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Abstract: Although cigarette smoking has been postulated to be a potential risk factor for Alzheimer’s
disease (AD), the toxic mechanism is still unclear. Additionally, astrocytes have been identified as a
potential target, given they play multiple roles in maintaining normal brain function. In this study, we
explored the toxic mechanism of whole cigarette smoke condensates (WCSC) using murine astrocytes.
Cell proliferation, the percentage of cells in the G2/M phase, and LDH concentrations in the cell
supernatants were all reduced in WCSC-treated cells. In addition, oxidative stress was induced,
together with shortening of processes, structural damage of organelles, disturbances in mitochondrial
function, blockage of autophagic signals, accumulation of amyloid β precursor protein, and loss of
chemotactic functions. Based on these results, we hypothesize that dysfunction of astrocytes may
contribute to the occurrence of cigarette-smoking-induced AD.

Keywords: cigarette smoking; Alzheimer’s disease; astrocytes; autophagy; immune response

1. Introduction

Dementia is the fifth leading cause of death worldwide and affects 50 million people.
Although many potential causes, including physical, psychological, social, and economic
circumstances, are associated with the incidence of dementia, it is clear that age is the most
significant risk factor [1]. Thus, the trend toward aging populations and the progressive
increase in the number of patients with dementia have become worldwide concerns. In
addition, Alzheimer’s disease (AD) is the most frequent form of dementia and accounts for
60–70% of all dementia cases [2]. Since the identification of amyloid plaques in the brains
of AD patients, several studies have reported that the gradual accumulation of misfolded
or aggregated amyloid-beta (Aβ) protein may greatly contribute to the pathogenesis of
AD [3–5].

Cigarette smoking has been considered an important risk factor for AD, suggesting
the possible prevention (or delay) of AD onset (or progress) by quitting smoking [6–8]. The
risk of AD was reported to be 2.56-fold greater among medium-level smokers, compared
with nonsmokers (15–24 cigarettes per day) [7,9]. In addition, oxidative stress increased
amyloid β precursor protein (APP) processing and microglial proinflammatory responses,
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and reduced Aβ clearance by microglia are also closely associated with cigarette-smoking-
induced AD.

Glial cells, including microglia and central-nervous-system (CNS)-resident cells, com-
prise about 90% of human brain cells, and they have been known to play an important role
in the immune response to protect the CNS against stress and pathogens [10]. Particularly,
astrocytes are the most abundant, comprising approximately 30% of the cells in the CNS,
and can fuel neuronal growth through gluconeogenesis when there is an urgent glucose
demand in the brain [11]. Increasing evidence also shows that astrocytes act as key players
in the brain, as they are involved in the uptake or release of neurotransmitters, maintenance
of the blood–brain barrier, regulation of ion homeostasis in the extracellular space and
blood, nervous system repair, and signal transduction [12–14]. More importantly, astrocytes
function as antigen-presenting cells for T cell activation in immune responses to xenobiotics
and pathogenic microorganisms entering the CNS [15,16]. Therefore, astrocyte impairment
may cause overall brain dysfunction, ultimately leading to various neurodegenerative
diseases, including AD and Parkinson’s disease [14,17,18].

Previously, we have demonstrated that whole cigarette smoke condensates (WCSC)
contain many constituents including chemicals (hydrophilic and hydrophobic), particulate
matters, and gaseous and that WCSC induces ferroptosis via ER stress, disturbance of
mitochondrial dynamics, and activation of the hypoxia-inducible factor-1 pathway in
human bronchial epithelial cells [19]. In addition, defective ferroptotic cell death is linked
to tumorigenesis [20], and an inverse relationship between the onset of cancer and AD
has been demonstrated by some epidemiological studies [21–25]. Therefore, we aimed
to identify the underlying mechanisms of WCSC-induced neurotoxicity using murine
astrocytes.

2. Materials and Methods
2.1. Cell Culture

The WCSC was kindly provided by Dr. Kyu-hong Lee, and murine astrocytes (C8-
D1A) were purchased from the American Type Culture Collection (Manassas, VA, USA) and
maintained in complete DMEM medium supplemented with 10% (v/v) fetal bovine serum,
100 U/mL penicillin, and 100 µg/mL streptomycin (ThermoFisher Scientific, Waltham,
MA, USA) under a humidified atmosphere containing 5% CO2/95% air at 37 ◦C [26].

2.2. Cell Viability Assays

Cells (2 × 104 cells/mL) were stabilized overnight on a 96-well plate and treated
with WCSC (0, 0.25, 0.5, or 1%) for 24 h. The MTT solution (Sigma-Aldrich, St. Louis,
MO, USA) was added to each well and the cells were incubated for 4 h at 37 ◦C. Then,
formazan crystals were dissolved with dimethyl sulfoxide (Duchefa Biochemie, Haarlem,
RV, Nederland), and the absorbance was measured at 540 nm using a multimode microplate
reader (BioTek, Winooski, VT, USA).

2.3. Cell Cycle Analysis

Under a phase-contrast microscope, we found that cell proliferation was reduced by
WCSC treatment; however, dead cells were not evident at up to the maximum concentration
tested. Thus, we investigated changes in the cell cycle following exposure to WCSC. After
24 h exposure to WCSC (0, 0.25, 0.5, or 1%), the cells were washed once with phosphate-
buffered saline and fixed in 70% ethanol overnight at 4 ◦C. The cells were then incubated
with RNase (100µg/mL) for 1 h at 37 ◦C, and propidium iodide (50µg/mL) was added to
each sample. Finally, the cells were analyzed using a flow cytometer (FACSAria III, BD
Biosciences, Franklin Lakes, NJ, USA).

2.4. Transmission Electron Microscopy (TEM)

Cells (60–70% confluency) were incubated in a culture medium containing 1% WCSC
for 24 h and washed with PBS. The cells were fixed overnight with Karnovsky’s fixative
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solution and followed by 1% osmium tetroxide. The cells were stained with 0.5% uranyl
acetate for 30 min, dehydrated using graded ethanol series (30, 50, 70, 80, 90, and 100%),
and passed through propylene oxide. The cells were then embedded in Spurr’s resin for
24 h at 70 ◦C, and ultrathin sections were placed on a copper grid and examined under a
transmission electron microscope (TEM, Talos L120C, FEI, Prague, Czech Republic).

2.5. Measurement of Intracellular Reactive Oxygen Species

Intracellular reactive oxygen species (ROS) level was evaluated using carboxy-2′,7′-
dichlorofluorescein-diacetate (H2DCFDA, Invitrogen, Waltham, MA, USA). Briefly, cells
(60–70% confluency) were incubated with WCSC (0, 0.25, 0.5, or 1%) for 24 h and further
incubated in an FBS-free culture medium containing H2DCFDA (10µM) for 30 min at 37 ◦C.
After washing once with PBS, the cells were resuspended in the FBS-free medium, and
intracellular fluorescence intensity (488 nm) was analyzed using a flow cytometer (BD
Biosciences).

2.6. Effects on Organelle Structure and Function

Effects on the integrity of the plasma membrane were evaluated using a commercially
available lactate dehydrogenase (LDH) assay kit (Cat No. 88954, ThermoFisher Scien-
tific). Briefly, cells (1× 106 cells/mL) were incubated in a 96-well plate with a designated
concentration of WCSC for 24 h, and an aliquot of the supernatant (50µL/well) was re-
acted with LDH reaction solution (50µL/well) in a new 96-well plate for 30 min at RT.
The absorbance of the reactants was quantified at 450 nm. Additionally, cells exposed
to WCSC (0, 0.25, 0.5, or 1%), were incubated with MitoTracker Green FM (150 nM, for
mitochondrial mass), MitoTracker™ Red (200 nM, for mitochondria membrane potential),
MitoTracker™ Deep-Red FM (100 nM, for detection of active mitochondria), Rhod-2 (AM,
1µM, for detection of mitochondrial calcium ions), ER Tracker™ Green (250 nM, for ER
volume), or LysoTracker™ Green (50 nM, for lysosomes) according to the manufacturer’s
instruction (Molecular Probes, Eugene, OR, USA). After washing once with PBS, intra-
cellular fluorescence intensity was measured using a flow cytometer (BD Biosciences).
Cells (2× 104 cells/well) were also stabilized in a 96-well white plate overnight. After 24 h
incubation with WCSC (0, 0.25, 0.5, or 1%), CellTiter-Glo® reagent (Promega, Fitchburg,
WI, USA) was added to each well (200µL/well), and the mixture reacted at RT for 10 min.
Produced total ATP content was calculated by measuring luminescence values using a
multimode microplate reader (BioTek, Winooski, VT, USA).

2.7. Gene Expression

Microarray analysis and polymerase chain reaction (PCR) tests were performed to
identify changes in gene profiles and concentration-dependent changes in the expression
of specific genes. First, total RNA was extracted using a TRIzol™ reagent (Invitrogen),
and RNA purity and integrity were evaluated using a UV–Vis spectrophotometer (ND-
Lite, ThermoFisher Scientific) and Agilent 2100 bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA). For microarray analysis (Macrogen, Seoul, Korea), Affymetrix® whole-
transcript expression array process was executed according to the manufacturer’s protocol
(GeneChip® Whole Transcript PLUS Reagent Kit, ThermoFisher Scientific). Briefly, cDNA
was synthesized using a GeneChip® Whole Transcript Amplification kit, as described
by the manufacturer. The sense cDNA was then fragmented and biotin-labeled with
TdT (terminal deoxynucleotidyl transferase) using a GeneChip® WT Terminal labeling kit.
Approximately 5.5 µg of labeled target DNA was hybridized to the Affymetrix® GeneChip®

Mouse 2.0 Array at 45 ◦C for 16 h. Hybridized arrays were washed, stained on a GeneChip®

Fluidics Station 450, and scanned on a GCS3000 Scanner (ThermoFisher Scientific). Signal
values were computed using Affymetrix GeneChip® Command Console® software. The
data were summarized and normalized with the robust multi-average (RMA) method
implemented in Affymetrix® Power Tools. We exported the results for gene-level RMA
analysis and performed differentially expressed gene analyses. Gene enrichment and
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functional annotation analyses for a significant probe list were performed using Gene
Ontology (www.geneontology.org/, accessed on 24 June 2021) and Kyoto Encyclopedia of
Genes and Genomes (www.genome.jp/kegg/, accessed on 24 June 2021). All data analyses
and visualization of differentially expressed genes were conducted using R 3.3.2 (www.r-
project.org, accessed on 24 June 2021). Amplified cDNA products were also produced
using an AccuPower® RT-PCR and PCR PreMix tubes (Bioneer, Daejeon, Korea), according
to the manufacturer’s instructions. The products were separated on a 1.5% agarose gel
and visualized using a ChemiDoc™ XRS+ system (Bio-Rad Laboratories Inc., Berkeley, CA,
USA). Table 1 shows the primer sequence.

Table 1. A primer list used for PCR analysis.

Gene Name Primer Sequence

β-Actin
Forward TTCTTTGCAGCTCCTTCGTT
Reverse CGCAGCTCATTGTAGAAGGT

Catalase
Forward TTCGTCCCGAGTCTCTCCAT
Reverse GAGTGTCCGGGTAGGCAAAA

GADD45a
Forward TGGAGGAAGTGCTCAGCAAG
Reverse GTCATCTCTGAGCCCTCGTG

HO-1
Forward AACAAGCAGAACCCAGTCTA
Reverse CCTTCTGTGCAATCTTCTTC

NQO-1
Forward GGTAGCGGCTCCATGTACTC
Reverse TGCCCTGAGGCTCCTAATCT

PMP2
Forward AAGCCAAGAGCATCGTGACA
Reverse CCCGTTAGAGCGACTCATCC

SCF
Forward GCAGACACTGGGTCTCGATT
Reverse GTGGTAGGGACCTTGGGTTG

2.8. Protein Expression

Homogenized cell lysates were centrifuged at 13,000 rpm for 30 min, and equal
amounts of protein were separated by SDS–PAGE and then transferred to nitrocellulose
membranes (HybondECL, Amersham Pharmacia Biotech, NJ, USA). The membranes were
blocked with 5% skim milk in PBS containing 0.05% Tween-20 (PBST) for 1 h at room
temperature RT. Then, the membranes were immunoblotted with primary antibodies
[1:1000, phosphorylated (p)-extracellular signal-regulated kinase-1 (p-ERK; Cell Signaling
Technology, Danvers, MA, USA); p62, caspase-1, receptor-interacting serine/threonine
kinase (RIP)1, and RIP3 (Abcam, Cambridge, UK); amyloid β precursor protein (APP)
and β-actin (Santa Cruz Biotechnology, Dallas, TX, USA)] overnight at 4 ◦C, followed by
incubation with horseradish–peroxidase-conjugated secondary antibodies for 1 h at RT. The
blotted bands were visualized using a ChemiDoc™ XRS+ system (Bio-Rad Laboratories, Inc.
Hercules, CA, USA) and quantified using Image J software (National Institutes of Health,
Bethesda, MD, USA). In addition, cells (1× 104 cells/well) were stabilized overnight on
cover slides in a 12-well plate and incubated with or without 1% WCSC for 24 h. The cells
were fixed with 4% formaldehyde and ice-cold methanol. The cells were blocked with
3% BSA in PBST for 1 h and reacted overnight at 4 ◦C with antibodies against APP, p62,
Mitofusin (MF)1 and MF2 (Abcam, Cambridge, UK); Golgin97 (Santa Cruz Biotechnology)
and Calnexin (Cell Signaling). After washing twice with PBST, the cells were incubated
with Alexa-Fluor™-555- or -488-conjugated anti-IgG antibodies (Molecular Probes) for
2 h at RT and mounted using a mounting medium with DAPI (ImmunoBioScience Corp.,
Mukilteo, WA, USA). Finally, the cells were visualized using a confocal laser scanning
microscope (LSM710, Carl Zeiss, Germany) installed at the National Center for Inter-
University Research Facilities at Seoul National University.

www.geneontology.org/
www.genome.jp/kegg/
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2.9. ELISA

Cells (1 × 106 cells/mL) were incubated in a 12-well plate with WCSC (0, 0.25, 0.5,
and 1%) for 24 h. The concentrations of interleukin (IL)-1 beta (β), IL-6, tumor necrosis
factor-alpha (TNF-α), chemoattractant protein-1 alpha (MCP-1α; eBioscience, San Diego,
CA, USA), and chemokine (C-X-C motif) ligand 1 (CXCL1; R&D Systems, Minneapolis,
MN, USA) in the supernatants was measured according to the manufacturer’s protocols.
Finally, the absorbance was measured at 450 nm using a multimode microplate reader
(BioTek), and the absolute values were calculated using standard curves produced under
the same conditions.

2.10. FACS Analysis

Cells (70–80% confluency) were exposed to WCSC (0, 0.25, 0.5, or 1%) for 24 h. Har-
vested cells were blocked with an anti-cluster-of-differentiation (CD)16/CD32 antibody
(eBiosciences, San Diego, CA, USA). Then, the cells were incubated for 30 min at 4 ◦C
with fluorochrome-conjugated anti-CD54, -MHC class II, and -CXCR2 (eBiosciences) anti-
bodies, and the cell surface expression levels were analyzed using a flow cytometer (BD
Biosciences).

2.11. Statistical Analyses

As previously reported, the statistical significance of the microarray data was deter-
mined using an LPE test and the fold change was determined using a null hypothesis of no
difference among groups. The false-discovery rate was controlled by adjusting p-values
using the Benjamini–Hochberg algorithm. For a DEG set, hierarchical cluster analysis was
performed using complete linkages and Euclidean distances as measures of similarity. In
addition, Student’s t-test (Prism 7, GraphPad Software, San Diego, CA, USA) and one-way
ANOVA, followed by Tukey’s post hoc pairwise comparisons were used to determine the
statistical significance of all other data.

3. Results
3.1. Reduced Cell Proliferation

After 24 h exposure to WCSC, no features consistent with those of dead cells were
evident under phase-contrast microscopy, whereas proliferation appeared to be inhibited.
When incubated with 0.25, 0.5, or 1% WCSC, the proliferation level was 100.2 ± 4.8%,
92.4 ± 4.6% and 84.4 ± 2.1%, respectively, compared to control (Figure 1). Cell-cycle
analyses showed that apoptotic cells tended to increase in a concentration-dependent
manner, accompanied by a reduction of cells in the G2/M phase (Figure 2). Cells in the
G1, S, and G2/M phases were 42.8 ± 2.2%, 18.9 ± 1.7%, and 35.9 ± 1.0%, respectively, in
control cells, whereas they were 45.4 ± 3.2%, 20.1 ± 1.8%, and 27.2 ± 2.8%, respectively, in
cells treated with 1% WCSC. Additionally, cells in the subG1 region were 2.8 ± 0.1% and
7.9± 3.3%, in the control and 1% WCSC-treated cells, respectively. Furthermore, a decrease
in cell size and an increase of cellular complexity were detected in 1% WCSC-treated cells
(Figure 2 Below, a red dotted line circle region).

3.2. Damaged Organelle Structures

Considering the morphological changes observed under a phase-contrast microscope,
we assessed changes in intracellular structures following exposure to WCSC using TEM.
We found various sizes of mitochondria, autophagosome-like vacuoles, and impaired
mitochondrial structures in WCSC-treated cells (Figure 3A, Supplementary Figure S1A–C).
More interestingly, damage of the nuclear membrane (Figure 3B, Supplementary Figure
S1D) and phagocytosis of an organelle by mitochondria (Figure 3C) were observed in
cells exposed to 1% WCSC. Furthermore, the volumes of mitochondria (79.8 ± 9.7%), ER
(85.5 ± 14.0%), and lysosome (74.3 ± 10.0%) tended to decrease in cells exposed to the
maximum concentration of WCSC, compared with the control (Figure 4A). Furthermore,
expressions of golgin97 (an indicator for the trans-Golgi), calnexin (a marker for ER), and



Toxics 2021, 9, 150 6 of 17

MF1 and MF2 (essential proteins for maintenance of mitochondrial morphology) [27] were
concentrated near the nuclear (Figure 4B).
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Figure 3. Overview of changes in intracellular structures of WCSC-treated cells. Astrocytes were
incubated with 1% WCSC for 24 h, and TEM was used to observe changes in intracellular structures:
(A) we can find autolysosome-like vacuoles (a blue square) and various sizes of mitochondria (a red
square); (B) damage of the nuclear membrane (a blue square) and localization of WCSC components
into the mitochondria (a red square, a red arrow); (C) mitophagy.

3.3. Mitochondrial Energy Metabolism

Cells initiate autophagic signals to maintain energy homeostasis, along with clearance
of damaged organelles, and LDH catalyzes the reversible conversion of pyruvate to lactate
in anaerobic conditions. In this study, the released LDH level decreased in a concentration-
dependent manner, and the level was 91.9 ± 9.8%, 89.1 ± 8.1%, and 82.4 ± 10.9% of
the control in cells exposed to 0.25%, 0.5%, or 1% WCSC, respectively (Figure 5A). While
produced total ATP content (Figure 5B), active mitochondria (Figure 5C), and mitochondrial
calcium ions (Figure 5C) tended to increase, compared to the control (126.5 ± 22.6%,
127.5 ± 3.3%, and 128.2 ± 13.6% of the control, respectively, at 1% WCSC), mitochondrial
membrane potential (∆ψ) tended to decrease with WCSC concentration (Figure 5C).
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3.4. Increased Intracellular ROS

Given excess ROS are a key trigger of stress responses in organelles, we measured
the amount of ROS generated within cells. After 24 h exposure to 0.25, 0.5, or 1% WCSC,
intracellular ROS increased in a concentration-dependent manner and were 116.1 ± 11.4%,
153.6 ± 15.8% and 201.1 ± 25.3%, respectively, compared to control (Figure 6). The fraction
of cells displaying increased fluorescence intensity was also clearly elevated after WCSC
treatment.

3.5. Alteration in Gene Profiles

While the expression of genes associated with antioxidant responses (including HO-1,
NQO-1, and catalase), energy metabolism (including SCF7, ATPase type 13, ATP-binding
cassette, and aldehyde dehydrogenase family 3), and the immune response (including
microRNA 29a, IL-11, TNF receptor, and layilin) was significantly enhanced by WCSC
(1%) treatment (Table 2), expression of a gene encoding PMP2, a structural protein of
peripheral nervous system myelin, was the most downregulated (Table 2). In addition,
we confirmed concentration-dependent changes of some genes using the PCR analysis
technique (Figure 7A). The KEGG pathway analyses also indicated that expressions of
genes associated with metabolic pathways, steroid biosynthesis, and focal adhesion were
the most clearly affected following exposure to WCSC (Figure 7B).



Toxics 2021, 9, 150 9 of 17
Toxics 2021, 9, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. Functional damage of mitochondria. All the experiments were conducted independently three times according 
to the manufacturer’s instructions. * p < 0.05, ** p < 0.01: (A) LDH release; (B) produced total ATP; (C) mitochondria integ-
rity. Overall, 10,000 cells per sample were analyzed using a FACS system, and the levels were calculated as the relative 
value, compared to control (100%). The graphs on the right show the representative results. 

3.4. Increased Intracellular ROS 
Given excess ROS are a key trigger of stress responses in organelles, we measured 

the amount of ROS generated within cells. After 24 h exposure to 0.25, 0.5, or 1% WCSC, 
intracellular ROS increased in a concentration-dependent manner and were 116.1 ± 11.4%, 
153.6 ± 15.8% and 201.1 ± 25.3%, respectively, compared to control (Figure 6). The fraction 
of cells displaying increased fluorescence intensity was also clearly elevated after WCSC 
treatment. 

Figure 5. Functional damage of mitochondria. All the experiments were conducted independently three times according to
the manufacturer’s instructions. * p < 0.05, ** p < 0.01: (A) LDH release; (B) produced total ATP; (C) mitochondria integrity.
Overall, 10,000 cells per sample were analyzed using a FACS system, and the levels were calculated as the relative value,
compared to control (100%). The graphs on the right show the representative results.

Toxics 2021, 9, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. Intracellular ROS generation. Astrocytes were exposed to WCSC in designated concen-
trations for 24 h and then incubated with H2DCFDA for 1 h. Overall, 10,000 cells per sample were 
analyzed using a FACS system, and the levels were calculated as the relative value, compared to 
control (100%). Data show mean ± SD of independent three experiments. ** p < 0.01: (A) fluores-
cent intensity in each cell; (B) percentages of cells in M2 zone (cells that show increased ROS). 

3.5. Alteration in Gene Profiles 
While the expression of genes associated with antioxidant responses (including HO-

1, NQO-1, and catalase), energy metabolism (including SCF7, ATPase type 13, ATP-bind-
ing cassette, and aldehyde dehydrogenase family 3), and the immune response (including 
microRNA 29a, IL-11, TNF receptor, and layilin) was significantly enhanced by WCSC 
(1%) treatment (Table 2), expression of a gene encoding PMP2, a structural protein of pe-
ripheral nervous system myelin, was the most downregulated (Table 2). In addition, we 
confirmed concentration-dependent changes of some genes using the PCR analysis tech-
nique (Figure 7A). The KEGG pathway analyses also indicated that expressions of genes 
associated with metabolic pathways, steroid biosynthesis, and focal adhesion were the 
most clearly affected following exposure to WCSC (Figure 7B). 

Table 2. Gene list upregulated. 

(A) Gene List Upregulated More Than 1.6 Folds 
Gene_Symbol mRNA Accession Folds Gene_Symbol mRNA Accession Folds 

Hmox1 NM_010442 5.85  Npc1 NM_008720 1.78  
Slc7a11 NM_011990 3.90  Pgd NM_001081274 1.77  
Atp13a4 NM_001164612 3.14  Disp2 NM_170593 1.77  

Cd68 NM_001291058 2.87  Sh2d6 XM_006506833 1.77  
Nqo1 NM_008706 2.84  Cyb5r1 NM_028057 1.76  
Abcc4 NM_001033336 2.75  Gm23302 ENSMUST00000082710 1.75  
Blvrb NM_001290525 2.74  Il34 NM_001135100 1.75  

Mir29a NR_029744 2.55  Vmn1r62 NM_030741 1.74  
Gclm NM_008129 2.44  Ampd3 NM_001276301 1.73  
Gbe1 NM_028803 2.40  Adh7 NM_009626 1.73  
Sox9 NM_011448 2.35  Sqstm1 NM_001290769 1.73  

Gm25126 ENSMUST00000083343 2.30  Cth NM_145953 1.72  
Gm25799 ENSMUST00000082643 2.27  Cat NM_009804 1.72  
Slc40a1 NM_016917 2.25  Gm3170 ENSMUST00000168753 1.71  

Figure 6. Intracellular ROS generation. Astrocytes were exposed to WCSC in designated concentrations for 24 h and then
incubated with H2DCFDA for 1 h. Overall, 10,000 cells per sample were analyzed using a FACS system, and the levels
were calculated as the relative value, compared to control (100%). Data show mean ± SD of independent three experiments.
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3.6. Accumulation of APP Protein

The Aβ protein, a proteolytic product of APP, plays an important role in the pro-
gression of AD, and astrocytes can produce APP. In this study, we found that expression
of p-ERK, p62, caspase-1, and APP proteins clearly increased in cells exposed to WCSC
(Figure 8A). More importantly, fluorescence imaging showed that the specialized processes
normally extending from the astrocytes were appreciably shortened or missing following
exposure to WCSC (Figure 8B).

Table 2. Gene list upregulated.

(A) Gene List Upregulated More Than 1.6 Folds

Gene_Symbol mRNA Accession Folds Gene_Symbol mRNA Accession Folds
Hmox1 NM_010442 5.85 Npc1 NM_008720 1.78
Slc7a11 NM_011990 3.90 Pgd NM_001081274 1.77
Atp13a4 NM_001164612 3.14 Disp2 NM_170593 1.77

Cd68 NM_001291058 2.87 Sh2d6 XM_006506833 1.77
Nqo1 NM_008706 2.84 Cyb5r1 NM_028057 1.76
Abcc4 NM_001033336 2.75 Gm23302 ENSMUST00000082710 1.75
Blvrb NM_001290525 2.74 Il34 NM_001135100 1.75

Mir29a NR_029744 2.55 Vmn1r62 NM_030741 1.74
Gclm NM_008129 2.44 Ampd3 NM_001276301 1.73
Gbe1 NM_028803 2.40 Adh7 NM_009626 1.73
Sox9 NM_011448 2.35 Sqstm1 NM_001290769 1.73

Gm25126 ENSMUST00000083343 2.30 Cth NM_145953 1.72
Gm25799 ENSMUST00000082643 2.27 Cat NM_009804 1.72
Slc40a1 NM_016917 2.25 Gm3170 ENSMUST00000168753 1.71

Gm10701 ENSMUST00000098926 2.23 Dusp5 NM_001085390 1.71
Gm25121 ENSMUST00000179846 2.20 Ptchd1 NM_001093750 1.70
Aldh3a1 NM_001112725 2.12 Lyst NM_010748 1.69

Fbxo2 NM_176848 2.12 Bcl6 NM_009744 1.68
Tnfrsf22 NM_001311145 2.12 Sec11c NM_025468 1.68

Il11 NM_001290423 2.12 BC048507 NM_001001185 1.67
Ypel5 NM_027166 2.11 Gtpbp2 NM_001145979 1.67
Sp140 NM_001013817 2.03 Acot2 NM_134188 1.67

Zfand2a NM_001159908 2.02 Anxa7 NM_001110794 1.67
5330438D12Rik XR_872054 2.00 Prdx1 NM_011034 1.67

Abcc1 NM_008576 1.99 2410006H16Rik NR_030738 1.66
Slc48a1 NM_026353 1.98 Tbc1d30 NM_029057 1.65
Mir708 NR_030489 1.98 Gm19410 XM_006509234 1.65
Layn NM_001033534 1.97 Uchl1 NM_011670 1.65
Btc NM_007568 1.96 4931413I07Rik ENSMUST00000173637 1.64

Srxn1 NM_029688 1.95 Gabarapl1 NM_020590 1.64
Sgk1 NM_001161845 1.93 Zfp2 NM_001044697 1.64

Hgsnat NM_029884 1.93 Plk3 NM_001313916 1.64
Ptprn NM_008985 1.89 Taldo1 NM_011528 1.63
Tenm4 NM_001310760 1.89 Clcn2 NM_009900 1.63

Gm24695 ENSMUST00000083877 1.87 Tnfaip2 NM_009396 1.63
Creg1 NM_011804 1.85 Zfp945 NM_001110254 1.63
Mllt11 NM_019914 1.85 Zfp708 NM_001012325 1.62
Mir222 NR_029807 1.85 Kdm7a NM_001033430 1.62
Prr13 NM_001170911 1.84 Dusp4 NM_176933 1.62

LOC102638255 XR_374951 1.83 Lonp1 NM_028782 1.62
Gm25026 ENSMUST00000175017 1.82 Hid1 NM_175454 1.62
Gm24431 ENSMUST00000104073 1.81 Cdkn1a NM_001111099 1.61

Chil3 NM_009892 1.81 Ptk2b NM_001162365 1.61
KnowTID_00001299 1.81 Rin2 NM_028724 1.61

Tmem158 NM_001002267 1.80 Ngf NM_001112698 1.61
Esd NM_001285423 1.80 Cobll1 NM_027225 1.61

Smox NM_001177833 1.79 AA467197 NM_001004174 1.60
Fosl1 NM_010235 1.78 Clcf1 NM_001310038 1.60
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Table 2. Cont.

(B) Gene List Downregulated More Than 1.9 Folds

Gene_Symbol mRNA Accession Folds Gene_Symbol mRNA Accession Folds
Pmp2 NM_001030305 -7.90 Vmn1r103 NM_001166737 -2.20

Gm25664 ENSMUST00000157697 -4.74 Plce1 NM_019588 -2.20
Chl1 NM_007697 -4.02 Mcam NM_023061 -2.19

Plekhg1 NM_001033253 -3.85 Ogn NM_008760 -2.19
Sntb1 NM_016667 -3.67 Cyp51 NM_020010 -2.18
Fndc1 NM_001081416 -3.62 Prss23 NM_029614 -2.18
Slitrk6 NM_175499 -3.50 Hist1h2ab NM_175660 -2.18

Gm22935 ENSMUST00000103960 -3.41 Gas7 NM_001109657 -2.17
Hmgcs1 NM_001291439 -3.19 Lrrc8b NM_001033550 -2.17
Cd200 NM_010818 -3.17 Dhrs3 NM_001172424 -2.14
Itga2 NM_008396 -3.16 Hist4h4 NM_175652 -2.13
Ly6a NM_001271416 -3.06 Gpc4 NM_008150 -2.13

Slc35f1 NM_178675 -3.04 Epb41l4b NM_019427 -2.11
Gm22908 ENSMUST00000177620 -2.98 Sorbs1 NM_001034962 -2.09
Gm26140 ENSMUST00000103807 -2.98 H2afx NM_010436 -2.09
Gm23256 ENSMUST00000102235 -2.98 Dhcr7 NM_007856 -2.09

Ctgf NM_010217 -2.97 Lgi4 NM_144556 -2.08
Has2 NM_008216 -2.87 Pls1 NM_001033210 -2.08

Adam19 NM_001291890 -2.83 Lss NM_146006 -2.07
Rgs8 NM_026380 -2.82 Cmtm5 NM_026066 -2.07
Vgll3 NM_028572 -2.78 Prss23os ENSMUST00000032858 -2.06

Deptor NM_001037937 -2.75 Arhgef9 NM_001033329 -2.06
Postn NM_001198765 -2.75 Olfr97 NM_146512 -2.05
Rassf4 NM_178045 -2.73 Acta2 NM_007392 -2.05
Plxnb3 NM_019587 -2.72 Rcan2 NM_001286653 -2.04

Ldlr NM_001252658 -2.69 L1cam NM_008478 -2.03
Dhcr24 NM_053272 -2.66 Hist1h2ag NM_178186 -2.03

Igf1 NM_001111274 -2.62 Nrxn1 NM_020252 -2.02
Prelp NM_054077 -2.62 Prex2 NM_001033636 -2.02

Gabrb3 NM_001038701 -2.62 Ptprz1 NM_001081306 -2.02
Deptor NM_001037937 -2.61 Gm10719 ENSMUST00000099047 -2.01
Insig1 NM_153526 -2.58 Hist1h2bf NM_178195 -2.01

Gm10801 ENSMUST00000099684 -2.53 Scn7a NM_009135 -2.00
Idi1 NM_145360 -2.51 Serinc5 NM_172588 -2.00
Itga1 NM_001033228 -2.51 Mef2c NM_001170537 -2.00
Fdps NM_001253751 -2.50 Lrrc8c NM_133897 -1.99

Fabp5 BC002008 -2.49 KnowTID_00007113 -1.98
Serpina3n NM_009252 -2.45 Myl9 NM_172118 -1.97

Pappa NM_021362 -2.41 Gabra2 NM_008066 -1.97
Fabp5 NM_001272097 -2.41 Hist2h2bb NM_175666 -1.97
Rgs16 NM_011267 -2.40 Gm11168 ENSMUST00000178348 -1.97

Hist1h4n OTTMUST00000001028 -2.37 Npnt NM_001029836 -1.96
Ahr NM_001314027 -2.36 Alg6 NM_001081264 -1.96

Hist1h1b NM_020034 -2.36 Pcsk6 NM_001291184 -1.96
Iqgap2 NM_027711 -2.35 Hist1h2bn NM_178201 -1.96
Sparcl1 NM_010097 -2.34 Fdft1 NM_010191 -1.95
Nsdhl NM_010941 -2.34 Tgfb2 NM_009367 -1.95

Adamts1 NM_009621 -2.34 Arhgef26 NM_001081295 -1.94
Cp NM_001276248 -2.34 Prickle1 NM_001033217 -1.94

Hist1h1a NM_030609 -2.33 Gm10715 ENSMUST00000177969 -1.94
H1fx NM_198622 -2.31 Msmo1 NM_025436 -1.94

Kctd12 NM_177715 -2.29 Thbs1 NM_001313914 -1.93
Nid2 NM_008695 -2.29 Stard13 NM_001163493 -1.93

Gm10717 ENSMUST00000099042 -2.29 Kcna1 NM_010595 -1.93
Ephb2 NM_001290753 -2.29 Afap1l2 NM_001177796 -1.92
Cdh19 NM_001081386 -2.27 Gm12688 XR_401838 -1.92
Tubb3 NM_023279 -2.24 Hist1h2af NM_175661 -1.92
Rbms3 NM_001172121 -2.23 Foxd3 NM_010425 -1.91

Gm26519 XR_389454 -2.22 Nppb NM_001287348 -1.90
Olfr344 NM_146628 -2.21 Tagln2 NM_178598 -1.90

Gm24277 ENSMUST00000158661 -2.21 Gm10717 ENSMUST00000075573 -1.90

Astrocytes were harvested after 24 h exposure with or without WCSC (1.0%) in 60 cm2-plates (every three plates for control and 1% WCSC),
and the cells were pooled to make one sample for analysis. Samples were independently prepared three times, and tables show genes that
are changed with statistical significance, and data are the mean value.
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3.7. Disturbed Immune Response

Astrocytes play a central role in neuroprotective immune responses by secreting
cytokines, chemokines, and growth factors. In this study, we found that expression of CD54
(an adhesion molecule), MHC class II (an essential surface molecule for the presentation
of extracellular antigens), and CXCR2 (a chemokine receptor) [28] tended to be enhanced
following exposure to WCSC and that the expression level 143.7 ± 6.1%, 122.7 ± 16.6%
and 121.6 ± 9.5%, respectively, compared to control, on the membrane of WCSC-treated
cells (Figure 9A). In addition, secretion of IL-1β, TNF-α, and CXCL-1 tended to increase
following exposure to WCSC (Figure 9B). Meanwhile, the secreted IL-6 and CCL-2 level
clearly decreased in the supernatants of the cells exposed to 1% WCSC (41.5 ± 16.1 pg/mL
and 992.7 ± 223.8 pg/mL, respectively), compared to the control (96.8 ± 15.7 pg/mL and
1582.2 ± 190.8 pg/mL, respectively).
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Figure 9. Disturbance in immune cell chemotaxis. Astrocytes were incubated with WCSC (0, 0.25, 0.5, and 1.0%) for 24 h.
All the end points were independently tested three times, and the results were presented as mean± SD. * p < 0.05, ** p < 0.01;
(A) expression of surface molecules. Overall, 10,000 cells per sample were analyzed using a FACS system, and the surface
expression level of each protein was calculated as the relative value compared to the control (100%); (B) concentration of
cytokines (or chemokines) in the cell supernatants. The concentration was determined using two wells per sample.

4. Discussion

Astrocytes are star-shaped cells with many processes that envelop the synapses made
by neurons. As mentioned above, astrocytes are involved in essential functions, such as
regulation of extracellular ion concentrations, control of synaptic function, and formation of
the blood–brain barrier and cellular networks, for brain homeostasis and neuroprotection.
Astrocytes also act as key regulators of neurovascular coupling, control blood flow in
the brain, and participate in the clearance of harmful byproducts. Astrocytes can store
glucose in the form of glycogen and also produce glucose, providing it to neurons when
necessary. Based on their characteristic structures, two types of astrocytes have been
identified in rodents: fibrous and protoplasmic astrocytes. While the former have only
a few organelles and long processes extending from the cell body, the latter have short
processes and extensive cytoplasm with abundant organelles. The processes of both types
of astrocyte also have end feet that attach to the basement membrane that encircles the
capillaries, helping maintain the integrity of the BBB [29–31]. Although the functions were
not clearly elucidated, it is known that the fibrous astrocytes show a higher expression
level of glial fibrillary acidic protein, an intermediate filament protein, than that in the
protoplasmic astrocytes [32]. Furthermore, enhanced expression of astrocytic PMP2, a
fatty-acid-binding protein that is important for the normal structure of membrane lipids,
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contributes to both logical thinking and cognitive functions in humans, and an increase in
the diameter and number of astrocytes [33], and L1CAM is involved in neurite outgrowth
and myelination, as well as cell adhesion and neuronal differentiation [34–36]. In this study,
we used fibrous astrocytes derived from the 8-day-old mouse cerebellum, and astrocyte
processes were clearly shortened following exposure to WCSC. More importantly, the
expressions of PMP2 (7.9 folds) and L1CAM (4.0 folds) genes were notably downregulated
in WCSC-treated cells. Therefore, we hypothesize that cigarette smoking may impair the
housekeeping functions of astrocytes that maintain the structural integrity of the BBB.

The brain requires a tremendous amount of energy, and sufficient oxygen must be
delivered by cerebral blood flow in order to meet this demand. In fact, although the brain
comprises only 2% of the total body weight, it consumes 20% of the body’s oxygen. In
addition, neurons store a limited amount of energy only, and astrocytes provide metabolic
support to supply the continuous energy that neurons require. Meanwhile, the imbalance
between pro-oxidants and antioxidants can result in harmful health effects, including
tissue and organ damage, by inducing oxidative stress. Similarly, astrocytic oxidative
stress has emerged as a critical mediator of the etiology of stroke and neurodegenerative
diseases, such as AD, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s
disease [37]. In addition, accumulating evidence indicates that metabolic disturbances
and activation of inflammatory signaling pathways are closely associated with cigarette-
smoking-induced diseases and that dysfunction of organelles, such as the mitochondria,
ER, lysosome, and Golgi body, can be involved in different types of cell death pathways.
Moreover, mitochondrial dysfunction importantly contributes to the onset of neurodegen-
erative diseases, and mitophagy functions as the selective scavenger toward the impaired
mitochondria [38]. In our previous study, we demonstrated that WCSC contains various
chemicals along with particulate materials and that it the most affected expression of iron
metabolism- and cancer-related proteins, accompanied by the decrease of organelle volume
and intracellular ROS and accumulation of mitochondrial calcium ions in bronchial epithe-
lial cells [19]. Similarly, in this study, we found that the size of intracellular organelles (ER,
lysosome, and mitochondria) was significantly reduced in astrocytes exposed to 1% WCSC.
The mitochondrial membrane potential (∆ψ) also tended to be lower in cells exposed to
WCSC, and the mitochondrial calcium ion concentration was significantly elevated. In
addition, the number of active mitochondria, total ATP content, and apoptotic cell death
(fraction of cells in the subG1 region) increased in a concentration-dependent manner, and
LDH level in the cell culture media decreased with WCSC concentrations. Additionally,
WCSC clearly enhanced the expression of antioxidant-related genes accompanying a signif-
icant increase in intracellular ROS level. Moreover, TEM images indicated that the shape
and size of the mitochondria were not consistent and that the cristae appeared disorganized.
More importantly, phagocytosis of an organelle by mitochondria (known as “mitophagy”)
was observed in 1% WCSC-treated cells, and expression of energy metabolism-related
genes was clearly enhanced in the same condition. Although the role of lactate in the brain
remains controversial among researchers, it is clear that lactate can be utilized as a fuel
source for neurons under hypoxia conditions [39–41]. In addition, the balance between
glycolysis and oxidative phosphorylation must be strictly controlled to maintain normal
neuronal activity. Elevated ADP and calcium ion concentrations are central signals that
contribute to this process, and ADP and calcium ions can depolarize the mitochondrial
membrane potential [42]. Moreover, the fission of mitochondria can contribute to quality
control of mitochondria through the removal of damaged mitochondria and can stimulate
apoptotic cell death signals under excessive cellular stress [43]. Herein, we hypothesize that
increased ATP content is attributable to an increase in the number of active mitochondria
due to an imbalance between fusion and fission of mitochondria.

Cigarette smoking has been known to contribute to the etiology of a wide spectrum of
diseases, including AD. Astrocytes can also produce the Aβ, a misfolded protein found in
the brain of AD patients, and incomplete clearance of produced Aβ proteins is considered
an important factor in the pathogenesis of AD. Similarly, astrocytes can prevent brain
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damage by expressing various molecules that attract and facilitate the migration of immune
cells from the bloodstream into the brain. In this study, we found autolysosome-like
vacuoles and mitophagy-like phenomena in WCSC-treated cells. WCSC also increased the
expression of p62, a substrate that is used as a reporter for the activation of autophagic
signals [44]. Additionally, surface expression of molecules that recruit local immune cells
(MHC class II, CXCR2, and CD54) was enhanced in WCSC-treated cells. Meanwhile, the
appearance of dead cells (floating in the cell culture media) was not clearly observed,
even in cells exposed to the highest dose. There were no notable changes in the secretion
of IL-1β, TNF-α, or CXCL-1 following WCSC treatment, whereas that of IL-6 and CCL-
2 was inhibited in a concentration-dependent manner. Expression of microRNAs (29a
and 222) related to inhibition of autophagic signals is significantly enhanced [45–47],
APP accumulated, together with increased expression of a p-ERK protein A p62 protein,
can influence the balance of mitophagy [38], and ERK phosphorylation is a regulator of
pro-inflammatory responses in AD pathogenesis [48]. Additionally, IL-6 is a pleiotropic
cytokine that can act in both pro- and anti-inflammatory responses, and CCL-2 and CXCL-1
act for chemotaxis of monocytes and neutrophils, respectively [49]. Herein, we hypothesize
that WCSC may cause accumulation of APP by blocking autophagic signals and contribute
to the occurrence of AD due to deficiency in recruiting immune cells.

Taken together, these results suggest that WCSC may contribute to the onset of AD
by causing structural and functional damage to astrocytes. In addition, in this study, we
studied the toxic response of WCSC following 24 h exposure to astrocytes. Therefore, we
suggest that further study should be performed to identify the real neurotoxicity of inhaled
cigarette smoke in mice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9070150/s1, Figure S1: TEM images of cells exposed to 1% WCSC.
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