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Abstract: Water quality monitoring demands the use of spatial interpolation techniques due to on-
ground challenges. The implementation of various spatial interpolation methods results in significant
variations from the true spatial distribution of water quality in a specific location. The aim of this
research is to improve mapping prediction capabilities of spatial interpolation algorithms by using a
neural network with the particle swarm optimization (NN-PSO) technique. Hybrid interpolation
approaches were evaluated and compared by cross-validation using mean absolute error (MAE) and
Pearson’s correlation coefficient (R). The governing interpolation techniques for the physicochemical
parameters of groundwater (GW) and heavy metal concentrations were the geostatistical approaches
combined with NN-PSO. The best methods for physicochemical characteristics and heavy metal
concentrations were observed to have the least MAE and R values, ranging from 1.7 to 4.3 times
and 1.2 to 5.6 times higher than the interpolation technique without the NN-PSO for the dry and
wet season, respectively. The hybrid interpolation methods exhibit an improved performance as
compared to the non-hybrid methods. The application of NN-PSO technique to spatial interpolation
methods was found to be a promising approach for improving the accuracy of spatial maps for
GW quality.

Keywords: groundwater; acid mine drainage; heavy metals; physicochemical characteristics; neural
network; particle swarm optimization; spatial interpolation

1. Introduction

Acid mine drainage (AMD) is a natural or man-made environmental occurrence that
transpires when sulfide minerals are exposed to weathering conditions or as a result of
specific mining activities. It is a discharge with low pH, high heavy metal, and deadly
component concentrations. It is also typically formed when sulfide-abundant wastes
have been introduced to the environment. This condition has been viewed as a severe
environmental issue encountered by mineral extraction enterprises around the world [1,2].
AMD is caused by oxidation of pyrite and other sulfate metals when mining sources are
exposed to air, microbial activity, and water. Among the potentially hazardous dissolved
metals found in high quantities, iron (II) is the most prevalent and frequent in the majority
of AMD locations. Iron (II) in AMD interacts with dissolved oxygen to form iron oxide
precipitates often referred to as yellow boy and may kill life all along river or stream
banks [3,4]. This problem has been identified as a significant environmental concern for
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mineral extraction companies worldwide. AMD is prevalent in both active and inactive or
abandoned mining sites. However, it is less prevalent in current producing mines owing
to pumping that kept the water table low. AMD is severe in closed and abandoned mines
when pumps are shut off, causing water tables to recover [5]. In Asia [6,7], Europe [8],
South America [9], North America [10], Africa [11], and Oceania [12], AMD studies have
shown that it has detrimental consequences.

Due to the weakness and irregularity of the monitoring of AMD impacted locations,
the majority of AMD originating in lower middle income to low income countries posed
substantial environmental and health risks to the surrounding community. There were
various locations impacted by acid mine drainage in the Philippines alone, and these
incidents typically occurred in far-flung locales and remote provinces. As a result, it lacked
the necessary technology and resources to monitor the amount of heavy metal (HM) content
in its water resources on a regular basis. These could pose several concerns, as it was
determined that good education and awareness with respect to HM in water resources are
vital. A lack of understanding about this condition will result in harmful repercussions not
only with respect to the environment but also to the community’s inhabitants. Moreover, it
was also discovered that inadequacies in environmental quality monitoring are attributable
to a lack of knowledge about the dangers of HM to humans [13]. Chronic exposure to
the various HM included in AMD may have serious health consequences. Chromium
has been shown to have adverse effects on the liver, kidneys, circulatory system, and
neurological system [14]. Exposure to cadmium has been linked to renal impairment, lung
illness and cancer, bone abnormalities, kidney damage, and gastrointestinal disorders [15].
Chronic exposure to elevated concentration of iron (Fe) may result in iron toxicosis which is
more prevalent in children owing to their increased exposure to iron-containing products.
Iron toxicosis may result in gastrointestinal bleeding, diarrhea, hypertension, lethargy,
tachycardia, necrosis of the liver, and metabolic acidosis [16]. Manganese poisoning or
contact with the body may harm the neurological system and central nervous system [17].
Nickel exposure has been linked to allergic contact dermatitis, respiratory cancer, and
reproductive damage [18]. Lead exposure may result in damage to the liver, kidneys,
and gastrointestinal tract, as well as acute or chronic neuro-logical impairment [19]. Zinc
poisoning may cause harm to the neurological system, while copper toxicity can result in
liver and kidney damage, as well as stomach and intestinal discomfort [20,21]. Due to these
detrimental effects of HM in AMD, proper and frequent monitoring in affected sites should
be implemented. This should be performed in order to ensure that enough information
and warnings are provided to the surrounding community.

The most frequent form of monitoring tool is concentration maps. Spatial interpolation
is the process of predicting the results of a main component at points within the same
area of sample sites [22]. These maps were made with spatial data containing variety of
characteristics needed for mapping and characterization to predict water quality in each
location. However, spatial data are rarely available, and information on water quality is
mainly obtained by spot sampling. Moreover, these techniques are tedious and require
expensive instruments, tools, and/or devices. There is no clear evidence on how the perfor-
mance of spatial prediction methods is affected in existing research, making it impossible
to choose the best method for any dataset [23]. Several research studies investigated the
performance of several geo-statistical and spatial interpolation techniques in soil moisture
and drought [24], PM2.5 estimations [25], wind data [26], digital elevation model (DEM)
height accuracy [27], soil organic carbon [28], and even social science [29].

The use of cutting-edge tools such as machine learning (ML) approaches coincided
with the transformation of various disciplines to Industry 4.0. ML has opened up new
possibilities for unraveling, measuring, and comprehending data-intensive processes in the
environment. ML is a unique combination of Big Data technologies and high-performance
computers. ML’s overall purpose is to discover patterns in data that inform how problems
that are not visible are addressed [30,31]. Numerous studies integrated a ML technique to
spatial interpolation models such as Artificial Neural Network (ANN) for solar radiation
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estimation [32]; deep learning for seismic intensity [33]; ensemble ANN for atmospheric
studies [34]; decision tree (DT) approach for land cover data and sodium absorption [35,36];
support vector machine (SVM) for basin precipitation [37]; long short-term memory (LSTM)
neural network for PM2.5 [38]; extremely randomized trees for meteorological drought
forecasting [39]; support vector regression (SVR) and correlation-based feature selection
(CFS) for vehicular emissions prediction [40]; stochastic gradient boosting, cubist, random
forest (RF), and model averaged neural networks for temperature maps [41]; random
forest for solar radiation observation [42]; ensemble prediction approach for lake acidity
prediction [43]; RF and generalized boosted regression (GBR) for soil organic carbon [44];
Non-linear AutoRegressive eXogenous (NARX) model for groundwater (GW) level pre-
diction [45–47]; dynamic and long-term prediction of toxic HM [48,49]; and water quality
prediction [50]. The use of ML integrated with spatial interpolation technique qualifies
as an innovative superior substitute for traditional data application approaches due to its
capability to distinguish non-linear associations among numerous constraints as opposed
to other techniques that assume these connections are linear [51].

The spatial interpolation methods and its application to environmental monitoring
were developed and established already, while the use of ML techniques is currently
emerging and growing strongly. Several studies used ML algorithms and have recently
been integrated to spatial interpolation. Du et al. investigated the suitability of various ML
techniques for spatial data management. It addressed associated issues such as non-linear
and high-dimensional classification and regression utilizing semi-supervised and active
learning. This is to manage limited training data sizes and identify high-level features
in the dataset. The findings of the research of Du et al. indicated that ML techniques are
appropriate for overcoming these difficulties in spatial data processing that enhance the
performance of classification and prediction skills of the model [52]. Moreover, the SVR
and RF were the most widely explored ML technique in reference to its integration to
spatial interpolation [53].

According to Stahl et al., the sample density influences the performance of the spatial
interpolation technique. When the sample density is low, the performance of spatial inter-
polation technique is deficient. However, when sample density is high, the performance
of spatial interpolation technique improves [54]. Spatial data are rarely available, and
the majority of information on GW quality is gathered via spot sampling. Hence, the
spatial interpolation technique is useful in GW quality monitoring and mapping. Therefore,
this research addresses the issue in sampling density and the challenge of spot sampling
access by highlighting the application of a hybrid neural network with particle swarm
optimization (NN-PSO) with the spatial interpolation technique for GW quality mapping.

2. Materials and Methods

The study uses NN-PSO methodology relative to a range of interpolation types,
including deterministic techniques, geostatistical methods, and interpolation with barriers,
to improve its GW quality prediction performance. The subsequent sections detail the
study’s focus and the combined strategies used to create enhanced spatial maps.

2.1. The Area of Study

The Province of Marinduque, the smallest island province in the MIMAROPA Region
(or Region IV-B), is the area of research. Marinduque Island, about 200 km south of Manila,
is a province known as Philippines’ heart due to its geometric shape and geographical
location [55]. With a total land area of 96,000 hectares, Marinduque is a 4th income class
island province made up of six municipalities: Boac, Buenavista, Mogpog, Gasan, Santa
Cruz, and Torrijos. The province’s topography is mostly mountainous, with continuous and
severe slope areas. Considering the province’s overall land area, 77 percent, or 737.2 square
kilometers, is classified as alienable land, while the remaining 23 percent, or 222.05 square
kilometers, is classified as forest land [56]. The island province has a Climate Type III
climate, with the dry season lasting from November to April and the wet season covering
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the rest of the year [57]. The annual rainfall in the province of Marinduque range from
1700 to 2500 mm [58].

Several bodies of water, primarily rivers and their tributaries, make up the province
of Marinduque. The province’s major rivers and tributaries have a total length of 178 km
which is composed of the municipalities of Boac (20.11 percent), Buenavista (10.96 percent),
Gasan (19.49 percent), Mogpog (20.06 percent), Santa Cruz (15.22 percent), and Torrijos
(15.22 percent) (14.16 percent). The province has a total of 614.1003 km2 considering the
drainage area. The Municipality of Boac has 34.80 percent of the total surface water body
drainage area, followed by 7.47 percent in the Municipality of Buenavista, 11.30 percent in
the Municipality of Gasan, 14.61 percent in the Municipality of Mogpog, 19.58 percent in
the Municipality of Santa Cruz, and 12.24 percent in Torrijos [59].

Figure 1 depicts 34 watersheds that make up the province of Marinduque. With an
extent of 195.94 km2, the Boac Watershed is the province’s largest watershed. The list of
watersheds of the province of Marinduque is shown in Table 1.
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Figure 1. Watershed Map of Marinduque.

Marinduque Island is home to one of the Philippines’ largest copper deposits. Since
1969, copper mining activities have been carried out on the island. Mine tailings from these
activities began to be deposited in Calancan Bay in 1975. Since then and until 1997, around
200 million tons have been dumped [60].

In the 1990s, the island was hit by two mining catastrophes. The first incident occurred
in 1993, when the Maguilaguila siltation dam in San Antonio, Sta. Cruz, collapsed. This
caused property and agricultural damage and adverse effects to public health in down-
stream communities [61]. Three years later, in 1996, the Tapian Pit collapsed, releasing
between 180,000 and 260,000 cubic meters of mine tailings into the Boac River, causing
environmental and community damages [62].
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Table 1. List of Watershed in Marinduque Province.

Watershed No. Name of Watershed Watershed No. Name of Watershed

1 Hinanggayon—Mogpog 18 Catangon—Buenavista
2 Guisan—Mogpog 19 Libas—Buenavista
3 Balanacan—Mogpog 20 Lipata—Buenavista
4 Capayang—Mogpog 21 Buenavista
5 Laon—Mogpog 22 Dampulan—Torrijos
6 Sayao—Mogpog 23 Marlanga—Torrijos
7 Mogpog 24 Cabuyo—Torrijos
8 Pili—Boac 25 Matuyatuya—Torrijos
9 Murallon—Boac 26 Torrijos
10 Ihatub—Boac 27 Tambangan—Santa Cruz
11 Caganhao—Boac 28 Tawiran—Tagum
12 Maybo—Boac 29 Tagum—Santa Cruz
13 Bunganay—Boac 30 Botilao—Santa Cruz
14 Boac 31 Dolores—Santa Cruz
15 Banot—Gasan 32 Kamandugan—Santa Cruz
16 Dawis—Gasan 33 Hupi—Santa Cruz
17 Gasan 34 Santa Cruz

2.2. Sampling, Storage, and Collection of GW Samples

GW samples were gathered from different wells in six municipalities in Marinduque
and stored in plastic bottles (1 L). Data were collected and stored in compliance with EPA
No. SESDPROC-301-R3, which is the GW sampling operational procedure [63]. The Hanna
HI 9811-5 handheld multi-parameter sampler was used to collect all field measurements,
including in situ physicochemical parameters for GW samples, such as temperature (in
Celsius), pH, total dissolved solids (TDS) in milligrams per liter, and electrical conductivity
(EC) in microsiemens per centimeter. Two separate geographical maps were created to
depict dry and wet seasons in a year [64]. The map and details of the sampling locations
are presented in Figure 2 and Table 2.
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Table 2. Coordinates of the Sampling Locations.

Sampling
Location Code Barangay Municipality Latitude Longitude Elevation

BGW1 Tagwak Boac 13.44552◦ N 121.87620◦ E 96 m
BGW2 Maligaya Boac 13.47936◦ N 121.84087◦ E 10 m
BGW3 Puting Buhangin Boac 13.45117◦ N 121.96087◦ E 282 m
BGW4 Balarin Boac 13.41933◦ N 121.82200◦ E 17 m
BGW5 Bantay Boac 13.43247◦ N 121.90953◦ E 208 m
BGW6 Hinapulan Boac 13.41442◦ N 121.94785◦ E 242 m
BGW7 Boton Boac 13.44292◦ N 121.86732◦ E 61 m
MGW1 Sumangga Mogpog 13.47268◦ N 121.87412◦ E 68 m

MGW2 Nangka Dos
(Site 1) Mogpog 13.47972◦ N 121.85047◦ E 24 m

MGW3 Nangka Dos
(Site 2) Mogpog 13.47973◦ N 121.85053◦ E 24 m

MGW4 Janagdong Mogpog 13.46952◦ N 121.85326◦ E 29 m
MGW5 Butansapa Mogpog 13.48100◦ N 121.91803◦ E 145 m
MGW6 Putting Buhangin Mogpog 13.45533◦ N 121.95198◦ E 265 m
BVGW1 Malbog (Site 1) Buenavista 13.25813◦ N 121.94488◦ E 77 m
BVGW2 Malbog (Site 2) Buenavista 13.26675◦ N 121.91648◦ E 103 m
BVGW3 Libas (Site 1) Buenavista 13.25553◦ N 121.93958◦ E 69 m
BVGW4 Libas (Site 2) Buenavista 13.26807◦ N 121.95612◦ E 70 m
BVGW5 Bagtingon Buenavista 13.20521◦ N 121.99482◦ E 85 m
BVGW6 Sihi Buenavista 13.25813◦ N 121.94488◦ E 371 m
GGW1 Banuyo Gasan 13.27573◦ N 121.89303◦ E 5 m
GGW2 Masiga Gasan 13.35505◦ N 121.82912◦ E 16 m
GGW3 Libtangin Gasan 13.34647◦ N 121.83297◦ E 21 m
GGW4 Matandang Gasan Gasan 13.32178◦ N 121.85268◦ E 46 m
GGW5 Dawis Gasan 13.28638◦ N 121.88908◦ E 42 m
GGW6 Tiguion Gasan 13.34365◦ N 121.86365◦ E 86 m
TGW1 Marlangga Torrijos 13.32683◦ N 122.08442◦ E 56 m
TGW2 Poctoy (Site 1) Torrijos 13.32943◦ N 122.09528◦ E 37 m
TGW3 Dampulan Torrijos 13.22590◦ N 122.04562◦ E 25 m
TGW4 Sibuyao Torrijos 13.34091◦ N 122.01261◦ E 444 m
TGW5 Poctoy (Site 2) Torrijos 13.33164◦ N 122.01261◦ E 34 m
TGW6 Matuyatuya Torrijos 13.37778◦ N 122.11611◦ E 15 m

SGW1 San Antonio Santa
Cruz 13.44612◦ N 121.98055◦ E 272 m

SGW2 Dolores (Site 1) Santa
Cruz 13.49177◦ N 121.96383◦ E 185 m

SGW3 Dolores (Site 2) Santa
Cruz 13.49183◦ N 121.96087◦ E 191 m

SGW4 Napo Santa
Cruz 13.43878◦ N 122.07607◦ E 65 m

SGW5 Matalaba Santa
Cruz 13.46595◦ N 122.05897◦ E 53 m

2.3. Elemental Analysis of Groundwater Samples

The measurement of total metals, which includes suspended and dissolved compo-
nents as well as soluble metals, is required when looking for HMs in GW samples. The
EPA Method 3005A was employed for Inductively Coupled Plasma spectroscopy using
water acid digestion for total dissolved and recoverable metals as the reference guidelines
for GW sample digestion [65,66].

2.4. Descriptive and Multivariate Statistical Analysis

The IBM Statistical Package for the Social Sciences (SPSS) was utilized to evaluate
descriptive statistics linked to GW physicochemical parameters and HM intensities. Skew-
ness and kurtosis were applied to assess the asymmetry of physicochemical characteristics
and HM concentrations in GW. The skewness of the GW quality parameters shows the
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relative locations of the median and mean, whereas the kurtosis represents the form of
the distribution [67,68]. The most important element in characterizing the variability of
GW physicochemical parameters and HM content was the coefficient of variation (CV).
The coefficient of variability was used to analyze the dataset’s variability as follows: CV
≤ 15%, low; 15% < CV ≤ 35%, intermediate; and CV ≥ 35%, high [69]. Moreover, a
Kolmogorov–Smirnov (K-S) test was employed to test the normality of the datasets and to
examine if the GW quality parameters have a normal distribution [70].

The GW quality data are frequently identified and evaluated using multivariate
statistical analysis. Multivariate statistical approaches enable the extraction of meaningful
meaning from data by simplifying, organizing, and classifying it [71]. Using a correlation
matrix utilizing MATLAB 2021a and R studio, the relationship between physicochemical
parameters and HM intensities in GW in the research area was observed. The correlation
matrix established occurrence, HM associations, and potential source of contaminants
in the area of study [72]. The R value of −1 signifies that the parameter shifts inversely
with respect to the other. A very strong correlation is exhibited by 0.90 < r < 1.00, strong
correlation by 0.70 < r < 0.89, moderate correlation by 0.40 < r < 0.69, weak correlation by
0.10 < r < 0.39, and negligible correlation by 0 < r < 0.10. There is no association between
the two variables if the correlation is zero [73].

2.5. Machine Learning: Hybrid Neuro-Particle Swarm Optimization Modelling

Machine learning is an application of artificial intelligence that allows software ap-
plications and uses statistical models and algorithms to analyze and draw interferences
from patterns in data. This study uses MATLAB 2021a to enhance the prediction capability
of the spatial interpolation maps of GW quality using a Particle Swarm Optimization
(PSO) trained Artificial Neural Network model. Subsequent sections below elaborate how
machine learning was used as technique in creating GW quality mapping. Hence, pages
7–9 discuss and illustrate how machine learning has been used in the study and which
stage of the technique development been used.

2.5.1. Backpropagation Neural Network (BP-NN)

The ANN is an approach inspired by a real biological neuron that has been used
in prediction and forecasting, particularly for complicated and non-linear systems such
as environmental problems such as water quality modeling [74]. The Artificial Neural
Network learns by training the connectivity between the neurons, which is performed
using known input and output values provided in an organized manner so that the
network can extract the relationship and patterns in the dataset [75]. MATLAB R2021a
was used to create the neural network model, which included 70 percent, 15 percent,
and 15 percent data partitioning for the data sets utilized in the training, validation, and
testing stage, respectively [76]. The Levenberg–Marquardt algorithm was employed as the
model’s training algorithm since it is the quickest method to train a moderate-sized feed
forward neural network with several hundred weights [77]. The model uses a hyperbolic
tangent sigmoid (tansig) transfer function as the driving component for the interaction
between a neuron’s weights (W) and the input element. It also has a significant impact on
the network’s complexity and performance, and it was chosen because it provides ideal
decision biases (b). The tansig transfer function can understand the complex non-linear
connection between the input and output parameters by producing values ranging from
−1 to +1 [78]. Figure 3 depicts the design and architecture of the ANN model development.
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2.5.2. Particle Swarm Optimization (PSO)

One of the most frequently used ANN models is the BP-NN, which is a multiple layer
feed-forward ANN trained using the error BP method. BP-NN, on the other hand, has
weaknesses, which may be fixed by combining it with the Particle Swarm Optimization
(PSO) approach, which improves the model’s accuracy and efficiency [79]. The PSO
approach is utilized in this research in order to optimize the link weights of the ANN.

The PSO is a type of swarm intelligence approach used in evolutionary computing.
These techniques were influenced by natural bio-social phenomena such as flocks of
birds, schools of fish, and other natural bio-social phenomena. The PSO is particularly
applicable for non-linear generalization capabilities with discontinuities because of its
quick convergence and robustness. PSO is a promising choice for optimization modelling
when compared to other evolutionary algorithms [80,81]. Due to its faster learning speed
and lower memory demand, the PSO is preferred over other optimization algorithms
including the Genetic Algorithm (GA) and Imperialist Competition Algorithm (ICA) [82].

2.5.3. Hybrid NN-PSO Model

The Neural Network (NN) model’s connection weights are optimized via Particle
Swarm Optimization (PSO). The PSO is utilized because it can determine the best solution
while also reducing the ANN’s errors. The PSO calculates the positions of the particles
and transmits it to the learning process. The optimal weights and biases for the training
method of the ANN were found using the PSO-generated particle population [83]. The
framework of the application of the NN-PSO method in spatial interpolation techniques is
presented in Figure 4.

2.5.4. Performance Evaluation

The correlation coefficient (R) and mean squared error (MSE) were utilized to assess
the performance of the NN-PSO model. A complete positive correlation is implied by a
R value of 1. The R value indicates how closely two variables were linked [84]. The R
values were observed and utilized as performance indicators throughout the validation and
testing phases. The R value was utilized in the validation phase to assess network general-
ization, terminate the simulation when generalization ceased to improve, and determine
the optimum architecture, while the R value in the testing phase serves as an additional
independent measure of network performance during and after the simulation [85,86].
In a simulation using the NN-PSO method, the MSE was minimized which includes the
overall MSE in the validation and testing phases. The MSE is a helpful tool for assessing
model predictions since it reflects the sum of squared bias and variance. For the model,
zero is the optimum value for the MSE [87]. The equations for the R and MSE are shown in
Equations (1) and (2) where “N” is the number of data sets, y0 is the predicted value, ym

is the measured value, y and ym were the mean values, and ei is the contrast between the
measured values and the predicted values [88].
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2.6. Spatial Interpolation Methods for Heavy Metals

The measured physicochemical parameter and detected HM concentrations were
mapped by utilizing the ArcGIS platform. The sampling sites’ precise locations were
recorded using a GARMIN Montana 650 GPS, which was integrated onto the Geographical
Information System (GIS) platform. Moreover, data collected from the GW samples were
applied to create maps operating the Geostatistical Analyst Tool and Geostatistical Wizard
in the ArcGIS software. The different interpolation methods are utilized to apply spatial
analysis which are included in the ArcGIS spatial analysis extension tool. Deterministic
techniques, geostatistical methods, and interpolation with barriers are among the three (3)
interpolation types utilized in the study.

The deterministic techniques include Inverse Distance Weighting (IDW), Global Poly-
nomial Interpolation (GPI), Radial Basis Functions (RBF), and Local Polynomial Interpola-
tion (LPI). The IDW is a deterministic spatial interpolation approach that determines the
data in an unsampled location by using the data from a distributed collection of sampled
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locations. The data in an unidentified site are based on the weighted sum of the values of
the recognized locations which is based on the distance of the unidentified site to the sam-
pled locations [89]. GPI is a deterministic and approximate trend surface analysis wherein
a smooth two-dimensional polynomial function of first, second, or higher degree is used
to describe a surface. It computes the target point’s value by using all nearby points [90].
RBF achieves its accuracy by using a large number of accurate interpolators that reduce
the overall curvature of the surface depending on the space between the interpolated and
sampled locations [91]. The LPI method includes fitting the weighted least squares to store
the data inside the search ellipse of the grid node wherein the projected value is used to
calculate the surface value of the neighboring points that can be used to build surface that
account for short-range variation [92].

The geostatistical techniques include Ordinary Kriging (OK), Universal Kriging (UK),
and Empirical Bayesian Kriging (EBK). OK is a linear geostatistical process that depends less
on stationary mean assumptions by using the search radius. The OK method approximates
values in unsampled regions by averaging nearby data and visualizing the correlations
between surrounding values as a function of the geographic distance between the sites
in the area of study using a weighted average of neighboring data and a variogram [93].
UK uses a trend surface that may include factors that account for variation in the global
component, and it more likely to provide residuals that are more closely related to a
stationary mean with identical distribution [94]. EBK automates the most time-consuming
and challenging stages in creating a realistic kriging model. EBK automatically optimizes
by subsetting and simulating several semi-variogram models instead of a single semi-
variogram. EBK creates a semi-variogram model from existing data and then simulates the
new value at each input data point until the final calculation of the new semi-variogram
model based on the simulated data [95].

The interpolation with barriers includes Kernel Smoothing (KS) and Diffusion Kernel
(DK). The DK employs a complex distance metric specified by the cost surface, which is a
widely used raster function that estimates the cost of traveling from one cell of a raster to
the next, and then generates forecasts on automatically chosen grids. The KS method is a
variation of first order LPI that avoids computing uncertainty by using a technique similar
to that used to estimate regression coefficients in ridge regressions. KS utilizes the shortest
distance between locations to connect places on opposing sides of an absolute barrier using
a sequence of straight lines [96]. These interpolation techniques were implemented to
the data arrays in order to distinguish the concentration map that best describes the HM
pollution in the province of Marinduque [97].

2.7. Cross Validation

A frequently utilized technique for comparing the interpolation methods is cross
validation. Due to the small sample size, cross validation was used. A cross validation
procedure consists in removing data points one at a time, interpolating a value from the
remaining observations, and comparing that value to the real value [98].

The Mean Absolute Error (MAE) and Pearson’s Correlation Coefficient (R) were used
to determine the predictive accuracy of distinct methods, with the least MAE representing
the most exact predictions. Equation (3) shown below is used to calculate MAE:

MAE =
1
n

n

∑
i=1
|Zi − Z| (3)

where Zi is the predicted value, Z is the observed value, and n is the number of observations [99].

3. Results

The major findings of the study are presented in this section. This section con-
tains all the maps created with the integrated NN-PSO and spatial interpolation al-
gorithms. This part also includes the data’s descriptive statistics as well as the maps’
prediction performance.
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3.1. Heavy Metals in Groundwater

Table 3 shows descriptive data for GW physicochemical characteristics and HM
concentrations.

Table 3. Descriptive statistics for dry season physicochemical properties and HM concentrations in
GW in the study area.

Parameter Mean
PNSDW 2017

Guideline
Value

WHO
Guideline

Value
SkewnessKurtosis CV%

Temp (◦C) 36.80 - - 0.417 −1.513 24.20
pH 7.02 6.5–8.5 6.5–9.2 −0.089 −1.678 10.30

EC (µS/cm) 935.17 - 1500 0.625 −1.166 88.40
TDS (mg/L) 372.77 600 1200 1.189 2.579 43.10

Cr (ppm) 0.06285 0.050 0.050 0.693 0.232 47.40
Cd (ppm) 0.03283 0.003 0.003 0.800 −1.300 140.16
Fe (ppm) 2.92944 1.000 0.300 4.026 14.917 378.74
Mn (ppm) 0.71753 0.400 0.400 3.165 9.205 264.87
Ni (ppm) 0.03902 0.070 0.070 0.754 −1.170 124.54
Pb (ppm) 0.05572 0.010 0.010 0.226 −1.779 94.68
Zn (ppm) 4.32901 5.000 3.000 3.374 10.135 299.87
Cu (ppm) 0.12688 1.000 2.000 0.212 −1.530 77.03

During the dry season, all GW physicochemical parameters and HM concentrations
were observed to be highly variable, except for pH and temperature, which were found
to be low and moderately variable, respectively. The Kolmogorov–Smirnov test revealed
that the dry season physicochemical characteristics and HM concentrations of GW in the
research region were not uniformly distributed, with all parameters having p < 0.05.

The GW physicochemical characteristics were compared to Philippine National Stan-
dards for Drinking Water (PNSDW) 2017 and World Health Organization (WHO) Drinking
Water Standards. Table 3 shows that the pH of the GW during the dry season ranged
from 6.10 to 7.90, with an average pH of 7.02, which is within the PNSDW 2017 and WHO
standards. The EC of the GW during the dry season varies from 80 to 2350 µS/cm with
mean EC of 935.17 µS/cm, which is below the maximum value set by the WHO. The asym-
metries of the physicochemical characteristics and HM concentration of the GW during
the dry season were measured by skewness and kurtosis. With the exception of pH, all
physicochemical characteristics and HM concentrations in GW exhibit a positive skewness,
meaning that the right side is longer than the left. This indicates that an asymmetry dis-
tribution with a positive skewness tends to be less concentrated. TDS, Cr, Fe, Mn, and
Zn are the only elements with positive kurtosis values, indicating a steeper distribution
than normal.

A comparative assessment of HM concentrations of GW during the dry season was
likewise performed relative to the PNSDW 2017 and WHO Standards for Drinking Water.
Mean concentrations of Ni ranging from 0.000110 to 0.125310 ppm and Cu ranging from
0.000868 to 0.260497 ppm were below the limit of PNSDW 2017 and WHO standards for
drinking water. Zn concentration ranged between 0.000985 and 56.96133 ppm, with mean
concentration exceeding the WHO limit. Average concentrations of Cr, Cd, Fe, and Pb
exceeded the allowable limits by PNSDW 2017 and WHO Standards. Moreover, some
locations had concentrations way above the limit.

During the wet season, all GW physicochemical parameters except for pH and temper-
ature and HM concentrations showed considerable variability. The Kolmogorov–Smirnov
test revealed that the wet season physicochemical characteristics and HM concentrations of
GW in the research region were not normally distributed, with p < 0.05 for all parameters.

Wet season GW physicochemical characteristics were also compared to PNSDW 2017
and WHO Drinking Water Standards. Table 4 indicates that the pH of the GW throughout
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the wet season ranged from 6.00 to 9.55, with a mean pH of 7.43, which is within the
PNSDW 2017 and WHO standards.

Table 4. Descriptive statistics for wet season physicochemical properties and HM concentrations in
GW in the study area.

Parameter Mean
PNSDW 2017

Guideline
Value

WHO
Guideline

Value
SkewnessKurtosis CV%

Temp (◦C) 31.55 - - 0.800 −0.718 18.25
pH 7.43 6.5–8.5 6.5–9.2 0.474 −1.104 15.62

EC (µS/cm) 780.61 - 1500 1.082 −0.183 107.93
TDS (mg/L) 428.09 600 1200 0.978 −0.608 109.80

Cr (ppm) 0.08929 0.050 0.050 −0.048 −1.787 81.20
Cd (ppm) 0.06860 0.003 0.003 −0.695 −1.377 65.30
Fe (ppm) 16.0672 1.000 0.300 0.899 −1.095 143.96
Mn (ppm) 3.99553 0.400 0.400 0.186 −1.860 99.20
Ni (ppm) 0.05355 0.070 0.070 0.276 −1.749 100.63
Pb (ppm) 0.06298 0.010 0.010 −0.086 −1.904 89.07
Zn (ppm) 23.7530 5.000 3.000 0.358 −1.629 100.99
Cu (ppm) 0.13846 1.000 2.000 −0.103 −1.786 80.75

The EC of the GW during the wet season varies from 70 to 2640 µS/cm with average
780.61 µS/cm which is inside the acceptable value set by the WHO. The asymmetries
of the physicochemical characteristics and HM concentration in GW during wet season
were measured by skewness and kurtosis. With the exception of Cr, Cd, Pb, and Cu, all
physicochemical characteristics and HM concentrations in GW exhibited positive skewness,
meaning the right side is longer than the left side. This indicates that an asymmetry
distribution with a positive skewness tends to be less concentrated. All parameters have
a negative kurtosis value, which suggests that the distribution of the datasets was flatter
than a normal distribution.

The HM concentrations in GW during the wet season were assessed in comparison
to the PNSDW 2017 and WHO Standards for Drinking Water. Only the mean Ni content
was below the PNSDW 2017 and WHO drinking water requirements. Cr, Cd, Fe, Mn,
Pb, Zn, and Cu values were above the permissible limits set by PNSDW 2017 and WHO.
Furthermore, some sites have concentrations that were far higher than the permissible level.

A Pearson’s Correlation Matrix (PCM) was utilized to establish the level of correlation
between GW HMs and physicochemical properties in the island province of Marinduque,
with the goal of identifying a potential source of the HMs. Table 5 shows the metals
correlation matrix that was generated during the dry season. Cd (r = 0.72), Ni (r = 0.69),
and Pb (r = 0.81) were all highly linked with chromium. Cadmium and Ni (r = 0.78),
Cd and Pb (r = 0.83), and Ni and Pb (r = 0.77) showed substantial positive associations.
Positive significant correlations imply that these metals have a shared origin, were mutually
dependent, and behaved similarly throughout transport [100].

The correlation analysis for water quality parameters during the wet season is shown
in Table 6 and illustrated in Figure 5. For the physicochemical characteristics, the EC
was observed to have a positive correlation to TDS which agreed to the findings of
Manikandan et al. in 2020 [101]. A significant connection was found between Cr and
Cd, as well as Cu and Zn, for the HMs in GW during the wet season. This indicated a
possible shared source for these HMs. Moreover, these correlations were in agreement with
the findings of Kumar et al. in 2012 [102] and Mansouri et al. in 2012 [103].
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Table 5. Correlation analysis of HMs in GW during dry season.

Temp pH EC TDS Cr Cd Fe Mn Ni Pb Zn Cu

Temp 1.00 −0.20 ** 0.24 ** −0.18 ** −0.06 −0.21 ** −0.19 ** −0.09 0.003 −0.11 * −0.04 0.13 *
pH 1.00 0.06 −0.15 ** −0.07 −0.09 −0.12 * 0.18 ** −0.17 ** −0.18 ** 0.03 −0.08
EC 1.00 0.30 ** −0.05 −0.28 ** 0.05 0.12 * −0.18 ** −0.23 ** −0.04 0.10

TDS 1.00 0.04 0.003 0.11 * 0.08 −0.17 ** −0.01 0.09 −0.20 **
Cr 1.00 0.72 ** 0.01 0.001 0.69 ** 0.81 ** 0.09 0.33 **
Cd 1.00 −0.13 * 0.05 0.78 ** 0.83 ** −0.11 * 0.27 **
Fe 1.00 0.12 * −0.12 * −0.04 0.50 ** −0.07
Mn 1.00 0.07 0.02 0.14 ** −0.09
Ni 1.00 0.77 ** −0.09 0.38 **
Pb 1.00 −0.03 0.41 **
Zn 1.00 −0.08
Cu 1.00

** Correlation is significant at the 0.01 level (two-tailed); * Correlation is significant at the 0.05 level (two-tailed).

Table 6. Correlation analysis of HMs in GW during wet season.

Temp pH EC TDS Cr Cd Fe Mn Ni Pb Zn Cu

Temp 1.00 0.04 −0.22 ** −0.22 ** 0.01 0.11 * −0.40 ** 0.22 ** −0.09 −0.17 ** −0.07 0.03
pH 1.00 −0.11 * −0.06 0.23 ** 0.15 ** −0.06 0.36 ** −0.36 ** −0.28 ** 0.33 ** 0.49 **
EC 1.00 0.49 ** −0.30 ** −0.10 0.07 −0.52 ** −0.15 ** 0.25 ** 0.17 ** 0.03

TDS 1.00 0.04 0.18 ** 0.06 −0.19 ** 0.18 ** 0.04 −0.07 −0.08
Cr 1.00 0.40 ** −0.02 0.24 ** 0.17 ** 0.07 0.02 0.12 *
Cd 1.00 0.09 0.19 ** 0.26 ** 0.25 ** 0.19 ** 0.27 **
Fe 1.00 −0.08 −0.01 0.17 ** 0.22 ** 0.04
Mn 1.00 −0.24 ** −0.36 ** −0.12 * 0.05
Ni 1.00 0.19 ** −0.29 ** −0.21 **
Pb 1.00 0.05 −0.07
Zn 1.00 0.49 **
Cu 1.00

** Correlation is significant at the 0.01 level (two-tailed); * Correlation is significant at the 0.05 level (two-tailed).
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3.2. NN-PSO Simulation Results

The hybrid NN-PSO was utilized to improve the efficiency and robustness of spatial
interpolation mapping of GW quality. The proposed method was evaluated by considering
different internal characteristics of the network. The Levenberg–Marquardt method was
used as the training algorithm, and the hyperbolic tangent sigmoid was used as the
transfer function for the input layer (IL) to hidden layer (HL) and HL to output layer
(OL) in the hybrid NN-PSO informed spatial interpolation approaches. The results of the
NN-PSO simulation for the dry and wet season GW quality parameters are presented in
Tables 7 and 8.
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Table 7. NN-PSO simulation results for GW quality parameters during the dry season.

Hidden
Neurons

No. of
Particles

No. of It-
erations

Elapsed
Time
(sec)

MSE
R

Validation Testing

Temp 22 7 2000 214.984 0.11275 0.99988 0.99925
pH 27 5 2000 253.880 0.01176 0.98051 0.95432
EC 24 5 2000 215.542 0.03365 0.99993 0.99994

TDS 28 7 2000 220.718 0.00985 0.99061 0.99917
Cr 28 8 2000 147.899 0.00032 0.99958 0.98867
Cd 20 8 2000 110.308 0.00031 0.99669 0.98496
Fe 29 10 2000 142.590 0.01073 0.99683 0.99737
Mn 26 9 2000 146.913 0.00255 0.99788 0.99620
Ni 22 1 2000 115.371 0.00050 0.99987 0.99995
Pb 20 4 2000 115.961 0.00058 0.99949 0.99992
Zn 27 7 2000 110.420 0.00087 0.99972 0.99967
Cu 21 6 2000 138.813 0.00153 0.99985 0.99960

Table 8. NN-PSO simulation results for GW quality parameters during the wet season.

Hidden
Neurons

No. of
Particles

No. of It-
erations

Elapsed
Time (s) MSE

R

Validation Testing

Temp 23 6 2000 226.663 0.73235 0.99440 0.99161
pH 23 6 2000 218.558 0.04694 0.99396 0.97383
EC 21 9 2000 223.412 0.02622 0.99755 0.99990

TDS 26 1 2000 205.010 0.00672 0.99360 0.99434
Cr 25 9 2000 147.159 0.00153 0.99948 0.99912
Cd 28 8 2000 145.022 0.00088 0.99998 0.99980
Fe 29 7 2000 147.002 0.18100 0.99992 0.99999
Mn 24 7 2000 157.724 0.01737 0.99938 0.99985
Ni 30 6 2000 155.655 0.15711 0.99498 0.98943
Pb 25 4 2000 109.265 0.00177 0.99998 0.98257
Zn 29 8 2000 178.172 0.17360 0.99305 0.99238
Cu 27 4 2000 174.482 0.00494 0.99882 0.99937

The results and efficiency of the NN-PSO simulation for dry and wet season GW
quality parameters showed excellent results, as evidenced by the extremely low MSE (ideal
value is zero) and extremely high R values for internal validation and testing of the NN-
PSO models (ideal value is one). These NN-PSO models informed the spatial interpolation
techniques which improved the accuracy and performance of the GW quality maps. The R
plots of the NN-PSO simulation for the physicochemical parameters and HM concentrations
during the dry and wet season are presented in Figures A1–A6 in Appendix A.

3.3. NN-PSO Informed Spatial Interpolation Techniques for GW Quality Mapping

The performance of the NN-PSO informed spatial interpolation approaches for GW
quality mapping was evaluated via cross validation, with MAE and R values utilized
in order to assess the prediction capability of the various interpolation techniques. The
approach that produced the lowest MAE value and the greatest R value was regarded
the best. The accuracy and effectiveness of the techniques employed to interpolate GW
quality during the dry season are displayed in Figures 6 and 7. The complete values for the
performance of the different interpolation techniques during the dry season are shown in
Table A1 of Appendix B.
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using different interpolation techniques and NN-PSO: (a) temperature; (b) pH; (c) EC; and (d) TDS.
These figures illustrate the performance and efficiency of interpolation techniques for mapping the
physical properties of GW during the dry season.

Various interpolation techniques were applied in order to evaluate the spatial variabil-
ity of GW quality in the province of Marinduque during the dry season, including IDW,
GPI, RBF, LPI, OK, UK, EBK, DK, and KS. Moreover, these interpolation techniques were
likewise assessed after being informed and integrated with NN-PSO.

Physicochemical properties and HM concentrations of GW were mapped and analyzed
using various interpolation approaches throughout the dry season. Except for Nickel (Ni),
which had the best mapping prediction performance using NN-PSO informed radial
basis functions, NN-PSO informed geostatistical techniques and OK and EBK methods, in
particular, were the best approaches for mapping the GW quality during the dry season.
The performance of the best interpolation technique was manifested through its lowest
MAE and highest R values.

Figure 6 illustrates that the NN-PSO informed OK model had the best mapping
prediction for GW temperature and EC during dry season. The OK-NN-PSO method had
the least MAE and highest R value which is significantly higher than the best method
observed without NN-PSO. The EBK-NN-PSO method was observed to have the best
prediction performance for groundwater pH and TDS as evident to its lowest MAE and
highest R value. Similarly, these validation criteria have significant improvement than
compared to the interpolation methods that were not NN-PSO informed.

During the dry season, HM concentrations in GW were also mapped and evaluated
by using several spatial interpolations approaches as shown in Figure 7. Using the NN-
PSO informed Empirical Bayesian Kriging technique (EBK-NN-PSO), the best mapping
prediction performance was found for Cr, Cd, Fe, Pb, Zn, and Cu.
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Figure 7. R values of the simulation results for HM concentrations during dry season using different
interpolation techniques and NN-PSO: (a) Cr; (b) Cd; (c) Fe; (d) Mn; (e) Ni; (f) Pb; (g) Zn; and (h) Cu.

Among the interpolations employed, the EBK+NN-PSO technique for mapping Cr, Cd,
Fe, Pb, Zn, and Cu has the lowest MAE. The R value of the NN-PSO informed EBK method
used for Cr increased by 35.61%, Cd = 17.91%, and Pb = 21.65%. Furthermore, R values
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of Fe, Zn, and Cu improved by 5.6, 2.4, and 2.9 times, respectively. Manganese (Mn) and
Nickel (Ni) were observed to have the best prediction performance using NN-PSO informed
OK and RBF method, respectively. Correspondingly, the performance of these models for
Mn and Ni was observed to have the lowest MAE among the interpolation techniques
utilized and 3.1 and 1.2 times higher than compared to interpolation techniques without
NN-PSO. The NN-PSO informed dry season GW physicochemical characteristics and HM
concentration map of Marinduque are presented in Figures A7 and A8 of Appendix C.

The NN-PSO informed geostatistical approaches, comprising OK and EBK, were
shown to be the optimum method for the wet season GW physicochemical properties, with
the lowest MAE and highest R. For groundwater temperature and pH, OK was the best
technique, whereas EBK was the best method for EC and TDS. The NN-PSO informed OK
was the best among the interpolation techniques integrated with NN-PSO and had an R
observed to be 3.9 times greater than compared to the best interpolation method without
NN-PSO. Additionally, the other physicochemical parameters including GW pH, EC, and
TDS were observed to have an R value of 2.7, 4.3, and 3.4 times higher than the spatial
interpolation methods with NN-PSO integration. The performance of the different spatial
interpolation techniques for the parameters observed during the wet season is presented
in Figures 8 and 9. As illustrated in Figure 8, the OK+NN-PSO model provided the
most accurate mapping forecast for GW temperature and pH during wet season. Among
the observed spatial interpolation techniques for temperature and pH, the OK+NN-PSO
approach achieved the highest R value and the lowest MAE. The EBK+NN-PSO approach
had shown the greatest prediction performance for GW EC and TDS during wet season.
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Figure 9. R values of the simulation results for HM concentrations during wet season using different
interpolation techniques and NN-PSO: (a) Cr; (b) Cd; (c) Fe; (d) Mn; (e) Ni; (f) Pb; (g) Zn; and (h) Cu.
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As illustrated by Figure 9, EBK+NN-PSO provided the best mapping prediction per-
formance for Fe, Mn, Ni, Pb, and Zn. OK+NN-PSO provided the best mapping prediction
performance for Cr, Cd, and Cu. RBF+NN-PSO provided the best mapping prediction
performance for Zn. Table A2 in Appendix B elaborates the complete values for the
performance of the various interpolation methods for the wet season.

The HM concentration during the wet season was mapped using the different interpo-
lation techniques with and without the integration of NN-PSO. Chromium (Cr), Cadmium
(Cr), and Copper (Cu) concentrations were mapped using the best method observed which
is the integration of Ordinary Kriging (OK) and NN-PSO. The OK+NN-PSO technique
had the lowest MAE, and its R value was 4.7, 1.2, and 1.3 times greater than the maximum
R value found for the interpolation method without NN-PSO integration. The metals Fe,
Mn, Ni, and Pb have the best prediction performance based on MAE and R utilizing Em-
pirical Bayesian kriging (EBK) combined with NN-PSO. When compared to interpolation
approaches without NN-PSO integration, the EBK-NN-PSO method provided the lowest
MAE and R values, which were 2.5, 1.5, 1.4, and 2.4 times higher. The spatial interpolation
maps with the best prediction performance for the physicochemical characteristics and
HM concentrations are presented in Figures A9–A11 of Appendix C.

The summary of the cross-validation performance of the models for the physicochem-
ical parameters and the HM concentrations both for dry and wet season is exhibited in
Table 9.

Table 9. Summary of the cross-validation performance of the models for the physicochemical
parameters and the HM concentrations both for dry and wet season.

Parameter Season Governing
Interpolation Method MAE R

Temperature Dry OK+NN-PSO 0.002000 0.941
pH Dry EBK+NN-PSO 0.001000 0.945
EC Dry OK+NN-PSO 0.002000 0.974

TDS Dry EBK+NN-PSO 0.001000 0.901
Cr Dry EBK+NN-PSO 0.000070 0.971
Cd Dry EBK+NN-PSO 0.000065 0.981
Fe Dry EBK+NN-PSO 0.045000 0.940
Mn Dry OK+NN-PSO 0.005000 0.922
Ni Dry RBF+NN-PSO 0.000200 0.991
Pb Dry EBK+NN-PSO 0.000100 0.989
Zn Dry EBK+NN-PSO 0.017000 0.951
Cu Dry EBK+NN-PSO 0.000200 0.974

Temperature Wet OK+NN-PSO 0.004000 0.925
pH Wet OK+NN-PSO 0.000300 0.976
EC Wet EBK+NN-PSO 0.000200 0.962

TDS Wet EBK+NN-PSO 0.001000 0.964
Cr Wet OK+NN-PSO 0.000100 0.963
Cd Wet OK+NN-PSO 0.000100 0.961
Fe Wet EBK+NN-PSO 0.055000 0.952
Mn Wet EBK+NN-PSO 0.005000 0.935
Ni Wet EBK+NN-PSO 0.000050 0.954
Pb Wet EBK+NN-PSO 0.000200 0.900
Zn Wet RBF+NN-PSO 0.019000 0.956
Cu Wet OK+NN-PSO 0.000200 0.926

4. Discussion

Based on the results, the use of the hybrid neural network–particle swarm optimization
method in spatial interpolation was able to address the sampling density issue experi-
enced in water quality monitoring. It provides solutions on data gaps when the spatial
distribution map of GW quality becomes available by having simple water parameter such
as pH [104]. The impact of this research is emphasizes on prediction improvement for
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mapping specific features and water quality parameters and ease in GW quality monitoring.
Furthermore, it contributes to solutions in data gaps when processed data are necessary.

The application of a range of machine learning techniques, as well as the combination
and comparison of these approaches, resulted in a larger pool of potential environmental
monitoring systems. The integration of machine learning techniques to spatial interpolation
techniques have been implemented in several studies including Least Squares Support
Vector Machine (LSSVM) and Population-based Incremental Learning to Ordinary Kriging
(OK) [105], Random Forest (RF) to IDW and OK [106], Deep Neural Network (DNN) to
Ordinary Kriging (OK) [107], Decision Tree to Kriging and Inverse Distance Weighting [108],
and Non-linear AutoRegressive eXogenous (NARX) model to Geographic Information
System [109].

A different method was integrated relative to spatial interpolation techniques in this
research study. The use of the NN-PSO methodology with the capability of both prediction
and optimization was utilized to enhance the prediction capacity of spatial interpolation
methods. The findings of the cross validation of the HM concentration and physicochemical
parameters showed that the spatial interpolation methods integrated with NN-PSO were
the best method as manifested to its lowest MAE and highest R value. The governing
interpolation methods were mostly under the geostatistical methods which integrated with
NN-PSO including OK (OK+NN-PSO) and EBK (EBK+NN-PSO) method. Moreover, some
HMs such as Ni (dry season) and Zn (wet season) have best performance using NN-PSO
informed radial basis functions (RBF-NN-PSO). The findings of this study in reference to
the performance of the NN-PSO informed spatial interpolation techniques agreed with
the study of Li et al. [110], wherein they confirm that the integration of machine learning
techniques produces more superior performance in the spatial interpolation method than
compared to spatial interpolation methods without machine learning integration. The NN-
PSO integration relative to spatial integration techniques addressed the issue in sampling
density and was able to improve the performance of the spatial interpolation methods.

5. Conclusions

The objective of this research is to improve the mapping prediction capability of
spatial interpolation algorithms by using an NN-PSO technique. It analyzed interpolation
methods and mapping for physicochemical parameters such as temperature, pH, TDS,
and EC, as well as mapping of HM concentrations in GW. This technique comprises three
spatial interpolation methods such as deterministic, geostatistical, and interpolation with
barriers with neuro-particle swarm optimization guided interpolation approaches. The
measurement criteria for the best method were the least MAE and the highest R value.

The results recorded the governing interpolation techniques during the dry and wet
season. The OK+NN-PSO method was recorded as best performing for temperature and
EC during dry season, while EBK+NN-PSO for pH and TDS. The best methods during
wet season were OK+NN-PSO for temperature and pH and EBK+NN-PSO for EC and
TDS. These methods have the highest R and lowest MAE among the spatial interpolation
techniques observed. The best methods for mapping physico-chemical characteristics were
found to have the least MAE and R values ranging from 1.7 to 5.6 times higher than the
interpolation techniques without NN-PSO integration.

The HM concentration maps during the dry season were observed to have the best
performance using EBK+NN-PSO for Cr, Cd, Fe, Pb, Zn, and Cu while RBF+NN-PSO was
the best method for Ni mapping. The best method during the wet season was found to be
OK+NN-PSO for Cr, Cd, and Cu; EBK+NN-PSO for Fe, Mn, Ni, and Pb; and RBF+NN-PSO
for Zn. The best method for mapping the GW HM concentrations during the wet season
was observed to have the least MAE and R values ranging from 1.2 times to 5.6 times
greater than the best interpolation method without NN-PSO integration.

Hybrid methods in general showed better performance than compared to the non-
hybrid methods. The development of these hybrid methods using NN-PSO and geo-
statistics provides a promising innovative approach for environmental quality monitoring
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as it improves the accuracy of predictive mapping and modelling of GW quality in an area.
The integration of NN-PSO into spatial interpolation methods addresses the challenge of
sample density and its effect on the spatial interpolation method’s performance. It opens
a new avenue for enhancing the predictive capability of spatial interpolation algorithms.
On the basis of the results of this research, it can be stated that the employment of models
such as NN-PSO is suitable for overcoming the challenges in spatial data processing and
mapping, as well as for improving the model’s predictive capabilities. The findings of the
study suggest that the integration of ML techniques such as NN can be utilized in mapping
GW quality as well as its application in spatio-temporal maps.
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Figure A1. R value plots for validation and testing phase of the NN-PSO: (a) dry season tempera-
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Figure A1. R value plots for validation and testing phase of the NN-PSO: (a) dry season temperature;
(b) dry season pH.
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season Cd; (c) dry season Fe; (d) dry season Mn; (e) dry season Ni; (f) dry season Pb; (g) dry season
Zn; (h) dry season Cu.
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Figure A5. R value plots for validation and testing phase of the NN-PSO: (a) wet season Cr; (b) wet
season Cd; (c) wet season Fe; (d) wet season Mn; (e) wet season Ni; (f) wet season Pb.
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Table A1. Performance of methods used to interpolate GW quality parameters during dry season. 

Parameter 
Cross Val-

idation 

Deterministic  
Methods 

Geostatistical  
Methods 

Interpolation with 
Barriers 

IDW GPI RBF LPI OK UK EBK KS DK 

Temp * MAE 
R 

0.239 
0.142 

0.003 
0.0003 

0.006 
0.082 

0.059 
0.092 

0.038 
0.055 

0.086 
0.071 

0.066 
0.004 

0.089 
0.183 

0.081 
0.004 

Temp ** MAE 
R 

0.030 
0.889 

0.009 
0.112 

0.006 
0.916 

0.057 
0.933 

0.002 
0.941 

0.026 
0.939 

0.029 
0.940 

0.060 
0.934 

0.099 
0.757 

pH * 
MAE 

R 
0.019 
0.150 

0.002 
0.003 

0.004 
0.008 

0.007 
0.022 

0.011 
0.101 

0.009 
0.098 

0.015 
0.155 

0.020 
0.365 

0.010 
0.095 

pH ** MAE 
R 

0.003 
0.905 

0.010 
0.108 

0.002 
0.920 

0.004 
0.930 

0.004 
0.943 

0.009 
0.942 

0.001 
0.945 

0.001 
0.938 

0.002 
0.796 

EC * MAE 
R 

0.013 
0.313 

0.005 
0.306 

0.024 
0.177 

0.048 
0.110 

0.031 
0.128 

0.022 
0.388 

0.023 
0.157 

0.086 
0.323 

0.027 
0.076 

EC ** 
MAE 

R 
0.003 
0.940 

0.010 
0.278 

0.002 
0.952 

0.004 
0.964 

0.002 
0.974 

0.018 
0.970 

0.004 
0.973 

0.007 
0.970 

0.015 
0.849 

TDS * 
MAE 

R 
0.002 
0.111 

0.002 
0.545 

0.005 
0.001 

0.023 
0.039 

0.019 
0.158 

0.022 
0.154 

0.013 
0.182 

0.028 
0.195 

0.008 
0.080 

TDS ** MAE 
R 

0.004 
0.863 

0.003 
0.155 

0.003 
0.869 

0.006 
0.887 

0.002 
0.887 

0.003 
0.890 

0.001 
0.901 

0.004 
0.888 

0.006 
0.861 

Cr * 
MAE 

R 
0.0007 
0.700 

0.00008 
0.605 

0.0001 
0.704 

0.0007 
0.679 

0.0006 
0.716 

0.008 
0.510 

0.00007 
0.683 

0.0003 
0.615 

0.002 
0.681 

Cr ** 
MAE 

R 
0.0002 
0.966 

0.0002 
0.679 

0.00008 
0.968 

0.0001 
0.970 

0.0001 
0.967 

0.002 
0.957 

0.00007 
0.971 

0.00007 
0.970 

0.0002 
0.946 

Cd * MAE 
R 

0.0006 
0.822 

0.00002 
0.705 

0.0002 
0.819 

0.0002 
0.738 

0.0005 
0.832 

0.002 
0.552 

0.0001 
0.786 

0.0003 
0.738 

0.003 
0.713 

Cd ** MAE 
R 

0.0001 
0.965 

9.1x10-5 

0.699 
0.0002 
0.980 

8.4x10-5 
0.977 

0.00004 
0.979 

0.008 
0.937 

6.5x10-5 
0.981 

1.5x10-5 

0.979 
0.0001 
0.898 

Fe * 
MAE 

R 
0.269 
0.077 

0.020 
0.169 

0.090 
0.134 

0.283 
0.089 

0.375 
0.095 

0.167 
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Figure A6. R value plots for validation and testing phase of the NN-PSO: (a) wet season Zn; (b) wet
season Cu.

Appendix B

Table A1. Performance of methods used to interpolate GW quality parameters during dry season.

Parameter Cross
Validation

Deterministic
Methods

Geostatistical
Methods

Interpolation with
Barriers

IDW GPI RBF LPI OK UK EBK KS DK

Temp * MAE
R

0.239
0.142

0.003
0.0003

0.006
0.082

0.059
0.092

0.038
0.055

0.086
0.071

0.066
0.004

0.089
0.183

0.081
0.004

Temp ** MAE
R

0.030
0.889

0.009
0.112

0.006
0.916

0.057
0.933

0.002
0.941

0.026
0.939

0.029
0.940

0.060
0.934

0.099
0.757

pH * MAE
R

0.019
0.150

0.002
0.003

0.004
0.008

0.007
0.022

0.011
0.101

0.009
0.098

0.015
0.155

0.020
0.365

0.010
0.095

pH ** MAE
R

0.003
0.905

0.010
0.108

0.002
0.920

0.004
0.930

0.004
0.943

0.009
0.942

0.001
0.945

0.001
0.938

0.002
0.796

EC * MAE
R

0.013
0.313

0.005
0.306

0.024
0.177

0.048
0.110

0.031
0.128

0.022
0.388

0.023
0.157

0.086
0.323

0.027
0.076

EC ** MAE
R

0.003
0.940

0.010
0.278

0.002
0.952

0.004
0.964

0.002
0.974

0.018
0.970

0.004
0.973

0.007
0.970

0.015
0.849

TDS * MAE
R

0.002
0.111

0.002
0.545

0.005
0.001

0.023
0.039

0.019
0.158

0.022
0.154

0.013
0.182

0.028
0.195

0.008
0.080

TDS ** MAE
R

0.004
0.863

0.003
0.155

0.003
0.869

0.006
0.887

0.002
0.887

0.003
0.890

0.001
0.901

0.004
0.888

0.006
0.861

Cr * MAE
R

0.0007
0.700

0.00008
0.605

0.0001
0.704

0.0007
0.679

0.0006
0.716

0.008
0.510

0.00007
0.683

0.0003
0.615

0.002
0.681

Cr ** MAE
R

0.0002
0.966

0.0002
0.679

0.00008
0.968

0.0001
0.970

0.0001
0.967

0.002
0.957

0.00007
0.971

0.00007
0.970

0.0002
0.946

Cd * MAE
R

0.0006
0.822

0.00002
0.705

0.0002
0.819

0.0002
0.738

0.0005
0.832

0.002
0.552

0.0001
0.786

0.0003
0.738

0.003
0.713

Cd ** MAE
R

0.0001
0.965

9.1 ×
10−5

0.699

0.0002
0.980

8.4 ×
10−5

0.977

0.00004
0.979

0.008
0.937

6.5 ×
10−5

0.981

1.5 ×
10−5

0.979

0.0001
0.898

Fe * MAE
R

0.269
0.077

0.020
0.169

0.090
0.134

0.283
0.089

0.375
0.095

0.167
0.039

0.038
0.160

0.120
0.010

0.078
0.160

Fe ** MAE
R

0.187
0.906

0.500
0.258

0.068
0.906

0.135
0.920

0.046
0.932

0.540
0.739

0.045
0.940

0.101
0.920

0.100
0.742

Mn * MAE
R

0.105
0.127

0.006
0.199

0.050
0.041

0.011
0.195

0.029
0.185

0.086
0.125

0.022
0.228

0.040
0.155

0.031
0.294

Mn ** MAE
R

0.027
0.841

0.006
0.089

0.006
0.857

0.007
0.879

0.005
0.922

0.841
0.815

0.007
0.908

0.008
0.889

0.019
0.645

Ni * MAE
R

0.0007
0.817

0.0003
0.707

0.0004
0.820

0.0003
0.737

0.0006
0.829

0.002
0.570

0.0006
0.780

0.0004
0.730

0.004
0.714

Ni ** MAE
R

0.0003
0.963

0.004
0.666

0.0002
0.991

0.0003
0.979

0.0004
0.987

0.007
0.982

0.0003
0.986

0.0002
0.978

0.0005
0.883

Pb * MAE
R

0.0008
0.778

0.0005
0.673

0.0002
0.774

0.0009
0.710

0.0003
0.813

0.0010
0.632

0.0004
0.744

0.0003
0.702

0.003
0.691
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Table A1. Cont.

Parameter Cross
Validation

Deterministic
Methods

Geostatistical
Methods

Interpolation with
Barriers

IDW GPI RBF LPI OK UK EBK KS DK

Pb ** MAE
R

0.0005
0.971

0.0001
0.740

0.0006
0.982

0.0003
0.985

0.0001
0.985

0.006
0.976

0.0001
0.989

0.0003
0.986

0.0008
0.906

Zn * MAE
R

0.130
0.177

0.054
0.325

0.310
0.247

0.149
0.067

0.993
0.082

0.121
0.187

0.183
0.395

0.669
0.125

0.111
0.428

Zn ** MAE
R

0.449
0.908

0.018
0.363

0.157
0.927

0.350
0.938

0.073
0.946

0.074
0.879

0.017
0.951

0.255
0.926

0.381
0.739

Cu * MAE
R

0.0003
0.223

0.0004
0.246

0.003
0.212

0.0006
0.193

0.0005
0.251

0.073
0.335

0.002
0.189

0.0005
0.336

0.003
0.039

Cu ** MAE
R

0.002
0.941

0.001
0.347

0.0008
0.953

0.0008
0.966

0.0005
0.972

0.007
0.961

0.0002
0.974

0.0004
0.965

0.003
0.850

** Neuro-particle swarm optimization informed; * Without neuro-particle swarm optimization.

Table A2. Performance of methods used to interpolate GW quality parameters during wet season.

Parameter Cross
Validation

Deterministic
Methods

Geostatistical
Methods

Interpolation
with Barriers

IDW GPI RBF LPI OK UK EBK KS DK

Temp * MAE
R

0.166
0.050

0.011
0.039

0.037
0.053

0.067
0.083

0.060
0.111

0.035
0.118

0.146
0.107

0.333
0.118

0.084
0.236

Temp ** MAE
R

0.060
0.890

0.010
0.311

0.026
0.923

0.046
0.902

0.004
0.925

0.010
0.916

0.005
0.922

0.019
0.911

0.088
0.780

pH * MAE
R

0.019
0.359

0.002
0.239

0.003
0.321

0.032
0.107

0.030
0.242

0.023
0.264

0.004
0.033

0.065
0.298

0.007
0.150

pH ** MAE
R

0.011
0.916

0.0003
0.046

0.005
0.959

0.004
0.960

0.0003
0.976

0.0004
0.975

0.004
0.974

0.008
0.957

0.010
0.762

EC * MAE
R

0.007
0.030

0.001
0.224

0.003
0.026

0.032
0.008

0.002
0.127

0.026
0.104

0.003
0.048

0.077
0.030

0.007
0.073

EC ** MAE
R

0.009
0.905

0.0005
0.309

0.002
0.934

0.002
0.945

0.0004
0.955

0.012
0.945

0.0002
0.962

0.005
0.953

0.0006
0.766

TDS * MAE
R

0.013
0.003

0.003
0.284

0.011
0.083

0.019
0.212

0.015
0.189

0.011
0.057

0.001
0.167

0.017
0.106

0.015
0.020

TDS ** MAE
R

0.005
0.928

0.020
0.254

0.002
0.944

0.002
0.954

0.002
0.964

0.014
0.939

0.001
0.964

0.001
0.951

0.007
0.830

Cr * MAE
R

0.0008
0.206

0.0003
0.097

0.001
0.007

0.001
0.057

0.0006
0.149

0.051
0.168

0.003
0.128

0.007
0.015

0.0006
0.041

Cr ** MAE
R

0.0001
0.912

0.001
0.138

0.0005
0.938

0.0005
0.932

0.0001
0.963

0.174
0.856

0.0004
0.960

0.0002
0.944

0.0003
0.637

Cd * MAE
R

0.004
0.304

0.0002
0.291

0.0007
0.570

0.005
0.599

0.0005
0.573

0.022
0.784

0.003
0.128

0.007
0.015

0.0006
0.041

Cd** MAE
R

0.0002
0.920

0.0003
0.218

0.0002
0.949

0.0002
0.936

0.0001
0.961

0.011
0.836

0.0001
0.957

0.0005
0.939

0.0002
0.747

Fe * MAE
R

0.373
0.386

0.038
0.114

0.823
0.181

0.612
0.129

0.198
0.272

0.197
0.271

0.328
0.302

0.969
0.064

0.661
0.136

Fe ** MAE
R

0.064
0.924

0.002
0.376

0.030
0.949

0.101
0.950

0.025
0.942

0.055
0.705

0.055
0.952

0.107
0.931

0.068
0.745

Mn * MAE
R

0.545
0.169

0.007
0.477

0.132
0.326

0.236
0.434

0.239
0.326

0.712
0.641

0.029
0.374

0.375
0.342

0.090
0.322

Mn ** MAE
R

0.014
0.878

0.003
0.244

0.002
0.926

0.051
0.920

0.005
0.930

0.264
0.786

0.005
0.935

0.042
0.927

0.071
0.715

Ni * MAE
R

0.002
0.519

0.0002
0.662

0.0001
0.622

0.003
0.488

0.00002
0.580

0.069
0.497

0.0009
0.531

0.0005
0.468

0.0009
0.125

Ni ** MAE
R

0.0005
0.912

0.00004
0.252

0.0001
0.945

0.0005
0.938

0.00009
0.944

0.0105
0.754

0.00005
0.954

0.0003
0.941

0.0006
0.750
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Table A2. Cont.

Parameter Cross
Validation

Deterministic
Methods

Geostatistical
Methods

Interpolation
with Barriers

IDW GPI RBF LPI OK UK EBK KS DK

Pb * MAE
R

0.006
0.068

0.0003
0.285

0.0006
0.157

0.003
0.314

0.006
0.210

0.029
0.363

0.0007
0.337

0.003
0.284

0.0003
0.378

Pb ** MAE
R

0.0004
0.862

0.002
0.193

0.0003
0.888

0.0003
0.863

0.0003
0.892

0.156
0.733

0.0002
0.900

0.0003
0.869

0.0006
0.681

Zn * MAE
R

0.263
0.172

0.060
0.727

0.810
0.162

0.941
0.154

0.204
0.358

0.389
0.728

0.158
0.778

0.167
0.213

0.018
0.594

Zn ** MAE
R

0.037
0.905

0.015
0.038

0.019
0.956

0.033
0.898

0.023
0.949

0.399
0.847

0.063
0.937

0.098
0.904

0.023
0.721

Cu * MAE
R

0.009
0.687

0.0009
0.072

0.004
0.624

0.003
0.169

0.004
0.259

0.150
0.465

0.007
0.388

0.007
0.233

0.006
0.340

Cu ** MAE
R

0.0009
0.917

0.0005
0.049

0.0006
0.915

0.0004
0.886

0.0002
0.926

0.226
0.813

0.0006
0.924

0.002
0.863

0.0004
0.722

** Neuro-particle swarm optimization informed; * Without neuro-particle swarm optimization.

Appendix C
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Figure A7. NN-PSO informed maps of the GW physicochemical characteristics during dry season: 
(a) temperature; (b) pH; (c) EC; (d) TDS. 

Figure A7. NN-PSO informed maps of the GW physicochemical characteristics during dry season: (a) temperature; (b) pH;
(c) EC; (d) TDS.
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Figure A8. NN-PSO informed maps of the GW heavy metal concentration during dry season: (a) 
Cr; (b) Cd; (c) Fe; (d) Mn; (e) Ni; (f) Pb; (g) Zn; (h) Cu. 

Figure A8. NN-PSO informed maps of the GW heavy metal concentration during dry season: (a) Cr; (b) Cd; (c) Fe; (d) Mn;
(e) Ni; (f) Pb; (g) Zn; (h) Cu.
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Figure A9. NN-PSO informed maps of the GW physicochemical characteristics during wet season: 
(a) temperature; (b) pH; (c) EC; (d) TDS. 
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Figure A9. NN-PSO informed maps of the GW physicochemical characteristics during wet season: (a) temperature; (b) pH;
(c) EC; (d) TDS.
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Figure A9. NN-PSO informed maps of the GW physicochemical characteristics during wet season: 
(a) temperature; (b) pH; (c) EC; (d) TDS. 
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Figure A10. NN-PSO informed maps of the GW HM concentration during wet season: (a) Cr; (b) Cd; (c) Fe; (d) Mn.
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Figure A11. NN-PSO informed maps of the GW HM concentration during wet season: (a) Ni; (b) 
Pb; (c) Zn; (d) Cu. 
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