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Abstract: Cancer cells are characterized by metabolic reprogramming, which enables their survival in
of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent
years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate
metabolism. Such a feature, in association with the differential expression of en-zymes involved in
the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the
expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues.
The latest studies have demonstrated that glycophenotypic alterations are capable of modulating
multifactorial events essential for the development and/or progres-sion of the disease. Herein,
we will address the importance of glycobiology in modern medi-cine, focusing on the ability of
unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer
progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of
molecular pathways associated with the epithelial–mesenchymal transition (EMT) process, an event
deeply linked with cancer metastasis.

Keywords: glycoconjugates; cancer; glycosyltransferases; multidrug resistance phenotype; epithelial–
mesenchymal transition process

1. Unusual O-Linked Glycan Structures and Their Impact in Cancer Biology

Glycobiology is an exponentially growing field focused on the function, structure,
evolution and biology of carbohydrates across all living organisms, being relevant to basic
research, clinical medicine and biotechnology. On the other hand, the term glycomics
refers to the studies that define the collection of glycans exhibited by a single cell or
tissue given specific conditions, while glycoproteomics gives us the structure and location
of glycan structures in the structure of a given protein [1,2]. Since the expression of
glycoconjugates is a hallmark of all living cells, several research groups around the world
are interested in understanding the biological role of different classes of glycomolecules, in
both physiological and pathological conditions [3,4]. Over the last fifteen years, several
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important alterations in the expression of glycosyltransferases have been described. These
changes lead to unusual glycosylation patterns for proteins within the cancer cell. Many
of those alterations have proven to be highly effective as biomarkers, leading to useful
diagnostic and prognostic predictions [5–7], including the ability to differentiate between
benign and malignant [8]. Several instances of altered glycosylation patterns are either
already being used or under study to be employed as biomarkers that can help in diagnoses
or for predicting the prognosis of multiple diseases, including many types of cancer,
diabetes and viral infections [9–13].

Thanks to biotechnological advances, the transformation of glycobiology from a de-
scriptive and phenomenological discipline to one where the regulatory principles are not
only understood, but effectively manipulated, has opened up new opportunities in the
study of cancer and the search for effective therapeutic modalities [14–16]. An intriguing
question that has attracted the attention of researchers around the world to the field of onco-
glycobiology, is how structurally atypical glycans expressed by transformed cells are able
to govern multiple events related to disease progression, such as the emergence of the mul-
tidrug resistance (MDR) phenotype [17], or the activation of the epithelial–mesenchymal
transition process (EMT) [14], two of the most preeminent challenges faced by oncologists.
Several tumor-associated carbohydrate antigens (TACAs), especially complex N-linked gly-
cans, which are products of the glycosyltransferase β1,6-N-acetylglucosaminyltransferase
V (GNT-V) activity, have been studied in many phenomena associated with development
and/or cancer progression [18–22]. In this article, we will focus on a topic that still lacks
its deserved attention in oncoglycobiology: the mechanisms involved on how O-linked
glycans, which usually appear as truncated structures in transformed cells (Figure 1), may
influence both the acquisition of chemoresistance, and the activation of signaling pathways
linked to cancer metastasis. Examples of these structures include the T (Galβ1-3GalNAcα1-
O-Ser/Thr), Tn (GalNAcα1-O-Ser/Thr) and Sialyl-Tn (STn) (NeuAcα2–6-GalNAcα1-O-
Ser/Thr) antigens (Figure 1) [23]. We have known for almost 30 years that cancer patients
exhibit changes in O-linked glycan expression patterns ever since Hakomori described such
alterations in carcinoma-associated mucins [24]. Additionally, for over two decades, we
have known that the expression of the STn antigen is related to a poor prognosis, regardless
of tumor stage, grade or histological type [25]. The STn antigen has been described in most
gastric carcinomas, as well as in other tumor tissues [26], and its expression is absent or
uncommon in normal healthy tissues [26]. The molecular mechanisms underlying STn
expression comprise the overexpression of the sialyltransferase ST6GalNAc1 [27] and/or
the lack of C1GALT1 activity, also known as core 1 synthase. It compromises the function
of the chaperone COSMC, essential for O-glycan chain elongation [28]. Although the
association between truncated O-linked glycans and poor survival of cancer patients has
been known for decades [23], the molecular mechanisms underlying such phenomena
are still poorly understood. Since these truncated O-linked glycan structures are absent
and/or expressed at low levels in healthy cells, many research groups have studied the
possibility of developing glycovaccines with high therapeutic potential for different types
of cancer [29,30].

In 2015, Hofmann and colleagues demonstrated that the knockdown of the COSMC
chaperone, preventing O-glycan elongation beyond the initial GalNAcα1- residue on O-
linked glycoproteins [31], was associated with elevated migration and reduced apoptosis
of pancreatic cancer cells, suggesting that such a simple O-linked glycan may modulate the
survival of transformed cells [31]. Recently, it has been revealed that the down-regulation
of C1GALT1 in cholangiocarcinoma (CCA) promoted the expression of immature core 1 O-
glycan, enhancing CCA progression, which was associated with the up-regulation of ABC
transporter genes and anti-apoptotic proteins [32], which are both effects associated with the
emergence of MDR phenotypes. In addition, C1GALT1 knockdown cells showed resistance
to 5-fluorouracil via the activation of the AKT/ERK signaling pathway [32]. One of the
glycoconjugates that are directly affected by overexpression of the STn antigen is MUC1.
The elevated sialylation of MUC1 is capable of binding Siglec-9 and changing the tumor
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microenvironment, affecting cancer progression and changing macrophage polarization to a
TAM-like phenotype, with increased PD-L1 expression [33]. A more recent study has shown
that hypersialylated cancer cells increase siglec-7 and sigle-9 signaling, driving macrophage
differentiation to an immunosuppressive phenotype, further supporting the notion that
glycoconjugates can modulate immune checkpoints [34]. Additionally, a retrospective
study on breast cancer patients showed that patients exhibiting a high STn/PD-L1 profile
had poorer prognoses and might benefit from therapeutic strategies focusing on both
fronts [35].

Over the past ten years, some works have demonstrated that the altered glycosylation
in cancer cells seems to connect both EMT and MDR phenotypes [1,36,37]. In 2019, Thomas
and colleagues proved that genetically deleting the COSMC chaperone in pancreatic duc-
tal adenocarcinoma (PDAC) resulted in high expression of truncated O-glycans, which
enhanced cell migration and invasion. The authors also observed high expression of mes-
enchymal markers in cells lacking the COSMC chaperone when compared to the parental
cells [38]. These findings are in line with previous works showing that cancer patients
positive for Tn and/or STn antigens exhibit poor prognoses [28,39,40]. In addition, it has
been shown that these patients do not respond well to treatment with different chemother-
apeutic agents, which supports the hypothesis of a correlation between the expression of
truncated O-linked glycans and the acquisition of the MDR phenotype [25]. Similar results
were obtained with T-synthase knock-out colorectal cancer cells. In this work, the authors
observed that a deficiency of the glycosyltransferase enhanced oncogenic features via
activation of the EMT process [41]. A paper from Pinho and coworkers in 2007 also showed
that there is a correlation between increased STn expression, due to transfection of the
glycosyltransferase ST6GalNAc-1/2, and activation of the EMT program. This forces the
gastric carcinoma cells into a phenotype characterized by decreased cell-to-cell aggregation
and augmented migration and invasiveness [42].

The non-sialylated version of the Tn antigen has also been shown to influence metastatic
potential in colorectal cancer cells, due to an upregulation of the H-Ras proto-oncogene, a
known activator of EMT. In the same study, transfecting the cells with COSMC and reducing
Tn expression or knocking-down H-Ras stopped EMT activation [43,44]. In a recent review,
Beaman and colleagues classified proteins from the UDP-N-α-D galactosamine:polypeptide
N-acetylgalactosaminyltransferases family (GALNTs) as master regulators of metastatic
processes, due to the ability of truncated O-glycans structures, such as Tn and STn anti-
gens, to activate EMT [45]. Over the last ten years, our own research group has studied
the expression and the biological effects induced by an atypical fibronectin (FN) isoform,
named oncofetal FN (onf-FN) [19,31,46–48], which was initially described by Hakomori’s
group in the 1980s in both cancer cells and embryonic tissues [49]. In the pioneer study,
it was demonstrated that in the IIICS domain of FN (IIICS-FN), a unit of GalNAc can be
transferred from UDP-GalNAc to the threonine (Thr) residue of the hexapeptide VTHPGY
by the action of a polypeptide N-acetylgalactosaminyl transferase (GALNT6), generating
the Tn antigen, which is the minimum saccharide epitope recognized by the FDC-6 mAb in
the oncofetal glycoprotein [50]. Since its discovery, onf-FN continued to be used as a tumor
biomarker for at least 25 years [51,52], and its procarcinogenic properties were described
in 2011 in epithelial cells undergoing EMT [46]. Subsequently, further studies confirmed
the initial findings [19,47,48]. More recently, the oncofetal glycoprotein was described in
human macrophages (Mϕ) exposed to anti-inflammatory signals [53], which show similar
biological properties to tumor-associated Mϕ (TAMs) [54], thereby modulating both the
EMT process [55] and MDR phenotype [56]. Over the last twenty years, several papers
have already described that extracellular matrix (ECM) components, including FN, protect
cancer cells from cytotoxic insults induced by different chemotherapeutic agents [57–60].
Following that thread, we recently published a paper showing that inducing a MDR pheno-
type in breast cancer cells, leads to the overexpression of GALNT6. However, not only that,
reducing the expression of GALNT6 also promoted a partial reversion of the resistance
phenotype, showing that this glysosyltransferase, as well as onf-FN, may play a direct role
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not only in the activation of EMT and promotion of metastasis, but also in the acquisition of
resistance phenotypes [61] (Figure 2). Other enzymes of the same family have been ascribed
important roles in cancer progression. GALNT5, for instance, has been shown to promote
an invasive phenotype in cholangiocarcinoma (CCA) cells that previously expressed it at
low levels. As phosphorylation levels of ERK and Akt are increased in such cells when
GALNT5 expression is increased, it is likely that its expression is associated with EMT
activation [62]. GALNT14 overexpression in breast cancer MCF-7 cells was also shown to
upregulate mesenchymal markers, such as N-cadherin and vimentin while downregulating
epithelial markers, as is the case of E-cadherin, all the while stimulating cell migration
and invasion capabilities [63]. Furthermore, GALNT14 is also capable of increasing drug
resistance in MCF-7 cells. Its expression was found to be high in adriamycin-resistant cells,
and its suppression sensitizes the cell to the drug. The effect is more directly due to an
associated overexpression of P-gp, suggesting that glycoconjugates produced by GALNT14
are involved in the regulation of its expression [64].
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Figure 1. Tn, sialyl Tn and T antigens are the main examples of truncated O-linked glycans expressed
in cancer cells. O-glycosylation is usually initiated in the Golgi apparatus, where C1GALT1, also known
as T-synthase, adds galactose (Gal) from UDP-Gal to the common precursor Tn antigen (GalNAcα1-O-
Ser/Thr) to generate T antigen (Galβ1-3GalNAcα1-O-Ser/Thr). Then, the T antigen can be modified by
various glycosyltransferases to form many types of extended structures, which are usually found in many
healthy tissues. In the absence of functional COSMC, which is necessary for the formation of functional
T-synthase, or in the absence of functional C1GALT1 triggered by unknown mechanisms, Tn antigen may
be used as a substrate by ST6GalNAc-I, which transfers a Sia unit (from CMP-Sia) to the Tn antigen to
form STn. GalNAc—N-acetylgalactosamine; Gal—Galactose; Sia—Sialic Acid.
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Figure 2. Representation of the simplified structure of fibronectin from the N-terminal to the C-terminal
portion, with cysteine residues and their binding domains consisting of type I (F-1), II (F-II) and III (F-III),
and repeat domains comprising the fibrin, collagen, arginylglycylaspartic acid (RGD), FN, heparin and
syndecan binding domains. Between F-I and F-III, there is a type III connecting segment (IIICS), which is
the major binding site for the integrin α4β1, also known as VLA-4. Different peptide motifs may also be
detected in the FN structure, such as EDB and EDA. During alternative splicing, more than 20 fibronectin
isoforms can be generated, among which, some carry the IIICS domain (also known as the variable region)
that contains the hexapeptide VTHPGY, which is glycosylated at the Thr residue by the action of GALNT6,
generating the O-glycosylated fibronectin. O-glycosylated fibronectin is able to modulate both the EMT
process and the acquisition/maintenance of the MDR phenotype in cancer cells.
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2. Conclusions and Future Directions

Nowadays, both MDR phenotypes and the activation of EMT in transformed cells
are the two most worrisome problems faced by both cancer patients and clinical oncol-
ogists. Over the last twenty years, the development of glycosyltransferase knockouts in
mice have revealed that in vivo pathological phenotypes might be induced by the genetic
manipulation of glycan structures, opening up a plethora of opportunities for studying
the glycome to exploit the biological role of glycoconjugates in numerous cell types [65,66].
These groundbreaking findings reinforce the hypothesis that proteins decorated with un-
usual glycan structures may act as potential drug targets for chronic diseases. Innovative
understandings into the functions and structure of glycomolecules present in all living
cells could be useful to improve therapy, and may advance our capability to enhance
the performance of therapeutic antibodies and potentiate the immune responses against
different types of cancer. Additionally, works developed by many research groups attribut-
ing roles of unusual O-linked glycans and enzymes belonging to the GALNT family in
both EMT and MDR phenotypes, helps cement our understanding that these phenomena
cannot be separated as they are not only integral to cancer progression as a whole, but are
indivisible, stemming from the same root. These exemplify the potential of the developing
field of glycomedicine, which aims to target disease-related changes in carbohydrates.
Together, a better comprehension of how atypical glycosylation patterns may influence
tumor progression and malignancy may lead to a bright new day for clinical oncology.
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