include that of 2920 cm−1 (CH stretching) and 1460 cm−1 (CH2 scissoring) [39]; however,
the two aforementioned peaks are independent of the contaminants, so they were not
included in this study.

When plotting the maximum amplitudes for water, concentrated glycol, and the
50/50 mixture contaminants, the matrix effect is realized throughout the different con-
centrations, as seen in Figure 2. Here, it is noted that points on the trendline for the
volume of water have a greater maximum amplitude than that of double the volume of the
50/50 antifreeze despite having an equivalent amount of water.
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Figure 2. Average areas of absorbance of the 3400 cm−1 O–H peak due to contamination vs. percent
concentration after emulsifying by direct probe sonication. The dashed lines represent predicted
values of O–H concentration normalized to glycol as given by the normalizing constant τ, as shown
on the chart, and are plotted as (O–H/vol) ∗ τ vs. percent contamination, where the O–H per unit
volume is normalized to glycol.

To illustrate this odd effect further, the absorbance of O–H is plotted as O–H concen-
tration per unit volume in Figure 3. When plotting the O–H concentration per unit volume,
the maximum measured amplitude of premixed 50/50 solution is noticeably less than that
of water and even appears slightly less than that of the concentrated glycol contamination.

As the incident light interacts with the O–H bonds, the intermolecular bonds between
the water molecules and glycol suppress the usual stretching of water-to-water intermolecu-
lar bonding. Ethylene glycol, C2H6O2, is considerably more massive than a water molecule,
but such critical damping of the O–H stretch lends credibility to the idea that there exists
a preference of both hydrogen ends of the water molecule being bound to two separate
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ethylene glycol molecules, and molecular dynamic simulations of ethylene glycol in water
with molalities ranging from 1 to 5 mol/kg (~0.17% to ~0.99%) have indicated a preference
for hydrogen bonding to occur between glycol and water with minimal glycol and glycol
bonding [33]. Evidence supporting the preferential hydrogen bonding of a single water
molecule with two glycol molecules has been noted in the past at concentrations compara-
ble to the 50/50 ratio of glycol to water used herein with density functional theory (DFT)
calculations and near-infrared studies of strictly pure ethylene glycol and water solutions
undergoing incremental temperature changes from 10 ◦C to 90 ◦C [33].
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Figure 3. Average areas of absorbance of the 3400 cm−1 O–H peak vs. O–H concentration per
unit volume (normalized to glycol O–H concentration). Note that 0.0 O–H corresponds to no
contamination; 0.5 O–H corresponds to 0.5% glycol, ~0.244% glycol & water, and ~0.161% water;
1.0 O–H equates to 1.0% glycol, ~0.487% glycol & water, and ~0.322% water; 2.0 O–H equates to 2.0%
glycol, ~0.975% glycol & water, and ~0.645% water; and 4.0 O–H corresponds to 4.0% glycol, ~1.95%
glycol & water, and ~1.289% water.

Differences between the mean of absorbance as recorded by FT-IR spectroscopy of
each contamination type and concentration by percent volume of a total contaminant in the
3150–3500 cm−1 wavenumber range are summarized in Table 2.

Table 3 lists the differences between the areas of absorbance in the total glycol contam-
ination, where, for example, a percent glycol contamination of 0.5% in the table, depending
on the respective row header, implies that the total percent of contaminant used was either
a total contamination of 0.5% of the concentrated glycol or a 1.0% total contamination of
the premixed glycol/water contaminant (only half of that actually being glycol).

Tables 2 and 3 confirm the similar behavior of O–H peaks (3150–3500 cm−1) with the
mean area under the curve and the mean amplitude data analysis; thus, the rest of the data
analysis uses the area under the curve. The differences between the areas of absorbance
in the O–H bonds per unit volume for the three types of contaminants are summarized
in Table 4, where an O–H contamination is normalized to that of the concentrated glycol
such that an O–H rate of 0.5 corresponds to 0.5% straight glycol, ~0.244% glycol/water,
and ~0.161% distilled water.

Table 2. Summary of the differences in contamination levels of the mean absorbance in the
3150–3500 cm−1 wavenumber range.

Percent Contamination

0.0% 0.1% 0.2% 0.5% 1.0% 2.0%

Contaminant
Type N Mean * Mean * Mean * Mean * Mean * Mean *

Water 3 0.0011369 a 0.0038145 a 0.0085823 a 0.0194665 a 0.037366 a 0.063110 a
Glycol/Water 3 0.0011369 a 0.0029290 a 0.0037119 b 0.0141760 b 0.018696 b 0.033128 b

Glycol 3 0.0011369 a 0.0025882 a 0.0037100 b 0.0068265 c 0.009768 c 0.018479 c

* Means in the same column with the same letter are not significantly different.
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Table 3. Summary of the differences in contamination levels of the mean absorbance area in the
3150–3500 cm−1 wavenumber range.

Percent Glycol Contamination

0.0% 0.05% 0.1% 0.2% 0.5% 1.0% 2.0%

Contaminant
Type N Mean * Mean * Mean * Mean * Mean * Mean * Mean *

Glycol/Water 3 0.39452 a 1.0167 a 1.2892 a 3.1154 a 6.5002 a 11.518 a 21.1346 a
Glycol 3 0.39452 a 0.8295 a 0.8969 a 1.2906 b 2.3758 b 3.401 b 6.4343 b

* Means in the same column with the same letter are not significantly different.

Table 4. Summary of the differences in O–H contamination rates as measured by the mean absorbance
in the area of the 3150–3500 wavenumber range. The % v/v equivalents for each contaminant type are
shown for the corresponding O–H contamination rate.

O–H Contamination

0.0 0.5 1.0 2.0 4.0 8.21

Contaminant
Type N Mean * % v/v Mean * % v/v Mean * % v/v Mean * % v/v Mean

* % v/v Mean * % v/v

Water 3 0.39452
a 0.0 1.9365 a 0.161 5.1416 a 0.322 10.684 a 0.645 17.446

a 1.289 28.897 a 2.646

Glycol/Water 3 0.39452
a 0.0 2.3748 a 0.244 3.5487 b 0.487 7.497 ab 0.975 11.055

b 1.95 21.135 b 4.0

Glycol 3 0.39452
a 0.0 2.3758 a 0.5 3.4007 b 1.0 6.434 b 2.0 13.623

b 4.0 24.527
ab 8.21

* Means in the same column with the same letter are not significantly different.

From Table 4, it is possible to distinguish O–H contamination due to water from that
of glycol or due to water from that of a 50/50 glycol/water contamination with FT-IR
for all concentrations of contaminants except for 0.5 O–H a.u. However, the FT-IR was
not capable of reliably distinguishing between the O–H contaminations due to glycol and
glycol/water, but some distinctions appear between the two at the O–H concentrations of
2.0 (2% glycol and ~0.975% glycol/water) and 8.21 (8.21% glycol and 4% glycol/water).
Furthermore, the mean area of the O–H peak switches from being glycol/water dominant to
glycol dominant. As noted in a previous study, the linear behavior and steepest increasing
slope observed for increasing water contaminations in 15W-40 engine oil are less than
2% contamination [25]. Water’s gradually diminishing effect on the increase in the O–H
peak above 2% contamination could be partially responsible for this inversion; however, it
requires further systematic investigation with DFT calculations of increasing concentrations
of water in a medium of a large hydrocarbon chain with supplemental additions of known
oil additives, such as detergents and demulsifiers.

3. Conclusions

This work supports the previous, theoretically established evidence from molecular
dynamic simulations (~0.17% to ~0.99% ethylene glycol in water) [33] and DFT calculations
with near-infrared analyses of 5%, 50%, & 95% ethylene glycol in water [36] that the
intermolecular bonds of ethylene glycol molecules are quite strong and that the bond
between ethylene glycol and water is more substantial than a water-to-water bond, making
it the preferential bonding type if there exits enough glycol for two molecules to “tie up”
each water molecule. Here, it is established that this may suppress the O–H stretching
signal in infrared spectroscopy investigations of antifreeze contaminated engine oil and
can generate potentially misleading results on the actual concentrations of contamination.

Due to the O–H signal’s suppression being so great that even when accounting for
the same number of O–H bonds per unit volume, the 50/50 mixture and the concentrated
glycol contaminants are readily distinguishable from water as the sole contaminant but not
readily distinguishable from one another. Further investigations could include DFT-based
molecular dynamic calculations of glycol and water at different ratios in a medium of a
large hydrocarbon chain, such as is found in base engine oil, to look at the spatially depen-
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dent electron densities within the given electronic structure in order to deduce the likely
intermolecular and intramolecular bonding interactions at play. The approximations used
in DFT calculations still require experimental confirmation [40], and to that end, changing
the ratio of glycol concentrations to water could more effectively reveal this matrix effect as
water content increases, forcing water-to-water bonds within the glycol matrix, perhaps
reducing the suppression of the O–H signal. Creating a calibration curve could be useful
in allowing better water quantification in the presence of glycol as determined by another
glycol peak (883 cm−1). The confirmation and quantification of current levels of glycol con-
tamination in a sample could lead to a better assessment of water concentration. Since the
water content in the presence of glycol points to a coolant leak, which typically starts out as
50/50 antifreeze, then a better estimation of the minimum total glycol contamination may
be performed despite the rapid decomposition of glycol in oil at typical engine operating
temperatures.
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7. Raţiu, S.; Josan, A.; Alexa, V.; Cioată, V.G.; Kiss, I. Impact of contaminants on engine oil: A review. J. Phys. Conf. Ser. 2021, 1781,

012051. [CrossRef]
8. Scientific Spectro. Guide to Measuring Glycol Contamination in Oil; Spectro Sci.: Chelmsford, MA, USA, 2016; pp. 1–5.
9. Agarwal, A.K. Lubricating Oil Tribology of a Biodiesel-Fuelled Compression Ignition Engine. In Proceedings of the ASME 2003

Internal Combustion Engine Division Spring Technical Conference, Salzburg, Austria, 11–14 May 2003; pp. 751–765. [CrossRef]
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