
Citation: Thongprayoon, C.; Vaitla,

P.; Jadlowiec, C.C.; Leeaphorn, N.;

Mao, S.A.; Mao, M.A.; Qureshi, F.;

Kaewput, W.; Qureshi, F.;

Tangpanithandee, S.; et al. Distinct

Phenotypes of Non-Citizen Kidney

Transplant Recipients in the United

States by Machine Learning

Consensus Clustering. Medicines

2023, 10, 25. https://doi.org/

10.3390/medicines10040025

Academic Editors: Hiroshi Sakagami

and William Cho

Received: 3 December 2022

Accepted: 24 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

medicines

Article

Distinct Phenotypes of Non-Citizen Kidney Transplant
Recipients in the United States by Machine Learning
Consensus Clustering
Charat Thongprayoon 1, Pradeep Vaitla 2, Caroline C. Jadlowiec 3 , Napat Leeaphorn 4, Shennen A. Mao 5,
Michael A. Mao 6 , Fahad Qureshi 7 , Wisit Kaewput 8 , Fawad Qureshi 1, Supawit Tangpanithandee 1 ,
Pajaree Krisanapan 1,8 , Pattharawin Pattharanitima 9 , Prakrati C. Acharya 10, Pitchaphon Nissaisorakarn 11 ,
Matthew Cooper 12 and Wisit Cheungpasitporn 1,*

1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
supawit_d@hotmail.com (S.T.); pajaree_fai@hotmail.com (P.K.)

2 Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
3 Division of Transplant Surgery, Mayo Clinic, Phoenix, AZ 85054, USA
4 Renal Transplant Program, University of Missouri-Kansas City School of Medicine/Saint Luke’s Health

System, Kansas City, MO 64108, USA
5 Division of Transplant Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
6 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic,

Jacksonville, FL 32224, USA
7 School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
8 Department of Military and Community Medicine, Phramongkutklao College of Medicine,

Bangkok 10400, Thailand
9 Division of Nephrology, Department of Internal Medicine, Faculty of Medicine Thammasat University,

Pathum Thani 12120, Thailand
10 Division of Nephrology, Texas Tech Health Sciences Center El Paso, El Paso, TX 79905, USA
11 Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School,

Boston, MA 02114, USA
12 Medstar Georgetown Transplant Institute, Georgetown University School of Medicine,

Washington, DC 21042, USA
* Correspondence: wcheungpasitporn@gmail.com

Abstract: Background: Better understanding of the different phenotypes/subgroups of non-U.S.
citizen kidney transplant recipients may help the transplant community to identify strategies that
improve outcomes among non-U.S. citizen kidney transplant recipients. This study aimed to cluster
non-U.S. citizen kidney transplant recipients using an unsupervised machine learning approach;
Methods: We conducted a consensus cluster analysis based on recipient-, donor-, and transplant-
related characteristics in non-U.S. citizen kidney transplant recipients in the United States from 2010
to 2019 in the OPTN/UNOS database using recipient, donor, and transplant-related characteristics.
Each cluster’s key characteristics were identified using the standardized mean difference. Post-
transplant outcomes were compared among the clusters; Results: Consensus cluster analysis was
performed in 11,300 non-U.S. citizen kidney transplant recipients and identified two distinct clusters
best representing clinical characteristics. Cluster 1 patients were notable for young age, preemptive
kidney transplant or dialysis duration of less than 1 year, working income, private insurance, non-
hypertensive donors, and Hispanic living donors with a low number of HLA mismatch. In contrast,
cluster 2 patients were characterized by non-ECD deceased donors with KDPI <85%. Consequently,
cluster 1 patients had reduced cold ischemia time, lower proportion of machine-perfused kidneys,
and lower incidence of delayed graft function after kidney transplant. Cluster 2 had higher 5-year
death-censored graft failure (5.2% vs. 9.8%; p < 0.001), patient death (3.4% vs. 11.4%; p < 0.001),
but similar one-year acute rejection (4.7% vs. 4.9%; p = 0.63), compared to cluster 1; Conclusions:
Machine learning clustering approach successfully identified two clusters among non-U.S. citizen
kidney transplant recipients with distinct phenotypes that were associated with different outcomes,
including allograft loss and patient survival. These findings underscore the need for individualized
care for non-U.S. citizen kidney transplant recipients.
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1. Introduction

In the United States (U.S.), the National Organ Transplant Act (NOTA) and the United
Network for Organ Sharing (UNOS)/Organ Procurement and Transplantation Network
(OPTN) do not restrict access to organ transplant according to citizenship status. The only
requirement is that medical criteria be utilized in organ allocation once a patient has been
listed for transplant [1–3]. The “10%” rule (changed to “5% rule” in 1994) was perceived
by many as a cap on the number of non-U.S. citizens able to be listed for transplant [3].
While this created an informal barrier to transplantation for non-U.S. citizens, there was no
detailed audit as a result of this policy [3]. UNOS subsequently revised their policy in 2012
by disregarding thresholds, and they instead collected data on each candidate’s citizenship
and residency status [3].

There are more than 6500 non-U.S. citizens residing in the U.S. with end-stage kidney
disease (ESKD), and who are on maintenance dialysis [4]. A recent study demonstrated
that 1.2% of all transplants performed in the U.S. were non-citizen/non-resident patients
between 2013 and 2016, with 402 deceased donor kidney transplants performed for non-
citizen/non-resident patients [2]. Studies have also suggested that the deceased donor
kidney transplant waiting time for non-U.S. citizens does not differ from that of U.S.
citizens, and non-U.S. citizens also receive comparable quality of decease donor kidney to
U.S. citizens [2,5]. Thus, among non-U.S. citizen ESKD patients with Medicaid (a U.S. public
insurance program) and access to immunosuppressive drugs, studies have demonstrated
comparable outcomes to those of U.S. citizens [4,6]. Nevertheless, non-U.S. citizens are
a unique patient population with important factors that may impact medical outcomes,
such as social, educational, immunological, and donor factors, that have not been well
studied [2,4,7–10].

Artificial intelligence and machine learning (ML) have been utilized to aid clinical
decision support tools in organ transplantation [11–16]. Unsupervised consensus clustering
is a ML approach employed to identify distinct subtypes and novel data patterns [17–19].
It can find similarities and heterogeneities among diverse data variables and differentiate
them into clinically useful clusters that may deliver new insight [17,18]. Recent studies have
demonstrated that distinct subtypes identified by ML consensus clustering approach can
forecast different clinical outcomes [20,21]. Given that non-citizen kidney transplant recipi-
ents are heterogeneous, a better understanding of the different phenotypes of non-citizen
kidney transplant recipients may help the transplant community to identify strategies that
improve outcomes among this patient population.

In this study, we analyzed the UNOS/OPTN database from 2010 through 2019, uti-
lizing an unsupervised ML clustering algorithm to identify clusters of non-U.S. citizen
kidney transplant recipients, and we then assessed the clinical outcomes among these
distinct clusters.

2. Materials and Methods
2.1. Data Source

This study was conducted using the OPTN/UNOS database to identify adult kidney-
only transplant recipients in the U.S. from 2010 to 2019. Patients with non-U.S. citizenship
status were included. For patients with multiple kidney transplants during the study
period, the first kidney transplant was selected for analysis. This study received approval
from the Mayo Clinic Institutional Review Board (IRB number 21-007698).

2.2. Data Collection

The recipient, donor, and transplant-related variables in the UNOS/OPTN database
were used in the ML cluster analysis, including recipient age, sex, race, body mass index
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(BMI), cause of end-stage kidney disease, dialysis duration, panel reactive antibody (PRA),
kidney retransplant, comorbidities, hepatitis B, hepatitis C, human immunodeficiency
virus (HIV) serostatus, ABO incompatibility, Karnofsky functional performance score,
working income, insurance, U.S. residency status, education, and serum albumin, as well
as kidney donor type, donor age, sex, and race, history of hypertension in donor, HLA
mismatch, kidney donor profile index (KDPI), kidney on pump, cold ischemia time, delay
graft function, allocation type, Cytomegalovirus (CMV) and Epstein–Barr virus (EBV)
status, and induction and maintenance immunosuppression. The U.S. residency status
was categorized into four groups: (1) non-U.S. citizen/U.S. resident, (2) resident alien,
(3) non-resident alien, (4) non-U.S. citizen/non-U.S. resident that travelled to the U.S. for
transplant, and (5) non-U.S. citizen/non-U.S. resident that travelled to the U.S. for reasons
other than transplant. Resident aliens were defined as citizens who were from another
country and who lived in the U.S. and/or had resident status by law or visa. Non-resident
alien is a person who was not a U.S. citizen and who did not meet either the “green card”
test or the “substantial presence” test [7]. All extracted variables had missing data < 5%
(Table S1). Missing data were imputed using the multivariable imputation by chained
equation (MICE) approach [22].

2.3. Clustering Analysis

Unsupervised ML was applied by conducting a consensus clustering approach to
categorize clinical phenotypes of non-U.S. citizen kidney transplant recipients [23]. A pre-
specified subsampling parameter of 80% with 100 iterations with the number of potential
clusters (k) ranging from 2 to 10 was utilized to avoid constructing an extreme number
of clusters that would not be clinically meaningful. The optimal number of clusters was
chosen by analyzing the consensus matrix (CM) heat map, cumulative distribution function
(CDF), cluster-consensus plots with the within-cluster consensus scores, and the proportion
of ambiguously clustered (PAC) pairs. The within-cluster consensus score, ranging from 0
to 1, was represented as the mean consensus value for all pairs of individuals belonging
to the same group [17]. A value closer to one implies more satisfactory cluster stability.
The PAC pairs, ranging from 0 to 1, were computed as the proportion of all sample pairs
with consensus values falling within the predetermined boundaries [24]. The detailed
consensus cluster algorithms used in this study for reproducibility are provided in the
Online Supplementary Materials.

2.4. Outcomes

Post-transplant outcomes consisted of death-censored graft failure, patient death
within five years after transplantation, and acute allograft rejection within one year of
transplantation. We defined death-censored graft failure as the need for dialysis or kidney
retransplant, with patients censored based on death or who at last follow-up date reported
to the UNOS/OPTN database.

2.5. Statistical Analysis

Statistical analyses were performed to characterize the differences among the clusters
to which non-U.S. citizen kidney transplant patients were assigned via the consensus
clustering approach. The differences in clinical characteristics between the assigned clusters
were tested using an analysis of variance test or a Kruskal–Wallis test, as appropriate, for
the continuous variables, and a Chi-squared test for the categorical variables. The key
characteristics of each cluster were determined using the standardized mean difference
between each cluster and the overall cohort, with a cut-off of >0.3.

The differences in post-transplant outcomes, including death-censored graft failure,
patient death within five years of kidney transplant, and allograft rejection within one year
of kidney transplant, were evaluated among the assigned clusters. The hazard ratios (HRs)
for death-censored graft failure and patient death based on the assigned clusters were
obtained using the Cox proportional hazard analysis. Since the OPTN/UNOS database did
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not specify the date of allograft rejection occurrence, the odds ratio for one-year allograft
rejection was obtained using a logistic regression analysis for each of the assigned clusters. A
multivariable analysis was not performed to adjust for differences in clinical characteristics
among the assigned clusters because an unsupervised ML consensus clustering approach
utilizes these characteristics to classify clusters.

All analyses were conducted using R, version 4.0.3 (RStudio, Inc., Boston, MA, USA;
http://www.rstudio.com/, accessed on 21 July 2022); ConsensusClusterPlus package
(version 1.46.0) for the consensus clustering analysis, and the MICE command in R for
multivariable imputation by chained equation [22].

3. Results

There were 158,367 kidney transplant recipients from 2010 to 2019 in the U.S. Of
these, 11,300 (7%) had non-U.S. citizenship status. Consensus clustering analysis was
thus performed in 11,300 non-U.S. citizen kidney transplant recipients. Fifty-five per-
cent were non-U.S. citizen/U.S. resident, 29% were resident alien, 5% were non-resident
alien, 3% were non-U.S. citizen/non-U.S. resident who travelled to the U.S. for transplant,
and 9% were non-U.S. citizen/non-U.S. resident who travelled to the U.S. for reasons
other than transplant. Table S2 shows the country of citizenship of the non-U.S. citizens/
non-U.S. residents.

Figure 1A shows the CDF plot consensus distributions for each identified cluster
of non-U.S. citizen kidney transplant recipients; the delta area plot shows the relative
change in area under the CDF curve (Figure 1B). The largest changes in area emerged
between k = 2 and k = 4, at which point the relative increase in area became noticeably
smaller. As shown in the CM heat map (Figure 1C, Supplementary Figures S1–S9), the ML
algorithm identified cluster 2 with clear boundaries, indicating good cluster stability over
repeated iterations. The mean cluster consensus score was highest in cluster 2 (Figure 2A).
In addition, favorable low PAC pairs were demonstrated for two clusters (Figure 2B).
Thus, using baseline characteristics at the time of transplantation, the consensus clustering
analysis identified two clusters that best represented the data pattern of our non-U.S. citizen
kidney transplant recipients.

3.1. Clinical Characteristics of Each Non-U.S. Citizen Kidney Transplant Cluster

There were two distinct clinical clusters identified using a ML consensus clustering
analysis. Cluster 1 had 3226 (29%) patients and cluster 2 (71%) had 8074 patients. These
two identified clusters had distinct clinical characteristics, as shown in Table 1. The key
characteristics of cluster 1 patients included young age, preemptive kidney transplant or
dialysis duration of less than 1 year, working income, private insurance, non-hypertensive
donors, and Hispanic living donor with low number of HLA mismatch. Consequently,
cluster 1 patients had less cold ischemia time, a lower proportion of machine-perfused
kidneys, and a lower incidence of delayed graft function after kidney transplant compared
to cluster 2. In contrast, the key characteristics of cluster 2 patients included having
non-ECD deceased donors with a KDPI < 85% (Figure 3).

Supplementary Figure S10 and Table S3 show the proportion of cluster 1 and cluster
2 patients based on the UNOS regions. Overall, kidney transplantation for non-U.S. citizens
in the United States from 2010 to 2019 occurred most often in Region 5 (Arizona, California,
Nevada, New Mexico, and Utah), followed by Region 9 (New York and Western Vermont)
and Region 4 (Oklahoma and Texas) (Table S2). Region 7 (Illinois, Minnesota, North Dakota,
South Dakota, and Wisconsin) had the highest proportion of cluster 1 (42%), whereas region
11 (Kentucky, North Carolina, South Carolina, Tennessee, and Virginia) had the highest
proportion of cluster 2 (81%).

http://www.rstudio.com/
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Figure 1. (A) CDF plot displaying consensus distributions for each k; (B) delta area plot reflecting the
relative changes in the area under the CDF curve; (C) consensus matrix heat map depicting consensus
values on a white to blue color scale of each cluster.

3.2. Post-Transplant Outcomes of Each Non-U.S. Citizen Kidney Transplant Cluster

Table 2 shows post-transplant outcomes based on cluster. The 1-year and 5-year
death-censored graft failure was 1.2% and 5.2% in cluster 1, and 2.7% and 9.8% in cluster 2,
respectively (p < 0.001) (Figure 4A). Cluster 2 had higher 1-year and 5-year death-censored
graft failure than cluster 1 with a HR of 2.22 (95% CI 1.59–3.19) and 2.02 (95% CI 1.63–2.52),
respectively. The 1-year and 5-year death was 0.5% and 3.4% in cluster 1, and 2.4% and
11.4% in cluster 2, respectively (p < 0.001) (Figure 4B). Cluster 2 had higher 1-year and
5-year death than cluster 1 with HRs of 4.68 (95% CI 2.86–8.27) and 3.92 (95% CI 2.98–5.17),
respectively. The incidence of 1-year acute allograft rejection was comparable between
cluster 1 and cluster 2 (4.7% vs. 4.9%; p = 0.63).



Medicines 2023, 10, 25 6 of 14
Medicines 2023, 10, 25  6  of  16 
 

 

 

Figure 2. (A) The bar plot represents the mean consensus score for different numbers of clusters (K 

ranges from two to ten). Different colors indicate different cluster groups.; (B) the PAC values assess 

ambiguously clustered pairs. 

3.1. Clinical Characteristics of Each Non‐U.S. Citizen Kidney Transplant Cluster 

There were two distinct clinical clusters identified using a ML consensus clustering 

analysis. Cluster 1 had 3226 (29%) patients and cluster 2 (71%) had 8074 patients. These 

two identified clusters had distinct clinical characteristics, as shown in Table 1. The key 

characteristics of cluster 1 patients included young age, preemptive kidney transplant or 

dialysis duration of less than 1 year, working income, private insurance, non-hypertensive 

donors, and Hispanic living donor with  low number of HLA mismatch. Consequently, 

cluster 1 patients had  less cold  ischemia  time, a  lower proportion of machine-perfused 

kidneys, and a lower incidence of delayed graft function after kidney transplant compared 

to cluster 2. In contrast, the key characteristics of cluster 2 patients included having non-

ECD deceased donors with a KDPI < 85% (Figure 3). 

   

Figure 2. (A) The bar plot represents the mean consensus score for different numbers of clusters (K
ranges from two to ten). Different colors indicate different cluster groups.; (B) the PAC values assess
ambiguously clustered pairs.

Table 1. Clinical characteristics according to clusters of non-U.S. citizen kidney transplant recipients.

All Cluster 1 Cluster 2 p-Value

(n = 11,300) (n = 3226) (n = 8074)

Recipient Age (year) 48.4 ± 13.6 42.8 ± 14.0 50.6 ± 12.8 <0.001

Recipient male sex 7058 (62.5) 2144 (66.5) 4914 (60.9) <0.001

Recipient race

White 1117 (9.9) 569 (17.6) 548 (6.8) <0.001

Black 1101 (9.7) 198 (6.1) 903 (11.2) <0.001

Hispanic 7023 (62.2) 1958 (60.7) 5065 (62.7) 0.04

Other 2059 (18.2) 501 (15.5) 1558 (19.3) <0.001

ABO blood group 0.01

A 3570 (31.6) 983 (30.5) 2587 (32.0)

B 498 (4.4) 117 (3.6) 381 (4.7)

AB 1594 (14.1) 467 (14.5) 1127 (14.0)

O 5638 (49.9) 1659 (51.4) 3979 (49.3)

Body mass index
(kg/m2) 26.3 ± 4.8 26.1 ± 4.9 26.4 ± 4.7 <0.001

Kidney retransplant 618 (5.5) 130 (4.0) 488 (6.0) <0.001

Dialysis duration <0.001

Preemptive 1018 (9.0) 690 (21.4) 328 (4.1)

<1 year 1106 (9.8) 692 (21.5) 414 (5.1)

1–3 years 6881 (60.9) 805 (25.0) 6076 (75.3)

>3 years 2295 (20.3) 1039 (32.2) 1256 (15.6)
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Table 1. Cont.

All Cluster 1 Cluster 2 p-Value

Cause of end-stage
kidney disease

Diabetes mellitus 3087 (27.3) 596 (18.5) 2491 (30.9) <0.001

Hypertension 2473 (21.9) 961 (29.8) 1512 (18.7) <0.001

Glomerular disease 3042 (26.9) 783 (24.3) 2259 (28.0) <0.001

PKD 612 (5.4) 203 (6.3) 409 (5.1) 0.009

Other 2086 (18.5) 683 (21.2) 1403 (17.4) <0.001

Comorbidity

Diabetes mellitus 3588 (31.8) 714 (22.1) 2874 (35.6) <0.001

Malignancy 326 (2.9) 82 (2.5) 244 (3.0) 0.17

Peripheral vascular
disease 788 (7.0) 156 (4.8) 632 (7.8) <0.001

PRA 0 (0–23) 0 (0–0) 0 (0–34) <0.001

Positive HCV
serostatus 292 (2.6) 46 (1.4) 246 (3.0) <0.001

Positive HBs antigen 261 (2.3) 50 (1.5) 211 (2.6) 0.001

Positive HIV serostatus 62 (0.5) 7 (0.2) 55 (0.7) 0.003

Functional status <0.001

10–30% 19 (0.2) 2 (0.1) 17 (0.2)

40–70% 4501 (39.8) 943 (29.2) 3558 (44.1)

80–100% 6780 (60.0) 2281 (70.7) 4499 (55.7)

Working income 3193 (28.3) 1407 (43.6) 1786 (22.1) <0.001

Public insurance 8052 (71.3) 1557 (48.3) 6495 (80.4) <0.001

U.S. residency status <0.001

Non-U.S. citizen/U.S.
resident 6217 (55.0) 1807 (56.0) 4410 (54.6)

Non-U.S.
citizen/non-U.S.

resident, travel to U.S.
for transplant

296 (3) 215 (7) 81 (1)

Non-U.S.
citizen/non-U.S.

resident, travel to U.S.
for reason other than

transplant

Resident alien 994 (9) 344 (11) 650 (8)

Non-resident alien

3288 (29.1) 696 (21.6) 2592 (32.1)

505 (4.5) 164 (5.1) 341 (4.2)

Undergraduate
education or above 3345 (29.6) 1300 (40.3) 2045 (25.3) <0.001

Serum albumin (g/dL) 4.1 ± 0.6 4.0 ± 0.6 4.1 ± 0.6 0.01

Kidney donor status <0.001

Non-ECD deceased 7196 (63.7) 470 (14.6) 6726 (83.3)
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Table 1. Cont.

All Cluster 1 Cluster 2 p-Value

ECD deceased 1307 (11.6) 38 (1.2) 1269 (15.7)

Living 2797 (24.8) 2718 (84.3) 79 (1.0)

ABO incompatibility 21 (0.2) 21 (0.7) 0 (0.0) <0.001

Donor age 38.3 ± 15.6 37.8 ± 12.4 38.5 ± 16.7 0.01

Donor male sex 6377 (56.4) 1425 (44.2) 4952 (61.3) <0.001

Donor race

White 5629 (49.8) 864 (26.8) 4765 (59.0) <0.001

Black 1117 (9.9) 200 (6.2) 917 (11.4) <0.001

Hispanic 3623 (32.1) 1742 (54.0) 1881 (23.3) <0.001

Other 931 (8.2) 420 (13.0) 511 (6.3) <0.001

History of
hypertension in donor 2358 (20.9) 104 (3.2) 2254 (27.9) <0.001

KDPI <0.001

Living donor 2797 (24.8) 2718 (84.3) 79 (1.0)

KDPI < 85 7708 (68.2) 485 (15.0) 7223 (89.5)

KDPI ≥ 85 795 (7.0) 23 (0.7) 772 (9.6)

HLA mismatch

A 1 (1–2) 1 (0–1) 2 (1–2) <0.001

B 2 (1–2) 1 (1–2) 2 (1–2) <0.001

DR 1 (1–2) 1 (0–1) 1 (1–2) <0.001

ABDR 4 (3–5) 3 (2–4) 5 (4–5) <0.001

Cold ischemia time
(hours) 14.5 ± 11.0 3.6 ± 4.9 18.9 ± 9.7 <0.001

Kidney on pump 3715 (32.9) 62 (1.9) 3653 (45.2) <0.001

Delay graft function 2844 (25.2) 152 (4.7) 2692 (33.3) <0.001

Allocation type <0.001

Local 8905 (78.8) 3151 (97.7) 5754 (71.3)

Regional 1049 (9.3) 27 (0.8) 1022 (12.7)

National 1344 (11.9) 48 (1.5) 1296 (16.1)

Foreign 2 (0.0) 0 (0.0) 2 (0.0)

EBV status

Low risk 63 (0.6) 25 (0.8) 38 (0.5) 0.05

Moderate risk 10,341 (91.5) 2959 (91.7) 7382 (91.4) 0.61

High risk 896 (7.9) 242 (7.5) 654 (8.1) 0.29

CMV status

D-/R- 506 (4.5) 199 (6.2) 307 (3.8) <0.001

D-/R+ 3264 (28.9) 528 (16.4) 2736 (33.9) <0.001

D+/R+ 6819 (60.3) 2201 (68.2) 4618 (57.2) <0.001

D+/R- 711 (6.3) 298 (9.2) 413 (5.1) <0.001

Induction
immunosuppression

Thymoglobulin 6822 (60.4) 1440 (44.6) 5382 (66.7) <0.001
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Table 1. Cont.

All Cluster 1 Cluster 2 p-Value

Alemtuzumab 1438 (12.7) 557 (17.3) 881 (10.9) <0.001

Basiliximab 2679 (23.7) 1033 (32.0) 1646 (20.4) <0.001

Other 144 (1.3) 53 (1.6) 91 (1.1) 0.03

No induction 819 (7.2) 305 (9.5) 514 (6.4) <0.001

Maintenance
Immunosuppression

Tacrolimus 10,589 (93.7) 3036 (94.1) 7553 (93.5) 0.27

Cyclosporine 159 (1.4) 56 (1.7) 103 (1.3) 0.06

Mycophenolate 10,730 (95.0) 3052 (94.6) 7678 (95.1) 0.28

Azathioprine 21 (0.2) 3 (0.1) 18 (0.2) 0.15

mTOR inhibitors 51 (0.5) 15 (0.5) 36 (0.4) 0.89

Steroid 7942 (70.3) 2065 (64.0) 5877 (72.8) <0.001

Abbreviations: BMI: body mass index, CMV: cytomegalovirus, D: donor, EBV: Epstein–Barr virus, ECD: extended
criteria donor, HBs: hepatitis B surface, HCV: hepatitis C virus, HIV: human immunodeficiency virus, KDPI:
kidney donor profile index, mTOR: mammalian target of rapamycin, PKD: polycystic kidney disease, PRA: panel
reactive antibody, R: recipient. SI conversion: serum albumin: g/dL × 10 = g/L.
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vertical lines represent the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: BMI:
body mass index, CMV: cytomegalovirus, D: donor, DGF: delayed graft function, DM: diabetes
mellitus, EBV: Epstein–Barr virus, ECD: extended criteria donor, ESKD: end stage kidney disease, GN:
glomerulonephritis, HBs: hepatitis B surface, HCV: hepatitis C virus, HIV: human immunodeficiency
virus, HLA: human leucocyte antigen, HTN: hypertension, KDPI: kidney donor profile index, mTOR:
mammalian target of rapamycin, PKD: polycystic kidney disease, PRA: panel reactive antibody, PVD:
peripheral vascular disease, R: recipient.

Table 2. Post-transplant outcomes according to the clusters.

Cluster 1 Cluster 2

One-year death-censored graft failure 1.2% 2.7%

HR for 1-year death-censored graft failure 1 (ref) 2.22 (1.59–3.19)

Five-year death-censored graft failure 5.2% 9.8%

HR for 5-year death-censored graft failure 1 (ref) 2.02 (1.63–2.52)

One-year death 0.5% 2.4%

HR for 1-year death 1 (ref) 4.68 (2.86–8.27)

Five-year death 3.4% 11.4%

HR for 5-year death 1 (ref) 3.92 (2.98–5.17)

One-year acute rejection 4.7% 4.9%

OR for 1-year acute rejection 1 (ref) 1.05 (0.87–1.27)
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4. Discussion

Our unsupervised ML approach identified two clinically distinct clusters of non-
U.S. citizen kidney transplant recipients with differing post-transplant outcomes. Cluster
1 patients, accounting for 28.5% of non-U.S. citizen kidney transplant recipients, were
featured by young age recipients receiving preemptive kidney transplant or a short dialysis
duration of less than one year. Patients in cluster 1 had working incomes and private
insurance. Most donors in cluster 1 were non-hypertensive Hispanic living donors with a
low number of HLA mismatches. In contrast, cluster 2 patients, accounting for 71.5% of
non-U.S. citizen kidney transplant recipients, were primarily characterized by receipt of non-
ECD deceased donor with a KDPI < 85% (89.5% had KDPI < 85%, 9.6% had KDPI ≥ 85%,
and only 1.0% had living donors). Kidney transplants in cluster 2 patients had a longer
cold ischemia time, higher utilization of machine-perfusion, and a higher incidence of DGF.
While cluster 2 patients had a higher degree of HLA mismatches and DGF than cluster
1, they received more thymoglobulin and less steroid-free regimens compared to cluster
1. This may have resulted in the comparable 1-year acute rejection rate between the two
groups. Nevertheless, cluster 2 patients had significantly higher 5-year death-censored
graft failure and mortality.

A previous study using the U.S. Renal Data was conducted to assess outcomes of adult
kidney transplant recipients (years 1990 and 2011) with Medicaid [4]. The investigators
demonstrated that kidney transplant recipients, regardless of U.S. citizenship status, had
comparable outcomes [4]. These findings would thus be reassuring as to the safety of
kidney transplants for non-U.S. citizens. The previous study was limited, however, as it
only addressed individuals with public insurance, thus ruling out the majority of non-U.S.
citizen recipients in Cluster 1 of our study. Our study provides novel understanding of the
phenotypes of non-U.S. citizens regardless of insurance or socioeconomic status.

It is notable that UNOS/OPTN data on non-U.S. citizenship candidate listings were
recorded as “non-U.S. citizen/U.S. resident” or “non-U.S. citizen/non-U.S. resident” after
March 2012 [3]. Prior to March 2012, non-U.S. citizenship candidates on the waiting list
were documented as “resident alien” or “nonresident alien,” and they were not reassigned
to the updated status [3]. In our study, we did not exclude patients with “resident alien” or
“nonresident alien” status in order to truly capture and represent all non-U.S. citizen kidney
transplant recipients in the United States. While the subtype of U.S. citizenship status was
not one of the key phenotypes that differentiated the two identified clusters, we found
that cluster 2 patients has a higher proportion of resident aliens (also termed permanent
resident or a lawful permanent resident) [4]. Non-citizen/non-resident status included
both patients that traveled to the U.S. for either the purpose of seeking an organ transplant
or reasons other than transplantation [4,10]. Non-citizen/non-resident patients could be
foreign students or business people traveling to the U.S, consistent with the findings of
recipients with higher education levels and higher working incomes with private insurance.
Individuals falling into the non-citizen/non-resident status may also be those who traveled
to the United States with a living donor. These socioeconomic factors have been shown to
be associated with better graft and recipient outcomes [7]. During the study period, the
top five reported countries of citizenship of non-U.S. citizen/non-U.S. resident transplant
recipients who traveled to the U.S. for transplant were Kuwait, Qatar, Mexico, Saudi Arabia,
and United Arab Emirates. The top five reported countries of citizenship of non-U.S.
citizen/non-U.S. resident recipients who traveled to the U.S. for other reasons were Mexico,
El Salvador, India, Guatemala, and Chile (Table S1). While our study demonstrated a
higher proportion of non-citizen/non-resident patients that traveled to the U.S. for either
the purposes of seeking an organ transplant or for reasons other than transplant in cluster
1, as compared to cluster 2, the overall number of non-U.S. citizen/ non-U.S. resident
recipients who traveled to the U.S. for a reason other than transplantation was higher in
cluster 2 (650 patients (8%)) than cluster 1 (344 patients (11%)).

Our study has several limitations. We used the UNOS database to assess the phe-
notypes of non-citizen adult kidney transplant recipients in the United States. Thus, the
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findings of our study are not representative of non-citizen kidney transplant recipients
in other countries [25,26] or pediatric transplant recipients [10,27]. Second, while there
have been concerns about kidney transplant outcomes among “undocumented” aliens
or residents [3], there are no “illegal” or “undocumented” terms identified in the UNOS
database to identify patients who did not have a visa or who had overstayed the duration
of their visa. While undocumented immigrants are considered as non-resident aliens [4],
the expression “non-resident alien” is broad and also includes individuals granted permis-
sion by the U.S. government to enter the U.S. on a temporary basis as a non-immigrant
alien for purposes which include tourism, business, education, medical care, or tempo-
rary employment. While a number of non-resident aliens have higher education without
economic barriers, some others may enter into medical care with few resources, lack of
acculturation, minimal health insurance, and little understanding of strategies to navigate
the complex healthcare system, all of which may delay access to needed care [2,8]. Given
the heterogeneity of non-resident aliens, a ML approach may have unique advantages for
identifying distinct phenotypes. As of April 2012, undocumented immigrants are consid-
ered as “non-U.S. citizen/U.S. resident” in the updated terminology [3,4,10]. However, the
term “non-U.S. citizen/U.S. resident” is still not specific to undocumented immigrants, and
this term also includes a permanent resident or a lawful permanent resident. We found a
comparable proportion of non-U.S. citizen/U.S. resident status in both cluster 1 and cluster
2. Given no definite identification of undocumented immigrants in the database, future
studies to identify phenotypes of these vulnerable groups of patients are needed. Further-
more, kidney transplant recipients undergo rigorous screening and must satisfy specific
criteria as part of the selection process. Consequently, the non-U.S. citizen/U.S. resident
transplantation population shown here may not reflect the general trends described in
other non-U.S. citizen patient populations outside of transplantation [28–30].

5. Conclusions

Our ML clustering approach successfully identified two clusters among non-U.S.
citizen kidney transplant recipients with distinct phenotypes that were associated with
different outcomes, including allograft loss and patient survival. Furthermore, there are
different distributions among the 11 geographic OPTN regions in our identified clusters,
which may help identify future strategies for the improvement of outcomes for non-U.S.
citizen kidney transplant recipients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/medicines10040025/s1, References [17,22–24,31–36] are cited in
the Supplementary Materials. Figure S1. Consensus matrix heat map (k = 2) depicting consensus
values on a white to blue color scale of each cluster; Figure S2. Consensus matrix heat map (k = 3)
depicting consensus values on a white to blue color scale of each cluster; Figure S3. Consensus matrix
heat map (k = 4) depicting consensus values on a white to blue color scale of each cluster; Figure S4.
Consensus matrix heat map (k = 5) depicting con-sensus values on a white to blue color scale of
each cluster; Figure S5. Consensus matrix heat map (k = 6) depicting consensus values on a white to
blue color scale of each cluster; Figure S6. Consensus matrix heat map (k = 7) depicting consensus
values on a white to blue color scale of each cluster; Figure S7. Consensus matrix heat map (k = 8)
depicting consensus values on a white to blue color scale of each cluster; Figure S8. Consensus matrix
heat map (k = 9) depicting con-sensus values on a white to blue color scale of each cluster; Figure S9.
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