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Abstract: Rating systems are applied to a wide variety of different contexts as a tool to map a large
amount of information to a symbol, or notch, chosen from a finite, ordered set. Such a set is commonly
known as the rating scale, and its elements represent all the different degrees of quality—in some
sense—that a given rating system aims to express. This work investigates a simple yet nontrivial
paradox in constructing that scale. When the considered quality parameter is continuous, a bijection
must exist between a specific partition of its domain and the rating scale. The number of notches and
their meanings are commonly defined a priori based on the convenience of the rating system users.
However, regarding the partition, the number of subsets and their amplitudes should be chosen a
posteriori to minimize the unavoidable information loss due to discretization. Considering the typical
case of a creditworthiness rating system based on a logistic regression model, we discuss to what
extent this contrast may impact a realistic framework and how a proper rating scale definition may
handle it. Indeed, we show that choosing between a priori methods, which privilege the meaning of
the rating scale, and a posteriori methods, which minimize information loss, is not strictly necessary.
It is possible to mix the two approaches instead, choosing a hybrid criterion tunable according to the
rating model’s user needs.

Keywords: rating models; master scale; automated decisional systems; credit risk

1. Introduction

Nowadays, the application of rating systems is widespread in a remarkable variety of
contexts. Indeed, almost any real-life decisional process requires the ability to order a set of
items (objects or subjects) based on a quality criterion. From the triage color coding used to
classify the severity of each case in hospitals [1–3] to the ELO system [4], and its further
evolutions [5,6], used to compare players in chess and other competitive zero-sum games,
the examples are most diverse.

As stated above, a rating system is a means to sort a set and uniquely associate a
“state”, or notch, to each element. Such a function is mainly intended for two purposes.
First, it offers a quick summary of the data used to perform the classification: e.g., the
rating issued by a credit rating agency provides the investors with information far more
easily understood than the collection of financial statements available from the rated
firm. Second, it enables decisional processes and their possible automation. This paper
investigates the possible conflict between these two apparently coherent purposes. In
this work, we highlight the existence of a problem that is nearly as common as the rating
systems applications themselves but not as acknowledged.

In order to be effective, a rating system needs to keep all the complexity “hidden” in
the classification process and provide the final user with simple, standardized output. The
simplicity is commonly achieved by defining the codomain of the rating system’s function as
a finite or, at least, discrete, set of states—the so-called “master scale”, or “rating scale” [7–9].
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The master scale is often a reference to implement strategies and make decisions. To
highlight this fact, let us consider the abovementioned examples. A bank may reject a loan
request or grant it up to a given exposure based on the client’s credit score. Nurses follow
different protocols based on the triage color assigned to the patient. Professional chess
players earn different titles based on the ELO score they can reach and maintain, together
with the right to join specific tournaments. These examples share a common feature: each
notch of the master scale is uniquely associated with a specific set of actions and rules,
implying that the decisional system can be represented as a bijective map.

The “rigid” decisional map depicted in Figure 1 is well-posed only if the master scale’s
semantics is as rigid. Namely, if a given notch always implies the same actions over time,
the meaning of the notch must be stable over time as well. As stated above, the rating
system is de factoa means to order a given population and partition it into subsets. The
master scale corresponds to the partition applied after sorting the population. Hence, the
master scale can be kept stable through time without losing information or altering its
semantics only if the population distribution is stationary. Unfortunately, this is not the
case in many contexts.

Subject 1

Subject 2

Subject 3

Subject 4

. . .

Raw data

Notch 1

Notch 2

Notch 3

Notch 4

. . .

Master scale

Action 1

Action 2

Action 3

Action 4

. . .

Management

Rating system Decisional process

Figure 1. Schematics of the rating and decisional maps.

The seminal background needed to design a master scale dates back to the early
twentieth century, when American rating agencies began developing the tools needed for
their activity [10]. In the meanwhile, flourishing research activity in psychology [11,12],
being still ongoing nowadays [13,14], was devoted to designing master scales as a tool to
map subjective attitudes collected through questionnaires into a quantitative framework.
It is worth noticing that the schema reported in Figure 1 also holds in the latter context,
considering the subjective attitudes as raw data and the questionnaire’s structure as the
rating system.

The problem mentioned above of a master scale’s stability over time is just partly
addressed in credit risk literature [15]. The proposed solutions are focused on improving the
precision of the estimated probability of default associated with each notch as possible (see,
e.g., [16]) and validating the (previously calibrated) master scale [17,18]. In Falkenstein’s
approach to master scale validation [17], the estimation of default and recovery rates
per notch plays a central role, while Sobehart [18] proposed to also apply information
criteria (e.g., accuracy ratio, information entropy) to assess the overall performance of
the rating system. However, the banking and finance literature does not offer a precise,
unique solution to the problem of calibrating a master scale’s partition in the presence of
a non-stationary population. Indeed, in corporate default risk applications, the problem
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is mitigated by the stability obtained through calibrating default probabilities over an
extended observation period [7,8].

Coming back to the ELO example and its stability, there is an ongoing debate about the
so-called “rating inflation”. In fact, there is a possible distortion of the ELO semantics due
to the evolution of the chess players’ population, implying that a contemporary player with
a given ELO score is probably weaker than a player rated with the same ELO score decades
ago. If this is confirmed, the decision system or the rating system should be adjusted to
avoid that being awarded a given title (e.g., “international master”) requires lesser skills
over time, given the same ELO score threshold. The question is open to date, and some
analyses suggest that such a phenomenon is hardly detectable [19]. Nonetheless, FIDE
addresses it by fine-tuning its rating system parameters over time [20].

The triage systems’ stability has been recently impacted worldwide as well. Indeed, in
this context, the COVID-19 pandemic shows that the severity distribution of human illness
in any country is subjected to abrupt changes that require reviewing the triage master scale
semantics and its implications on the related decisional process [21,22].

In the following, we consider another ubiquitous rating system: credit scoring based
on logistic regression. In this work, we discuss how the semantics stability of the master
scale and the preservation of information can conflict even in such a simple and widely
applied system, forcing the user to update the notchs’ meaning by time (and the related
decisional system as well) or to lose information as the evaluated population evolves. It is
worth recalling a typical strategy that the banking industry and rating agencies adopt to
address this problem, that is, the through-the-cycle calibration of the probabilities of default
(also “PD”) considered by the rating model. This choice guarantees the master scale’s
stability for practical purposes, provided that the subsequent decisional process is long-
term oriented. However, financial intermediaries also need to evaluate PDs and subsequent
decisions in a short-term framework (see, e.g., [23,24]), implying the inapplicability of a
through-the-cycle approach to fix the problem.

The remainder of the paper is organized as follows. Section 2 describes a typical rating
system based on logistic regression, together with some possible methods to define the
rating scale. Section 3 compares the outcomes of the different methods given the same
population and underlying scoring model. Section 4 extends the comparison by introducing
a toy decisional system and showing the impact of considering a method that privileges
semantics stability or a method oriented to minimize information loss. The benefits of a
hybrid method are discussed as well. Section 5 summarizes the main results obtained in
this work.

2. Models and Methods

This section recalls the theoretical framework used in this work. Section 2.1 describes
some of the main features of a rating model based on a logistic regression model. Without
claim to completeness, Section 2.2 proposes a selection of different methods to evaluate the
master scale, considering both the “fixed semantics” and the “maximum information” criteria.

2.1. A Typical Rating System

A credit scoring model can be thought of as a map from a set of measured attributes
of the evaluated subject—typically microeconomic variables—to a PD value or, at least, a
symbolic notch that expresses a certain creditworthiness level.

In this perspective, such a model can be classified into the wider category of “structural”
models, whose the first and most remarkable example is the Merton–KMV model [25–27].
Typically, a structural model is based on two assumptions:

i. The deterministic relationship existing between a set of microeconomic variables
describing the state of a firm and its creditworthiness;

ii. The stochastic marginal dynamics of the considered microeconomic variables.

However , this setting is not shared among all the structural models. A comprehensive
class of structural models—known as “cross-sectional” models—represents a commonly
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accepted approach to model the default probability PD of a firm as a function of the infor-
mation available from the firm’s financial statements without introducing any additional
assumptions about dynamics [28]. This class coincides with credit scoring models.

In a nutshell, a typical credit scoring model is based on the hypothesis that the PD of a
firm F, estimated in t over a given time horizon (t, t+∆t], can be expressed as a generalized
linear function of some financial ratios and/or other numerical values taken from the firm’s
financial statements.

PD(F, t, ∆t) = E
[
1I{τF∈(t,t+∆t]}|Ft

]
= f

(
β0 +

N

∑
i=1

βixiF(t)

)
(1)

where τF is the time to default of F, β := (β0, β1, . . . , βN) ∈ RN+1 is the array of the model
parameters to be calibrated and xiF(t) ∈ R is the value of the i-th considered variable,
measured in t from the F’s financial statements and/or other selected information sources.

The function f : R→ [0, 1] is chosen according to tractability criteria. Unlike in Merton
model, in this case, there are no assumptions about the dynamics of creditworthiness that
imply a form of f (·). A comparative analysis on the presence of each cross-sectional
model in the literature can be found in [29]: the “logit” and “probit” models emerge as the
most commonly studied in terms of number of papers. These two typical choices [28–30]
correspond to taking f (·) as the standard logistic function

f (x) ≡ ex

ex + 1
=

1
2
+

1
2

tanh
( x

2

)
(2)

and the standard normal CDF

f (x) ≡ 1
2

[
1 +

1
2

erf(x)
]

, (3)

where erf(x) := 2√
π

∫ x
0 exp

(
t−2)dt is the error function.

In this context, it is commonly assumed that default events over (t, t + ∆t] are dis-
tributed as i.i.d. Bernoulli random variables conditionally to the state xF(t) of each firm.
Under this assumption, the two f (·) forms listed above lead to the “logit” and “probit”
models, respectively. A reason for the popularity of these models is the possibility to
calibrate them by maximum likelihood (ML) estimation of their parameters from historical
data. Indeed, the likelihood function L can easily be written in closed form due to the
independence among defaults.

L(β|Ft′) = ∏
F

f (β · xF(t))DF [1− f (β · xF(t))]
1−DF (4)

where t′ ≥ t + ∆t, xF(t) := (1, x1F(t), . . . ) and DF := 1I{τF∈(t,t+∆t]}.
Furthermore, in both cases, the optimal parameter choice is easily achievable due to

the computable form of the first derivative: in the logit model, f ′(·) can be represented as a
closed-form expression of f (·), since the logistic function is a solution to the differential
equation f ′(x) = f (x)[1− f (x)], while in the probit model, f ′(x) is the standard normal
PDF. Generally speaking, the choice between the two models is not relevant to practical
purposes in most cases since their outcomes are very similar [30,31].

In banking practice, this technique is commonly embedded in a wider framework [9,31,32]
(i.e., an internal rating system), applied to assess the credit risk profile of risky debtors who
belong to the same homogenous cluster.

In this context, a cluster of debtors is “homogenous” if their PDs are supposed to
be related to the same predictors’ array x(t) by the same parameter set (β0, β1, . . . , βN).
Typical examples of homogeneous clusters consist of enterprises that belong to the same
segment, economic sector, and geographical area (e.g. European financial large corporate;
US agricultural small/medium enterprises).
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Without a claim to completeness, some of the elements that are usually introduced to
apply a “logit”/“probit” model (or other comparable approaches) to practical purposes are
listed below:

a. Univariate selection of the variables to be included among predictors xF(t), according
to a measure of their diagnostic ability;

b. Multivariate validation of the selected predictors and dimensionality reduction of
xF(t) by the application of PCA or another factor analysis technique;

c. Partition of the PD domain [0, 1] in a finite set of indexed subintervals (i.e., rating
classes, also known as grades), each of them being associated with a symbol (e.g. AA,
A, BBB, etc.) and with a qualitative description of the corresponding risk level (the
so-called “master scale”);

d. Allowance for expert-judgment-based override of the rating, leading to a joint usage of
quantitative and qualitative results to produce a final evaluation of the firm creditworthiness.

Elements “a” and “b” concern the definition of the scoring model, while element “d”
is well-posed only after having calibrated the master scale. On the other hand, element “c”,
the introduction of a master scale extending the scoring model in a rating system, is the
central topic of this work.

It is relevant to note that the complete specification of a rating model still needs the
estimation of historical default rates and forward-looking default probabilities in the same
portfolio/cluster to which the model is being applied [9,32–34].

ML calibration on historical data is based on ∆t-long observations (with ∆t typically
equal to 1 year) of defaulted/survived enterprises collected in a past period that spans
several years (i.e., a whole economic cycle or more). The resulting default rate associated
with the calibration sample is a long-run average, and the “natural” map grade↔PD is
built accordingly.

However, a financial entity may be interested in defining a different master scale.
From a short-term perspective, the forward-looking PDs expected for the next year could
be significantly far from the long-run average (either above or below). Depending on
the considered application, the short-term level, known as point-in-time (PIT) PD, often
results in being more appropriate, and thus, the master scale has to be adjusted to reflect an
average PIT PD level across the grades instead of the natural long-term PD level.

Indeed, according to “The Internal Ratings-Based Approach” (BIS, 2001) [32], Section
E, paragraph 54, p. 12, banks tend to consider the PIT PD level more often than the long-run
average PD. Moreover, IFRS 9 standard (see [35], paragraph B5.5.52) requires the estimation
of a PIT PD, as discussed in [34].

In the literature, the PIT PD concept is usually contrasted with the through-the-cycle
(TTC) PD. It is worth noticing that “TTC” is a slightly ambiguous expression. Indeed, some
authors identify the TTC PD with the long-run average PD level through a whole economic
cycle, as its name suggests (see, e.g., [34]). However, according to the Basel Committee,
the concept of TTC PD is associated with a prudential long term PD level, instead of the
average default rate observed. Considering this second possible meaning, the application
of the TTC PD level to the master scale also requires an adjustment.

Indeed, “The Internal Ratings-Based Approach” (BIS, 2001) [32], Section E, para-
graph 53, p. 12, reads: “[. . . ] In a point-in-time process, an internal rating reflects an assessment
of the borrower’s current condition and/or most likely future condition throughout the chosen time
horizon. As such, the internal rating changes as the borrower’s condition changes throughout the
credit/business cycle. In contrast, a through-the-cycle process requires assessment of the borrower’s
riskiness based on a worst-case, bottom-of-the-cycle scenario (i.e., its condition under stress). In this
case, a borrower’s rating would tend to stay the same throughout the credit/business cycle.”.

Several techniques are available in the literature to adjust the PD associated with each
grade in a master scale. The seminal work of Falkenstein et al. [31] suggests to scale each
PD in the master scale by the coefficient such that the average PD in the calibration sample
is equal to the target PD level (i.e., PIT/TTC/other). Hence, this approach implies that the
shape of the PD profile, as a function of the grade, must not be affected by the adjustment.
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A discussion where this choice is compared with other non-uniform adjustment techniques
is available in [33].

2.2. Considered Partition Criteria

Let the function S : R→ {1, . . . , R} ⊂ N be the master scale of our rating model:

S(s) =
R

∑
r=1

r1I{sr−1≤s<sr} (5)

where the score s is defined as

s := β0 +
N

∑
i=1

βixiF(t). (6)

The score threshold array

s := (−∞ ≡ s0, . . . , sr . . . , sR ≡ ∞) (7)

fully specifies the master scale. In the following, five distinct criteria are introduced to
evaluate s. Section 2.2.1 presents a straightforward way to fix the meaning of each notch,
detaching the master scale semantics from the underlying population and its evolution.
Sections 2.2.2–2.2.4 propose three non-equivalent criteria to minimize the information loss
occurring when the master scale is applied. The four methods are used and compared
in Section 3. Finally, Section 2.2.5 proposes to combine the semantics-based and the
information-based criteria. The possible benefits of this choice are discussed in Section 4.

2.2.1. Fixed Semantics

A possible purpose of a rating model is to serve as the basis of a rigid decisional
system. Each notch must maintain the same meaning over time to guarantee that the
initially associated action is appropriate. In the credit risk context, the meaning of each
notch is determined by the PD distribution of the corresponding sub-population. Hence,
setting constant threshold levels of PD between subsequent notches is a possible and plain
criterion to fix the semantics. Namely, the score partition is directly implied by the chosen
PD thresholds:

s?Fix := (−∞ ≡ [s?Fix]0, logit(PD1), . . . , logit(PDR−1), [s?Fix]R ≡ ∞), (8)

where PD1 < PD2 < · · · < PDR−1. For example, another possible criterion is to fix the
expected PD value associated with each notch r (except for the worst and/the best notch to
avoid an overdetermined set of constraints). However, the two methods have no relevant
differences with respect to our purposes. In the remainder of this work, s?Fix is the only
fixed semantics criterion considered, although the same results can be obtained with other
similar criteria.

2.2.2. Maximum Hit Rate

The hit rate HR [36,37] is commonly measured when assessing the predictive power
of a rating system. Let us consider a sample population of M individuals where D default
events have already been observed over a given period. HR is defined as the area under
the curve

C(s) :=

(
1
M

M

∑
m=1

1I{sm≤s};
1
D

D

∑
d=1

1I{sd≤s}

)
(9)
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When evaluating a master scale, C(s) in Equation (9) becomes

Cr =

(
1
M ∑

s≤sr

Mr; 1
D ∑

s≤sr

Dr

)
. (10)

where Mr(s) is the number of r-rated individuals, and Dr(s) is the number of defaulted
r-rated individuals. Thus, the hit ratio is measured as a sum of trapezoid areas:

HR = 1
2

R

∑
r=1

Mr
M (Cr + Cr−1). (11)

It is worth noticing that HR can be thought of as a function of s, which is needed to
compute Mr, Dr (r = 1 . . . R).

Increasing values of HR correspond to a greater predictive power of the model, as a
stronger separation between the distributions of defaulted and not defaulted individuals is
implied by construction. Hence, the master scale

s?HR = argmax{HR(s)} (12)

minimizes the loss of predictive power when turning the scoring model in a rating model.

2.2.3. Maximum Likelihood

The same functional form considered in Equation (4) to calibrate β can be applied to
also calibrate s

L(s) =
R

∏
r=1

PDDr
r [1− PDr]

Mr−Dr (13)

where PDr =
1

Mr
∑Mr

F=1 PDF is the average PD among the sub-population of r-rated debtors.
The partition

s?ML = argmax{L(s)} (14)

minimizes the likelihood reduction when turning the scoring model in a rating model.

2.2.4. Minimum Kullback–Leibler Divergence

The last information criterion that we propose and discuss in the numerical comparison
reported in Section 3 is the Kullback–Leibler divergence (DKL) [38], also known as relative
entropy. In a nutshell, DKL measures the loss of information undergone when using a
distribution Q to describe a phenomenon whose true distribution is P. In our framework,
P is the probability distribution implied by the scoring model, while Q is the probability
distribution implied by scoring model conversion to a discrete rating model. Namely,
we have

PF = PDF, (15)

QF = PDr, r = S(logit(PDF)), (16)

DKL(P||Q) :=
M

∑
F=1

1
PF

ln
(

PF
QF

)
. (17)

Additionally, DKL depends on s, which is needed to compute QF. Hence, s may be
chosen to minimize the information loss:

s?KL = argmin{DKL(P||Q(s))}. (18)

2.2.5. Hybrid Criteria

It is easily verified that, given two (increasingly) ordered sets (s1, . . . , sR−1) and
(s′1, . . . , s′R−1), any elementwise weighted average
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(
αs1 + (1− α)s′1, . . . , αsR−1 + (1− α)s′R−1

)
, α ∈ [0, 1]

preserves the ascending order. This trivial property allows us to combine master scales
obtained by the application of different criteria, obtaining another well-defined master
scale. In particular, it is possible to mix a master scale based on a semantics criterion and
one based on an information criterion, aiming to obtain the advantages of both to some
extent. In Section 4, we propose the hybrid criterion

sHybrid(α) := αs?Fix + (1− α)s?HR. (19)

3. Numerical Comparison among Different Partition Criteria

This section compares the methods introduced in Sections 2.2.1–2.2.4 through their
application to a specific set of scenarios defined in a simplified framework. The numerical
setup is described in the next Section 3.1. Comments on the results obtained from the
application of the fixed semantics and the maximum information criteria are available in
Sections 3.2 and 3.3, respectively.

3.1. Numerical Setup

Let us consider a population of risky debtors F = 1 . . . 104 whose 1-year PDs obey
the law

PDF = logistic

(
β0 +

5

∑
i=1

βixiF(t)

)
(20)

over the interval (t, t + 1]. Let us consider a perfectly calibrated logistic scoring model,
where it holds that β̂ ≡ β. In this way, we are able to isolate and study the effects of
our choices concerning s, avoiding them to be affected by the error made in estimating
β̂. Further, we assume that β ∈ R6

+. The sign of the weights implies no loss of generality,
given that a minus sign can be absorbed in a re-definition of the corresponding variable.
As already stated in Section 1, we expect partitions defined out of an information criterion
to show a strong degree of flexibility in the presence of a relevant portfolio evolution. To
simulate increasingly worsening scenarios, we assume that all the variables {x1F, . . . , x5F}
have normal distribution across the debtors, and both their mean and standard devia-
tion increased linearly through the scenarios. In particular, we have µ = 0, . . . , 0.5 and
σ = 1, . . . , 1.5, with β = (−25, 0.5, 4.0, 2.0, 8.0, 6.0), resulting in the PD distribution per
scenario depicted in Figure 2. All the results reported in this section and the next one have
been obtained by implementing in R language the specifications described in this work.
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Figure 2. PD distribution across the considered scenarios. The blue dotted line plots the PD ex-
pected value. The orange and grey areas represent the ± one standard deviation interval and the
0.5–99.5 percentiles interval, respectively.
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Criteria introduced in Sections 2.2.1–2.2.4 are applied through all the aforementioned
scenarios to calibrate a 5-notch rating system. Figures 3 and 4 compare the results ob-
tained per method/scenario. Information critera, despite not being equivalent, lead to
very similar outcomes, while the only semantics-based criterion considered exhibits a
remarkably distinguished behavior. Further considerations are reported in the following
Sections 3.2 and 3.3.
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Figure 3. Master scale’s partition across the considered scenarios. Each panel depicts the effects of
choosing a different optimality criterion among the ones defined in Section 2.2.
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Figure 4. Average PD per notch across the considered scenarios. Each panel depicts the effects of
choosing a different optimization criterion among the ones defined in Section 2.2.

3.2. Features of Fixed Semantics Criteria

The considered fixed semantics method lets the PD evolution directly affect the number
of subjects per notch. Indeed, increasing PDs across the considered scenarios leads to more
populated low-creditworthiness notches (Figure 3, top left panel). Conversely, the notches
associated with high-standing debtors get progressively emptier as the PDs grow.

Across the whole PDs’ evolution, the average PD per notch remains almost stable
(Figure 4, top left panel), as each threshold PD between two subsequent notches is fixed. The
latter would have been precisely true if we selected the average PD per notch as a semantics-
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based criterion. Obtaining approximately the same results by choosing a fixed threshold
criterion highlights that different semantics-based criteria produce comparable results.

As further discussed in Section 4, such a rating scale, if coupled with a rigid decisional
system (e.g., refuse any exposure on 5-rated debtors), copes with the needs of a rating
model’s user (e.g., a commercial bank) who is risk-averse and aims at long-term profit.
Indeed, such an entity accepts a low business volume during adverse macroeconomic
phases (i.e., high PDs) to minimize the losses, increasing the business volume only in
periods when the average PD is lowering.

3.3. Features of Maximum Information Criteria

Unlike semantics-based criteria, all the considered information-based criteria show
pronounced PD-per-notch dynamics (Figure 4) and the tendency to keep the worst notch
population as low as possible (Figure 3). These effects are accentuated by the perfect β
calibration that we assumed in Section 3.1.

The specific ability of the scoring model to identify the highest-PD subjects makes
it more efficient to isolate them in a small-populated notch and leave the remaining four
notches to differentiate more precisely the remainder of the population. Further, the almost-
zero amplitude of the central notch suggests that four notches instead of five would provide
a more efficient description of the evaluated population.

As further discussed in Section 4, such a dynamic rating scale fits the needs of a rating
model’s user (e.g., a venture capital firm) whose strategy encompasses invested volumes to
be as high as possible, and diversified among several accepted risks. Thus, such an entity
wants to reject only the riskiest debtors, which must be identified as precisely as possible.

4. Relative Evaluations and Absolute Decisions: Rating System Applied in a RAF

Semantics-based and information-based calibrations of the master scale lead to remark-
ably different outcomes, as highlighted by the simulations shown in Section 3. The results
presented so far do not suggest that one of the two approaches is to be preferred over the
other. Both seem appropriate, depending on the risk vs. volume appetite of the model’s
user. Hence, the hybrid criterion proposed in Section 2.2.5 is a natural candidate to fit for
intermediate situations, where neither pure semantics-based criteria nor information-based
criteria perfectly satisfy the model’s user needs. This section aims to complete the analysis
presented in Section 3 focusing on this aspect.

Considering the schema reported in Figure 1, we need to complete our simplified
framework with a decisional process associated with the rating system to assess the practical
effects of the two approaches. Let us assume that the rating system calibrated in Section 3
is applied by a generic financial entity (e.g., bank, factor, or credit insurance) that has
implemented an automated strategy to grant exposure depending on the rating outcome.
In particular, the exposure Ej granted to the j-th subject is defined as an exponential function
of the rating rj

Ej = 25−rj − 1 (21)

so that the worst rating (i.e., rj = 5) implies a rejection Ej = 0 of all the exposure’s requests,
while the best rating grants the maximum exposure Ej = 15, where the currency units are
arbitrary and not relevant.

Just by adding Equation (21) to the picture, we now have a complete—although
“toy”—risk appetite framework (RAF) [24], where the financial consequences of the two
approaches are observable.

As shown in Figures 5 and 6, the semantics-based approach is the most prudential
from a risk appetite perspective. This result copes with intuition. Indeed, as the popu-
lation’s creditworthiness decreases across the scenarios, the master scale thresholds are
not reviewed. Thus, an increasing number of subjects become 5-rated and not eligible for
positive exposure.
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Figure 5. Exposure obtained across the considered scenarios, by applying the decisional system
described in (21) and each of the criteria introduced in Sections 2.2.1–2.2.4.
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Figure 6. Loss per unit of exposure obtained across the considered scenarios by applying the
decisional system described in (21) and each of the criteria introduced in Sections 2.2.1–2.2.4.

On the other hand, the information-based approaches lead to a stable exposure, which
is more than three times the one implied by the semantics-based master scale, as the subjects
which were 3-to-5-rated are located only in the right tail of the PD distribution.

Not surprisingly, the relative expected loss L/E := ∑j EjPDj/ ∑j Ej is higher when
applying one of the information-based criteria, as shown in Figure 6. However, it is
remarkably stable across the scenarios for each considered criterion. Hence, no method has
flaws that imply its a priori exclusion for practical purposes. The right choice depends on
the size of the financial entity applying the RAF, its own risk appetite level, and the market
context. An increasing volume of exposure (i.e., a greater market share) is preferable,
conditioned to fair pricing and available own funds, which must be large enough to retain
the credit risk.

Thus, the right choice for a specific entity can be identified by the entity itself through
an interpolation between the optimal semantics-based and information-based master scales,
as proposed in Section 2.2.5. In Figure 7, we have numerically verified that the smooth
sHybrid(α) transition from s?Fix (α = 1) to s?HR (α = 0) generates smooth E(α) and L/E(α)
per scenario, allowing each entity to identify its optimal decisional framework according to
its specific risk appetite.
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5. Conclusions

We have outlined two different approaches to defining a generic rating scale. The first
is a priori (semantics-based). It does not take into account the features of the evaluated
population, implying a constant meaning of each notch and guaranteeing that a given
creditworthiness level always implies the same action, regardless of the context. The
second is a posteriori (information-based) and aims to process and preserve the available
information most efficiently. However, doing so implies that an automated decisional
framework is adapted to the evolving context, and the same creditworthiness level may
imply different decisions in different market scenarios.

The presented results are obtained by considering a credit risk application of rating
systems. However, their implications are easily extended to any other context: a standard
method to define a rating scale is missing to date because looking for it is an ill-posed problem.

Indeed, the best rating scale is the one that has the most desirable impact on the
entity that uses it as the basis of a subsequent decisional process. What “desirable” means
depends on the entity’s features and the market context, as highlighted by the toy model
numerically investigated in Sections 3 and 4. Thus, the main original contributions in this
work are the distinction between semantics-based and information-based techniques and
the proposed solution to mix them according to the needs of the model’s user.

This study is limited to introducing two categories to classify the rating scale calibra-
tion methods and proposing a new class of hybrid criteria. Practical applications to real-life
cases require considering all the business and regulatory features of a given entity (e.g.,
bank, insurance company, investment fund, corporate firm), possibly leading to remarkably
different results. This level of realism in technical specifications is beyond this work’s aim
and scope and deserves to be further considered case-by-case in future research works.
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