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Abstract: The drive for development and modernization has come at great cost. Various human
activities in developed and developing countries, particularly in sub-Saharan Africa (SSA) have given
rise to environmental safety concerns. Increased artisanal mining activities, illegal refining, use of
leaded petrol, airborne dust, arbitrary discarding and burning of toxic waste, absorption of production
industries in inhabited areas, inadequate environmental legislation, and weak implementation of
policies, have given rise to the incomparable contamination and pollution associated with heavy
metals in recent decades. This review evaluates the public health effects of heavy metals and their
mixtures in SSA. This shows the extent and size of the problem posed by exposure to heavy metal
mixtures in regard to public health.

Keywords: heavy metal mixtures; environmental pollution; public health effects; Sub-Saharan
Africa; epidemiology

1. Introduction

Pollution in the environment is the price we have paid for growth in industrialization and
urbanization. While advancement in technology has improved the standard of living, it has also
released unwanted substances into the environment, thereby raising issues with public health.
Ineffective regulations on pollution and emission controls due to increasing urbanization and
industrialization have put humans at risk. Sub-Saharan Africa (SSA) has become heavily polluted with
heavy metals and other chemicals [1].

Heavy metals are persistent environmental pollutants and humans are exposed to them through
water, air, food, or industrial settings [2]. Natural and anthropogenic activities are the two sources
of heavy metal pollution. Biological buildup in the food chain allows multi-heavy metal pollutants
to increase [3]. Heavy metals are extensively used to uphold the standard of living in developed
nations and they enter the environment through natural and anthropogenic sources, including artisanal
mining, illegal refining, inadequate disposal of waste, and the constant increase in industrialization
and urbanization. Thus, the risk of human exposure continues to increase as a result of the prevalence
of heavy metals in the environment. Insufficient control of reclaim plans has led to unplanned exposure
in the past [2]. Metal poisoning from various sources is a significant problem, from evolutionary,
natural, and dietary perspectives [4,5].

The ubiquity of heavy metals poses major public health threats to adults and children.
While toxicity from industrial exposure usually affects several organ systems, the severity of the
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health outcomes is dependent on the nature of the metal, the method of exposure, the age of the
individual, and finally, the person’s individual susceptibility [6]. Humans are exposed to heavy metals,
either voluntarily or involuntarily, from various sources resulting from an increase in industrial
pollution, manmade or natural activities. According to the authors of Martinez-Finley et al. [7], there is
a constant increase in heavy metal contamination around the globe and this has posed serious health
concerns. Metals exist as mixtures in the environment [8]. Given that Pb, Hg and Cd are widely
distributed in the environment through various sources, human exposure is inevitable because these
metals are non-degradable, environmentally persistent, and can accumulate in ecosystems at very
low levels.

The increase in population, urbanization, and industrialization, coupled with the rapid growth
of buildings as a result of inadequate planning, have caused an increase in the production of waste
without proper disposal systems [1]. Increasing artisanal mining activities, illegal refining, use of
leaded petrol, airborne dust, arbitrary dumping, and burning of toxic waste, absorption of production
industries in inhabited areas, as well as weak and insufficient environmental legislation, have all given
rise to the unparalleled heavy metal pollution in past years [9]. According to UNEP [10], which is a
report on the environmental assessment of Ogoniland, Rivers State, Nigeria, the levels of hydrocarbon
and heavy metals in the soil, drinking water, and air in 10 communities are almost 1000 times higher
than the permissible levels.

There were higher levels than the World Health Organization WHO recommended limits for blood
Pb [11] Ni, Cr, and Mn [12] in pregnant women and children in Nigeria. Similarly, the concentration
of heavy metal pollution in South Africa in maternal and umbilical cord blood from inhabitants of
preferred areas showed intolerably high levels of Hg, Pb, Cd, and Se [13]. Heavy metals were found in
the umbilical cord whole blood samples indicating high risks of heavy metal pollution to both adults
and fetuses. Given the prevalent heavy metal exposure from both environmental and occupational
settings in developing countries, an intimate knowledge of the effect of these noxious metals on public
health is important for drafting robust policies for preventative medicine in Africa.

The present review provides an overview of the mechanisms of organ toxicity and public health
effects of heavy metal mixtures arising from both occupational and environmental exposures in
developing countries and SSA.

2. Materials and Methods

2.1. Database Searching and Search Strategy

To identify the papers focusing on heavy metal mixture exposure and public health effects in
developing nations, we systematically reviewed Google scholar, Research Gate, Springer, Medline and
PubMed databases by using the following key search words: ‘heavy metal mixtures’, ‘heavy metal
risk assessment’, ‘heavy metal pollution in developing countries’, and ‘heavy metal public health
effects’. The search was done independently in each database and the literature was pooled together
afterwards. The collected research was scrutinized and double citations were excluded. Results were
collated and studied by extracting relevant information.

2.2. Inclusion and Exclusion Criteria

The addition and omission yardstick was adopted when evaluating the title and abstract of each
journal article. Articles were included if they detailed a relationship between heavy metal mixture
exposure and public health effects, or heavy metal pollution in SSA. Additionally, mechanisms of
action of these metal mixtures and their risk assessment in the environment were included. If two or
more reports were published from the same study, then only the most recent study or the study with
the best assessment of the metal mixture was included. Articles that detailed epidemiological studies
were added to the review. Studies reporting metals as being beneficial to the body were excluded from
the study. Additionally, the review excluded articles that were not written in the English language.
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Initially, a total of 159 articles were kept for this review. After collecting the results and removing
4 duplicates, a total of 155 articles were kept for data retrieval. In the course of extracting relevant
data for the study, 12 articles were omitted as they were not applicable to the focus of this review;
three articles were removed because they were written in foreign languages; leaving a total of
140 articles for this review. In order to ascertain the suitability of the articles, six more articles
were removed, as shown in Figure 1 below. After applying the selection criteria, 134 articles were
retained and used in this systematic review. These articles explored the association between low dose
metal mixture exposure and health effects in developing countries.
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3. Exposure to Heavy Metal Mixture

Cd, Hg, Pb, Cr, and Ni are all toxic metals that are persistent in our environment [14] and they
cause toxicity in different environmental media such as the soil, plants, air, wildlife, water, and domestic
animals. In toxicology, the method of uptake of metals is through ingestion, inhalation, and skin
contact. The absorption by an organism occurs either by diffusion or through conveyers [3]. The health
risks posed by these metals are determined by several factors including age, gender, individual
susceptibility, route of exposure, and duration of exposure.

In different environmental media, the joint toxicity of metals is linked with several processes
caused by the interaction of the toxicant outside the organism, which introduces the issue of metal
speciation, binding, and transport of toxicants. Processes such as absorption, distribution, metabolism,
and excretion take part in the uptake and removal of metals. According to Lokke et al. [15], estimating
the possible interaction that may occur improves on what is known about the kind of mechanism
involved in the toxicity of mixtures. Figure 2 illustrates how humans become exposed to heavy metals
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from both natural and manmade activities and the possible adverse health effects that may arise
through various mechanisms.
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4. Effects of Heavy Metal Mixture to Tissues and Organs

4.1. Cytotoxicity

Healthy living cells can either be provoked to undergo accidental cell death (necrosis) or
programmed cell death (apoptosis) by using a cytotoxic compound including heavy metals.
Cytotoxicity becomes the capacity of some chemicals or mediator cells to destroy living cells.
The co-exposure of Pb and Cd to secluded red blood cells of the common buzzard (Buteo buteo)
showed that apoptosis is the main type of cell death resulting from this exposure [16]. A study by
Jadhav et al. [17] examined the genotoxic effects of subchronic exposure through drinking water to a
mixture of eight metals (Pb, Hg, Cd, Cr, Mn, As, Fe, and Ni) and found that exposure to this mixture
produced genotoxicity in rat bone marrow and spleen cells in relatively high doses (10× and 100×).
The results also showed that the cytogenetic effects were associated with a dose-dependent increase in
lipid peroxidation (LPO) and decrease in the enzymatic and non-enzymatic antioxidative systems in the
spleen. Cytogenetic effects induced by the mixture in bone marrow cells indicate its toxic consequences
on bone marrow. The mixture components were reported to produce cytogenetic damage, including
chromosomal aberrations, micronuclei induction, and sister chromatid exchange (SCE) in bone marrow
and other cells [17]. Their study, therefore, concluded that the observed cytogenetic effects of the metal
mixture might relate to oxidative stress-induced damage to DNA, interference with the DNA repair
process and substitution of cellular essential metal ions [17].

When the body is sick, it is typified by behavioral, autonomic and endocrine changes that are
activated by soluble mediators known as pro-inflammatory cytokines that are produced at the site
of infection by activated accessory immune cells [18]. These mediators include interleukin-1alpha
and beta (IL-1a and IL-1b), tumor necrosis factor-alpha (TNF-a), and interleukin-6 (IL-6). They are
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significant in coordinating the local and systemic inflammatory response to microbial pathogens.
They also act on the brain to cause behavioral symptoms of sickness [18].

The intensity and duration of sickness behavior are regulated by anti-inflammatory cytokines
possibly by inhibiting pro-inflammatory cytokine production and decreasing pro-inflammatory
cytokine signaling [19]. Studies have shown that administration of IL-10 or insulin-like growth factor
1 (IGF-1) decreases behavioral signs of sickness induced by centrally injected lipopolysaccharide
(LPS) [20,21]. Ageing is typified by an elevated activity of the innate immune system, which at the
brain level translates into an improved manufacture of pro-inflammatory cytokines like IL-6, and a
reduced production of anti-inflammatory cytokines such as IL-10 [22,23].

4.2. Oxidative Stress

According to Fowler et al. [24], oxidative stress may possibly be a key factor of the mechanism of
toxicity of the metal mixture. Many definitions have been given to oxidative stress but the more useful
one is described as a state where oxidative force becomes higher than the antioxidant systems due to
loss of the balance between them [25]. This definition is generally accepted because oxidative stress
is actually useful in some cases which include inducing programmed cell death to prepare the birth
canal for delivery and also strengthening of biological defense mechanisms during physical exercise
and ischemia [26].

Jadhav et al. [27] concluded that oxidative stress and lipid peroxidation were induced in several
visceral tissues of rats on sub-chronic exposure to a mixture of metals. Several studies have shown that
oxidative damage and lipid peroxidation in the liver, brain, and kidney of rats by continuous exposure
to Pb [28], As [29], and Cd [30] through water was activated by the production of reactive oxygen
species (ROS). Studies have also revealed that mercury, chromium, nickel, iron, and manganese that
also induce lipid peroxidation (LPO) and show their toxicity through the generation of reactive oxygen
species [31–33]. At high concentrations, ROS may cause structural damage to cells, proteins, nucleic
acid, membranes, and lipids, leading to a stressed situation at the cellular level [34]. This is illustrated
in Figure 3 below.
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The production of reactive oxygen species and reactive nitrogen species were suggested as the
underlying factor in estimating the toxicity of these metals [35]. Therefore, oxidative damage to tissues
through enhanced lipid peroxidation can possibly be the result of a joint effect of the buildup of
reactive oxygen species, ensuing from dysfunction GSH and antioxidases, and overproduction of free
radicals during sub-chronic exposure to metal mixture [27].

According to Jadhav et al. [27], the inverse association between the levels of GSH and LPO in
brain, kidney, and liver suggest that reduction of GSH was a significant cause of LPO. On the contrary,
the overproduction of ROS can possibly cause a reduction of GSH. The superoxide dismutase (SOD)
can be up-regulated by overproduction of ROS, and its inadequate expression in SOD knock-out
results in oxidative stress [36].

Another study by Bhattacharyya et al. [37] revealed a negative correlation of LPO with SOD or
GPX or catalase (CAT) in the brain, liver, and kidney and suggested that these antioxidant markers
contribute to the oxidative stress-dependent toxicity caused by the metal mixture. The reduction
in the activities of antioxidant enzymes may be because of their depletion in response to metal
mixture-induced oxidative stress. A study by Jadhav et al. [27] suggested that the oxidative stress
induced by subchronic exposure to metal mixture might be linked to the Fenton reaction mechanism
and linked with the attenuation in the antioxidative capacity of the rats.

4.3. Immunotoxicity

The immune system is a multifaceted system of cells with many vital roles, which are controlled
by soluble glycoproteins, the lymphokines [38]. Lymphokines are produced by immunocompetent
cells, lymphocytes, and monocytes, but are also secreted by endothelial and epithelial cells [39–41].
The immune system functions to protect the body against bacteria, fungi, parasites, and viruses,
and also destroy malignant cells or virus-producing cells.

Immunotoxicity is referred to as the deleterious effects of foreign compounds from occupational
or environmental exposure characterized by either a suppression or enhancement of the immune
system. Observations in epidemiological and experimental studies have shown that a number of
environmental and industrial chemicals including heavy metals can adversely affect the immune
system [42].

Immunotoxicity is a significant health risk of exposure to heavy metal [27]. As the effect of
exposure to individual heavy metals is quite different from the combined effect of the metal mixtures,
several studies have demonstrated whether subchronic or chronic exposure to metal mixtures
can cause immunotoxicity to humans and experimental animals. A study [27] examined whether
subchronic exposure to a mixture of eight metals (Pb, Hg, Cd, Cr, Mn, As, Fe, and Ni) can induce
immunotoxicity in male albino rats. Their findings suggested that hematopoietic and immune systems
are toxicologically susceptible to the mixture, which could lead to anaemia and suppression of
humoural and cell-mediated immune responses in male rats.

Rajeshkumar et al. [43] studied the effects of exposure to a mixture of Cd, Cr, and Pb on
biochemical, immunotoxicity level, and morphological features of different tissues of a biomarker
freshwater fish at low concentrations and revealed that exposure of aquatic life to this metal mixture
(Cd, Cr, and Pb) can change the cytokine alterations leading to immune suppression as well as immune
dysfunction. Jung et al. [44] examined a group of metal workers exposed to a variety of metals
including Pb, Cd, and Cu in their workplace and concluded that exposure to Pb and Cu in levels below
or approximate the current threshold limit value (TLV) lead to clear immunotoxic effects.

4.4. Hepatotoxicity

The liver plays a significant role in the metabolism and removal of foreign compounds,
which makes it vulnerable to their deleterious effects [45]. Hepatotoxicity refers to damage to the liver
resulting from various chemicals and xenobiotics including heavy metals and their metabolites [46].
Symptoms associated with hepatotoxicity include jaundice leading to yellowing of the skin, eyes,
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and mucous membranes due to high level of bilirubin in the extracellular fluid, severe abdominal pain,
generalized itching, nausea, fatigue, weakness, skin rashes, edema, and increase in weight in a short
period of time, dark urine and light colored stool [47]. The liver performs more than 500 metabolic
functions in the body [48]. The major role played by the liver in the clearance and transformation of
chemicals exposes it to harmful effects [49].

Due to the ubiquity of metals in the environment, Bhattacharjee et al. [50] evaluated the effects of
long-term exposure at a low dose to a mixture of Cd, As, and Pb and concluded that chronic exposure
to a mixture of heavy metals at a very low environmentally relevant dose produced hepatotoxic effects
in albino rats. Hepatoxicity has also been evidenced by Yuan et al. [51] to be among the toxicities
resulting from the mixture of Pb and Cd on Sprague Dawley rats.

The liver could be exposed to high levels of foreign compounds and their intermediates.
Metabolism of these foreign compounds can change the properties of hepatotoxicants by either
elevating its toxicity (metabolic activation or toxication) or depleting its toxicity (detoxification) [52].
Figure 4 shows the biotransformation of hepatotoxicants.
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Reactions associated with phase I produce toxic metabolites which become innocuous by phase
II reactions. Phase II reactions entail the linking of chemicals with water-soluble moieties leading
to a more water-soluble metabolite [52]. Lee [53] reported glutathione’s capacity to covalently bind
to toxic metabolites by glutathione-S-transferase as another phase II reaction. Thus, these reactions
are considered as detoxification pathways. Yet, phase II reactions can result in the production of
unbalanced precursors to reactive species that can cause hepatotoxicity [54].



Toxics 2018, 6, 65 8 of 32

An epidemiological study on the joint toxicity of heavy metal mixtures in human liver cells has
been conducted by Lin et al. [55]. The study exposed the liver cells to a mixture of eight metals,
which included Hg, Cr, Pb, Cd, Cu, Zn, Mn, and nickel, and suggested the need to consider the
assessment of the risk of co-exposure heavy metal contamination after the side effects of these metals
on the liver cells.

4.5. Nephrotoxicity

Today, chronic kidney disease (CKD) has become one of the most prevalent diseases in the world.
It is characterized by a permanent loss of nephrons and finally ends with a reduction in glomerular
filtration rate (GFR) [56]. It is estimated that eight-16% of the world’s populace is affected by some
form of CKD [57]. Metals such as As, Pb, Hg, and Cd are persistent environmental toxicants and
are known nephrotoxicants [58]. A decrease in total glomerular filtration rate (GFR) causes foreign
compounds and toxicants to accumulate in the blood and result in metabolic distortion and/or organ
intoxication [59].

Owing to the ubiquity of heavy metals in the environment, individuals are exposed continuously
overtime to pollutants that have the capacity to negatively affect various organs in the body system
including the kidney leading to enlargement, histological changes, nuclear damage, mitochondria
damage, decreased antioxidant capacity, and increased metal content and malondialdehyde (MDA).
This is shown in Figure 5 below.
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Yuan et al. [51] established that damage to the kidney was seen when rats were exposed to a
mixture of Pb and Cd and further showed that their interactions were additive. Similar findings were
observed by Hambach et al. [60], revealing that co-exposure to Pb and Cd increases the relationship
between cadmium and renal biomarkers. Exposure to heavy metals has been reported to negatively
affect the function of the remaining functional nephrons [61]. These side effects could result in an
elevation in cell death and glomerulosclerosis, which would constantly reduce the functional renal mass
of the individual. As the urinary excretion of foreign compounds and toxicants reduces, the functional
renal mass of the individual is reduced affecting the overall health of the individual [61].

4.6. Neurotoxicity

Neurotoxicity refers to any deleterious effect on the structure or function of the nervous system
(central and/or peripheral) produced by an agent whether physical, chemical, or biological that reduces
the potentiality of an organism to live or acclimatize to its environment [62]. The effects of acute
exposure to neurotoxicants may be compensated by the nervous system, but a chronic exposure even
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to the least concentration may result in delayed brain damage [63]. These effects can, therefore, be seen
in later stages of life even when the events that led to them occurred decades earlier. This implies
that chronic exposure to low concentrations can possibly give rise to a nation with a lifetime loss
of intelligence and motor capacities and permanent psychological disturbances [64]. According to
Landrigan et al. [65], these effects can lead to a reduction in economic productivity, and when this is
inherent in a nation, the resulting economic effects could be higher than the costs of controlling metal
pollution. In the environment, mixtures of neurotoxic metals naturally occur, and metals exist in the
environment as mixtures [8]. Pb, Cd, Hg, and As are thought to exhibit their neurotoxic effects [66,67]
through common mechanisms, such as the production of reactive oxygen species (ROS) [68] and
interaction with micronutrients [66,69,70].

Most metals are known to elevate the vulnerability to cognitive dysfunction and neuro-degenerative
outcomes [71]. Cecil et al. [72] proved that the brain volume of children exposed to Pb was modified.
Exposure to Pb during early postnatal life generates a higher discrepancy in learning performance
than in older animals [73]. It has been evidenced that As induces hippocampal-dependent behavioral
deficits in rodents [74] and report has shown that elevated levels of As alters growth and development
in children resulting in neurological deficits [75]. Some Hg compounds have been shown to cause
neurotoxicity, affecting the usual maturity of the central nervous system [76]. In vitro studies with
animals have shown that methylmercury can affect the biological processes thought to be involved in
Alzheimer’s disease [77]. Cadmium has also been established to generate free radicals in the brain [78].
Long-term occupational exposure to cadmium slows the psychomotor functions of the brain [79].

When metals are mixed, they show competitive interactions with macromolecule due to the
similarity in their functions. The toxic interactions associated with metal mixture could be dose
additive, interactive (synergistic or antagonistic), or sovereign to each other, which can produce
elevated biochemical changes in several parts of the brain. It has been proven that sub-chronic
exposure to a mixture of Pb, Cd, and As in albino rats caused neuronal developmental disorder by
synergistic action [80]. The result revealed a major proof of the metal mixture’s neurotoxic activity and
their possible relations. The possible relations of a metal mixture for passing the blood-brain barrier
(BBB) gives internal exposure, critical for estimating the effective concentration of individual metal in
the mixture responsible for potential risk of cognitive dysfunction [81]. Figure 6 shows the conceptual
framework of exposure to a metal mixture, toxicology, and disease scenarios in the brain.
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The effects of heavy metals may alter neurotransmission and cause neurodegeneration, which can
show cognitive problems, disorders in movement, learning, and memory dysfunction. Epidemiological
studies have shown that heavy metals induced neurotoxicity has been associated with several
neurological diseases including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), autism
spectrum disorders (ASDs), gulf war syndrome (GWS), Huntington’s disease (HD), Parkinson’s
disease (PD), multiple sclerosis, manganism, and Wilson’s disease [82–87]. While there is a scarcity
of information on the combined effect of metal mixture exposure, few studies have established
that neurotoxicity is an effect from exposure to Pb and other metals (Hg, As, Mn, and Cd) [88].
McDermott et al. [89] reported that prenatal exposure to Pb and As increases the chance of intellectual
disability when combined with exposure to an individual metal. Co-exposure to high levels of Pb and
Cd tends to affect mental and psychomotor development in children [88,90]. Co-exposure to Mn and
Pb in the prenatal stage has been shown to distort the cognitive and language development in children
at their second year compared with single metal exposure [68]. These studies have as well established
that if symptoms are earlier recognized and adequate treatment and elimination from exposure is
supplied, neurologic and or psychological function can remain stable or actually improve regardless of
the initial exposure.

Metal mixture exposure occurs in several stages (embryo, fetus, newborn, child, adult, and old
age), which is termed as windows of exposure by Karri et al. [91]. The level of internal dose of metal
in a brain may have high inter-individual variability and high dependability on the anatomical and
physiological development in the brain barrier system [92]. Additionally, exposure of Pb and Cd to
pregnant rat has been reported to have an additive effect on decreasing sodium-potassium adenosine
triphosphatase (Na+/K+ -ATP ase) function, in which Cd activity is potentiated by Pb for causing
failure of the Na+/K+ -ATP ase pump. The Na+/K+ -ATP ase pump depletion forms the inhibition of
intracellular K+, accumulation of intracellular Na+, and elevation in intracellular free Ca+2 leading to
intensified cognitive dysfunction [93].

Karri et al. [91] established the common links between As, Pb, MeHg, and Cd to cause cognitive
dysfunction. Pb2+ has been reported to obstruct with the glutamate (Glu) transmission and may
distort the N-methyl-D-aspartate (NMDA) expression in the synaptic region. Studies with rats showed
that arsenic affects the synaptic activity of neurons found in the hippocampus by hindering the
NMDA function similar to Pb and upregulating the AchE function. MeHg inhibits the Glutamic
acid decarboxylase (GAD) Glu transporter affecting the Glu uptake and NMDA over-expression [94].
MeHg also distorts the microtubules in the brain due to high affinity to binding the sulphur containing
amino acids –SH [95].

4.7. Development of Cancer

The World Health Organization in 2018 reported that cancer is the second leading cause of death
in the universe today and was accountable for 8.8 million deaths in 2015. Globally, every one in six
deaths results from cancer and approximately 70% of these deaths occur in low and middle-income
countries. The frequency of individuals in many hospitals today with hormonal disorders could be as
a result of heavy metal contamination in the environment, which has contributed to the disruption in
the endocrine system [96].

The incidence and occurrence of cancer have been on the increase around the globe. In 2008,
there were 12.7 million new cases and 7.6 million cancer-related deaths [97]. The newly reported cancer
cases with 56% occurrence were in the developing countries and it is estimated that by 2030, 70% of all
new cases of cancer will be found in developing countries [98]. Most of this increase in incidence is a
consequence of population growth and increased life expectancy [99]. This risk may also result from
overexposure to different heavy metals in the environment and their bioaccumulation for a long period
of time, which is due to the increase in industrialization and urbanization in the developing countries.
This effect can only be reduced when individuals start adopting a healthy way of life, when there is
control in the occupational hazards and when there is a reduction in the exposure to heavy metals.
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In Nigeria, the University of Port Harcourt Teaching Hospital (UPTH) Cancer registry, 2009-2013
reports the five most common cancers in both male and female living in Rivers State. The report
shows that prostate cancer is the most occurring cancer in males, while breast cancer is the frequently
occurring cancer in females. This is illustrated in Figure 7 below.
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It has been estimated by Sylla and Wild [100] that one million Africans will die yearly from
cancer-related causes by the year 2030. According to Sassman [101], cancer is the fourth leading cause
of mortality and the eighth primary contributor to disability-adjusted life years (DALY) in South Africa.
Despite the paucity of information on the cause-effect association between low dose metal mixture
exposure and cancer, researchers have continued to find a relationship between the two.

Sassman [101] evaluated the dose-response connection between As and bladder cancer and
reported an increased death from bladder cancer in areas exposed to As in their drinking water.
Hopenhayn-Rich et al. [102] investigated the possible relationship between chronic environmental
exposure to Pb and Cd and cancer incidence and reported higher incidences of gastrointestinal and
lung cancers among individuals exposed to polluted rivers over 30 years. Wang et al. [103] established
a strong relationship between pancreatic cancer and Cr, Se, and Mo by comparing the heavy metal
composition of pancreatic juice collected from patients with pancreatic cancer exposed occupationally
with others that were not exposed occupationally.

5. Public Health Effects of Heavy Metal Exposure in Sub Saharan Africa

The prevalence of mineral resources in SSA has resulted in threats in relation to environmental
safety. Products of artisanal mining including heavy metals have caused environmental pollution as
a result of poor regulation. In Zamfara State, Nigeria, an epidemic of lead poisoning from artisanal
mining led to the deaths of about 163 people between March and June 2010, including 111 children
under five years of age [104].

TerraGraphics Environmental Engineering (TG), World Health Organization (WHO), and Centers
for Disease Control and Prevention (CDC), reported that approximately 400 children <five years old
have been killed from the outbreak and thousands of people affected, including >2000 children left
with permanent disabilities [105–107]. Dooyema et al. [107] measured the concentrations of soil Pb
and soil Hg which showed >100,000 ppm and about 4600 ppm for Pb and Hg, respectively. The study
found that surviving children < five years of age had blood Pb levels (BLL) of about 370 ug/dL which
is above the CDC recommended BLL of 5 ug/dL [108].

While most studies in relation to the Zamfara Pb outbreak centred on clinical intervention and
reduction of blood Pb level (BLL) in children, a study by Lo et al. [105] drew attention to some
drawbacks like the non-assessment of Pb poisoning in livestock and other foods including dairy
products. Since the populace may be exposed through a secondary pathway (i.e., through consumption
of leaded foods), Lo et al. [105] suggested the importance of characterizing the magnitude of Pb
distribution in livestock. Additionally, it is a known fact that lead does not exist as a single metal
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in the earth crust but occur as a combination with other heavy metal mixture on most cases of lead
intoxication. These limitations formed the bedrock towards a research carried out Orisakwe [109] in
Dareta and Abare, Zamfara State, Northern Nigeria.

The importance of various toxicant exposures is critical in global public health. Orisakwe et al. [109]
reported that Pb may not be the only toxic metal of concern in the contaminated mining communities of
Dareta, Abare, and Gasau of Zamfara State given the high levels of cadmium in meats and vegetables
from these villages. The public health effects of exposure to lead either through ingestion or inhalation
can cause damage to the brain, kidneys, bone marrow, and other body systems in young children. Blood
Pb levels (BLLs) below 5 ug/dL have been shown to cause developmental problems including impaired
cognitive function, behavioral difficulties, impaired hearing, and reduced stature in infants and
children, while BLLs above 75 ug/dL has been implicated to cause coma, convulsions, and death [110].
Cd is an endocrine disruptor that crosses the placental barrier and accumulates in the foetus leading to
neurodevelopmental toxicity [111].

Extraction of petroleum is one of the main causes of pollution in West Africa. Chindah et al. [112]
and Oloruntegbe et al. [113] have reported the factors that result in the discharge of crude oil into the
environment and they include oil pipeline corrosion, effluents from oil and gas industries and the
recurrent act of damage to oil facilities in the South-South region of Nigeria resulting in contamination
by heavy metals such as Pb, Zn, Cu, Cr, V, and Cd [113]. In a study assessing the link between industrial
activities and pollution, Adekola and Eletta [114] attributed the high levels of Fe, Zn, Cu, Cr, and Mn
in Asa River sediments in Nigeria to bottling, tannery, detergent, and other industries that discharge
effluents into the river. In Ghana, contamination of water in the Iture estuary with Pb and Cd has been
ascribed to waste carried by the Sorowie and Kakum River, which flow through a swiftly urbanized
and industrialized central region [115].

Farming of food crops and vegetables in contaminated environments is also common in West
Africa. This is done by small-scale farmers to maximize yields due to the seemingly high organic
contents of waste dumpsite soils. Based on environmental studies over the past decade, it is clear that
there is a steady accumulation of heavy metals in the African environment. The levels of pollution in
many African countries are at dangerous points, as the present levels of many metals in water, soils,
fish, vegetables, and food animals are above international limits [116].

Studies have recorded several effects of heavy metals in drinking water [117,118]. Smith et al. [119]
detailed that drinking one liter per day water with As of 50 ug/L over an individual’s lifespan can possibly
result to cancer of the liver, lung, kidney, or bladder in 13 per 1000 persons. Ahsan et al. [120] reported
an improved incidence of skin lesions from As dose of 0.0012 mg/kg/day through drinking water.
As has been reported to have a side effect on the central nervous system and cognitive development
in children [121]. The central nervous system, renal, reproductive, neurological, cardiovascular,
musculoskeletal, developmental and immunological systems have been reported to be affected by
Pb [118]. Drinking water contaminated with Cd may lead to chronic renal failure [118,122]. Long-term
exposure to low concentrations of Cd can possibly lead to deposition in the kidney, causing kidney
disease, fragile bones, and lung damage [123].

Cancer risks have also been evaluated in Ghanian residents who eat foods produced from mining
communities with soil showing increased levels of heavy metals [124]. Breast cancer risk has also been
evaluated in a Nigerian population with volumes of tumors and body levels of Pb and other heavy
metals [125]. The study also established evidence for interactions between Pb and Se. High Pb levels
were directly proportional to tumor volumes in agreement with the identified tumour-inducing Pb
effects, and selenium levels were inversely proportional to tumor volume, which is in conformity with
its anti-proliferative effects. Hnizdo and Sluis-Cremern [126] reported the relationship between lung
cancer and gold mining dust exposure to miners in South Africa. In a similar way in Southern Africa,
McGlashen et al. [127] reported the correlation between lung, liver, oesophagal, and lymphatic system
cancer with exposure to mining dust. According to Hnidzo et al. [128], individuals exposed to high
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mining dust stand a greater chance of having lung cancer. Similarly, in a Zimbabwean study, persons
exposed to nickel during mining were found to be more vulnerable to having lung cancer risk [129].

Pb, Cd, Hg, and As are termed endocrine disrupting compounds [130] and exposure to them
during pregnancy may have deleterious effects on the mother and unborn child [131]. It has been
recorded by various studies that some adverse effects [132–134]. These heavy metals have been
shown to influence the delicate maternal-fetal balance, hence causing long-term damage to the
newborns [132,134].

Ajayi et al. [135] conducted an epidemiological research using 69 pregnant women including
those who had previous spontaneous abortion history and control group without a record of recurrent
spontaneous abortion. Blood samples were analyzed for heavy metals and results found indicated
high levels of serum metals (Cd, Cr and Pb), which could cause recurrent spontaneous abortion.
Additionally, Otebhi and Osadolor [136] reported a considerable increase in the blood toxic metals
(Pb, Hg, Cd, and As) levels in pregnant women with a history of pregnancy complications compared
with women who are also pregnant but without any record of pregnancy complications. Their findings
were in conformity with other studies [135,137] where similar reports were closely related with
spontaneous abortion. These findings show that increased serum heavy metals (Cd and Pb) can
possibly lead to recurrent spontaneous abortion.

While there is a scarcity of literature on cases of heavy metal exposure in Nigeria,
Orisakwe et al. [138] reported high concentrations of Pb, Cd, and Ni in some selected Nigerian fruits
and vegetables. Results from this study concluded that from foods alone, the burden of Pb in an average
Nigerian exceeds the values obtained in America and Europe. In the same vein, results gathered from
the analysis of heavy metal content of some herbal remedies sold in Nigeria by Amadi et al. [139]
showed high concentrations of Hg, Sn, and Sb in the products. These herbal remedies have been
implicated to cause liver damage with a high incidence of mortalities and morbidities as reviewed by
Amadi and Orisakwe [140].

Ideriah et al. [141] conducted research on the distribution of heavy metals in water and sediment
along Abonnema shoreline, Nigeria. Their results showed that the shoreline was heavily contaminated
as the concentrations of Cr, Zn, and Cu exceeded permissible limits set by the World Health
Organization and therefore pose a serious health concern. Similarly, Owamah [142] assessed the
heavy metals in a petroleum impacted river in the Niger Delta Region of Nigeria and reported that the
levels of heavy metals, Cd, Cr, Cu, Fe, Ni, and Pb in River Ijana were generally above W.H.O. standards
recommended for surface waters and concluded that this is an indication of pollution. Heavy metals
discharged into the aquatic ecosystem are possible to be scavenged by particles leading to their buildup
in sediments [143].

Some metals in trace amounts are biologically beneficial to the body such as Zn and Cu, while toxic
metals build up in large quantities and cause deleterious health effects. Heavy metals occur as mixtures
in the environment and may enter the body simultaneously through the air, water, or food. Once found
in the human body, they accumulate rapidly and bio-accumulate leading to a rise in their concentration
because they are not easily metabolized or excreted [144].

Nigeria crude oils have been studied by Akporido and Onianwa [144] and were reported to
contain relatively appreciable concentrations of some heavy metals including Pb, Hg, Cu, Fe, Zn,
and V. In Niger Delta, particularly in Port Harcourt, the arbitrary release of effluents by the petroleum
companies into the environment constitutes a major factor to the degradation of the water and
land ecosystem within its environs and contributes to the rise of the levels of heavy metals in this
environment [145,146]. Toxicity arising from oil pollution can lead to many adverse effects in humans
including respiratory illness, neurological, and kidney diseases [147]. Several studies have shown that
heavy metal pollution has become a major characteristic trend in sub-Saharan Africa.

Table 1 describes the heavy metal pollution from different sources such as soils, sediments, fish,
vegetables, and water from various regions in sub-Saharan Africa, showing their associated public
health effects including but not limited to brain damage, nephrotoxicity, hepatotoxicity, bone diseases,
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carcinogenicity, and others. Heavy metals such as Zn, Fe, Cr, and Cu are beneficial to the body,
while Pb, Cd, Hg, and As have no known beneficial roles in the body [148].

In Niger Delta, Nigeria, Oze et al. [149] showed that high levels of heavy metals such as Pb
and Cr in fish were above the WHO/UNEP/FAO standards of 0.29 ppm and 0.1 ppm, respectively,
while Cd was found to be below the standard of 0.05 ppm. Farombi et al. [150] reported high metal
concentrations of 3.4 ppm of Pb, 2.1 ppm of Cd, 5.0 ppm of Cu, 20.35 ppm of Zn, and 2.3 ppm of As.
These concentrations were far above the WHO/UNEP/FAO limits of 0.29 ppm, 0.05 ppm, 0.5 ppm,
5.0 ppm, and 0.01 ppm for Pb, Cd, Cu, Zn, and As in fish.

Many heavy metals are naturally occurring elements in the environment and affect almost all the
organs and tissues of the human system. Pb causes nephrotoxicity and neurotoxicity and also affects
heme synthesis [151]. Cd can distort calcium metabolism, renal tubular dysfunction, bone diseases,
and also lung cancer [152]. Mercury has deleterious effects on the immune and digestive systems.
It also causes neurotoxicity [153].

Studies have shown that heavy metal mixtures may have joint effects that are significantly different
from their individual effects [154,155]. Many studies have revealed the individual toxicity of these
metals [156–158], but only a few studies have shown the mixture effects, which actually represent the
real-life situation in the world [159–161]. In the need to mimic the real-life situation using multiple
heavy metal exposure, Kentson et al. [159] observed the effects of one dose of heavy metal mixture oral
administration on rats after four weeks of exposure. Their study showed that exposure to heavy metal
mixtures induced toxic effects in the form of loss of body weight, disturbance in the hepatic injury and
renal insufficiency, haematological system, abnormal neurological disorders, and animal death [159].

A study by Whittaker et al. [162] revealed that lowest observed effects levels of Pb, Cd,
and As mixtures resulted in the improved incidence of mediators of oxidative stress such as
delta-aminolevulinic acid (ALA), Cu, and Fe. Studies have established that the toxicity arising
from exposure to metal mixtures on various organs and tissues in the body system including
cytogenicity [17,163,164], oxidative stress [27], neurotoxicity [165,166], bladder cancer [167], toxicity
on embryogenesis [168], immunotoxicity [27], and mortality [169].

High concentrations of heavy metals such as Pb, Cd, Cr, Zn, and Cu in vegetables have been
reported by several studies in SSA. In Ethiopia, [170] reported 0.345 mg/kg of Cd, 130 mg/kg of Cu,
130 mg/kg of Zn and 24.11 mg/kg of Cr in vegetables. In Kano Nigeria, Abdullahi et al. [171] reported
13.19 mg/kg of Pb, 0.735 mg/kg of Cd, and 12.89 mg/kg of Cr in vegetables. A Zimbabwean study
by [172] reported 6.77 mg/kg of Pb, 3.68 mg/kg of Cd, 0.05 mg/kg of Hg, 111 mg/kg of Cu, 221 mg/kg
of Zn and 16.1 mg/kg of Cr in vegetables, while a Ugandan study by [173] recorded 18.7 mg/kg of
Pb and 1.87 mg/kg of Cd. The concentrations of these heavy metals reported were higher than the
WHO/FAO recommended limits for Pb 0.3 mg/kg; Cd 0.2 mg/kg; Cu 40 mg/kg; Zn 99.40 mg/kg;
and Cr 1.30 mg/kg.

Similarly, high concentrations of heavy metals have also been recorded in the agricultural soils
of many countries in SSA. In Kumasi, Ghana, Odai et al. [116] reported 54.6 mg/kg, 2.87 mg/kg,
2606 mg/kg, and 2606 mg/kg of Pb, Cd, Cu, and Zn, respectively, in soil. According to UNEP [174],
a Kenyan study reported 264 mg/kg of Pb, 40 mg/kg of Cd, 18.6 mg/kg of Hg, 105 mg/kg of
Cu, 462 mg/kg of Zn, and 157 mg/kg of Cr in soil. Fakayode and Olu-Owolabi [175] reported
92.07 mg/kg of Pb, 3.6 mg/kg of Cd, 37.9 mg/kg of Cu, 71.9 mg/kg of Zn, and 17.3 mg/kg of Ni in
a Nigerian soil. Most of the heavy metals found in these agricultural soils were found to be higher
than the WHO/FAO/EU permissible limits of Pb 10–70 mg/kg; Cd 0.07–1.1 mg/kg; Cu 6–60 mg/kg;
Zn 50–100 mg/kg; and Cr 65 mg/kg for agricultural soils.

Several studies have also highlighted high concentrations of heavy metals in SSA waters.
In Ghana, Fianko et al. [115] reported 0.075 mg/L of Pb, 0.041 mg/L of Cd, 2.45 mg/L of Cu,
and 2.45 mg/L of Zn in water. A Kenyan study by Mireji et al. [176] recorded 0.496 mg/L, 0.01 mg/L
and 1.95 mg/L of Pb, Cd and Cr respectively. In Niger Delta, Nigeria, the water has been found
to be contaminated with heavy metal concentrations of 0.025–0.064 mg/L of Pb, 0.01–0.11 mg/L of
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Cd, 0.03–0.081 mg/L of Cr, and 0.03–0.09 mg/L of Ni [177]. A Zimbabwean study by [178] reported
1.02 mg/L, 0.12 mg/L, 2.48 mg/L and 2.37 mg/L of Pb, Cd, Cr, and Ni, respectively, in water,
while Fatoki and Mathabatha [179] recorded 16.3 mg/L of Pb, 72 mg/L of Cd, 42.6 mg/L of Cu,
and 27.6 mg/L of Zn in South Africa. These concentrations were higher when compared with the
WHO permissible limits of 0.01 mg/L Pb, 0.003 mg/L Cd, 2.0 mg/L Cu, 3.0 mg/L Zn, and 0.07 mg/L
of Ni for drinking water.

There are several factors that could attribute to the high concentrations of heavy metals found
in agricultural soils, water, vegetables, and fishes around SSA which include traffic emissions,
biomass burning and domestic combustion, waste disposal, illegal refining, and artisanal mining.
Waste disposal is also a contributor to the high concentrations of heavy metals in SSA [180]. The open
burning of waste at both the residential level and at dumpsites have been reported to release harmful
air pollutants including heavy metals, dioxins, and polyaromatic hydrocarbons [181].

Heavy metal exposure may contribute to metabolic syndrome; though available data seem to
be conflicting [182] because epidemiological data are largely cross-sectional; and variation in the
study design, including samples used for heavy metal measurements, the age of individuals at
which metabolic syndrome effects are measured. Metabolic syndrome defines the co-occurrence
of factors that increase one’s risk for heart disease and other disorders such as diabetes and stroke
182]. A review by Planchart et al. [182] suggested that future studies, standardization, or increased
consistency across study designs and reporting, and molecular mechanisms informed by model system
studies are important to better evaluate potential causal links between heavy metal exposure and
metabolic syndrome.

Pb is known to cause toxicity by replacing Zn in heme synthesis and depleting the role of
heme synthesizing enzymes [183]. Individuals highly intoxicated by lead have been reported to
show different forms of neurological syndrome including Pb palsy and encephalopathy, especially
in children [184]. As leads to coagulation of proteins, the formation of complexes with coenzymes
and inhibits the production of adenosine triphosphate (ATP) during respiration [185]. It is a probable
carcinogen and high-level exposure can cause death [186]. Exposure to Cr has been reported by [187]
to cause adverse effects to the skin including ulcerations, dermatitis, and allergic skin reactions.

Cd and its compounds can interfere in calcium metabolism, renal tubular dysfunction,
or osteoporosis [152]. The correlation between Cd exposure and certain cancers have been evidenced
in some epidemiological studies [188]. Cd has been reported to cause neurodegenerative disorders,
breast cancer, diabetes, and prostate cancer [189–191]. Nickel has been evidenced to cause allergic
contact dermatitis, oral cancer, asthma, reproductive toxicity, and carcinogenesis [192–194].
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Table 1. Heavy metal pollution in Sub-Saharan Africa.

Country/Region Pollution Source Pb Cd Mn Cu Fe Zn Cr Ni As Ref.

Nigeria/Kaduna Soil 0.87–1.41 0.0014–8.02 13.21–42.15 1425.0–1981.6 10.10–112.04 21.35–358.00 [166]
Nigeria/Kaduna Vegetable 0.0014–0.001 0.013–2.12 0.582–8.65 331.6–1252 14.19–69.07 0.058–2.80 [166]

Nigeria/Niger Delta Water 39 ± 33 2.4 ± 3.1 16.1 ± 7.4 107 ± 7.9 42 ± 17 [144]
Nigeria/Ibadan Water 0.162–0.195 0.279–0.315 8.744–10.307 5.063–5.096 0.052–0.059 0.103–0.133 [195]
Nigeria/Benin Soil 227 ± 160 2.0 ± 2.9 562 ± 510 94.5 ± 150 [196]

Nigeria/Akwa Ibom Fish 0.013 ± 0.003 0.011 ± 0.004 81.36 ± 5.06 223.0 ± 23.47 0.044 ± 0.05 0.017 ± 0.02 [197]
South Africa/Pretoria Soil 12.8–145 0.09–0.98 33.9–140 39.3–97.6 43.6–101 [198]

Kenya/Nairobi Vegetable 0–2.4 0–3.02 0.52–21.34 20.13–89.85 0–1.24 [199]
Kenya/Nairobi Soil 0.57–20 0–2.6 3.59–75.37 14.62–198.3 0.03–1.4 [199]
Ghana/Accra Soil 184.44 103.66 202.99 72.00 [200]

South Africa/Philippi
horticultural area Water 0.04 ± 0.006 0.01 ± 0.002 0.02 ± 0.002 0.02 ± 0.003 0.02 ± 0.003 0.06 ± 0.009 0.02 ± 0.002 [201]

South Africa/Philippi
horticultural area Soil 19.24 ± 2.91 0.74 ± 0.18 96.74 ± 12.29 14.53 ± 2.02 30.13 ± 3.93 1.71 ± 0.40 [201]

South Africa/Philippi
horticultural area Vegetable 2.32 ± 0.91 0.22 ± 0.09 41.64 ± 5.21 5.55 ± 0.57 54.12 ± 9.24 2.68 ± 0.52 0.34 ± 0.25 [202]

Zimbabwe/Bulawayo Water 0.19 ± 0.03 0.06 ± 0.03 [202]
Zimbabwe/Bulawayo Sediment 51.67 ± 2.36 7.33 ± 0.76 79.17 ± 7.64 108.33 ± 17.02 [202]
Zimbabwe/Bulawayo Fish 35 5 120 10 [202]
Cameroon/Yaounde River sediment 20.3–249 2.8–15.6 42.8–142 26.8–341 94.7–199 2.68–32.7 [203]

Ethiopia Vegetable 0.345 130 130 24.11 [170]
Ghana Fish 0.028 2.31 [204]

Ghana/Iture Water 0.075 0.041 2.45 2.45 [115]
Ghana/Kumasi Soil 54.6 2.87 2606 2606 [116]
Ghana/Tarkwa Water 1.3 [205]

Kenya Water 0.496 0.01 1.95 [176]
Kenya/Nairobi Soil 264 40 105 462 157 [174]

Namibia Sediment 10500 205 1950 [206]
Nigeria Herbal medicines 27 4.75 97.5 25.5 78 [207]

Nigeria/Calabar River sediment 20 0.2 64 15 184 65 67 [208]
Nigeria/Ibadan River surface water 0.046 0.0044 0.0033 0.018 0.14 0.0031 [209]
Nigeria/Kano Vegetable 13.19 0.735 12.89 [171]
Nigeria/Lagos Soil 67.5–426 1.61–5.31 [210]

Nigeria/Niger Delta Water 0.025–0.064 0.01–0.11 0.03–0.081 0.03–0.09 [177]
Nigeria/Niger Delta Fish 0.3 0.03 0.53 0.21 [149]

Nigeria/Ogun Fish 3.4 2.1 5 20.35 2.3 [150]
Nigeria/Osogbo Soil 92.07 3.6 37.9 71.9 17.3 [175]

South Africa Water 16.3 72 42.6 27.6 [175]
Tanzania Vegetable 4.9 0.3 [211]

Tanzania, along Lake Victoria Water sediment 54.6 7 26.1 83.7 12.9 [212]
Uganda Vegetable 18.7 1.87 [173]

Uganda, along Lake Victoria Water 1.44 0.02 0.16 0.02 0.13 [213]
Zambia Sediment 12,855 ± 1445 1030 ± 58 [214]
Zambia Sediment 9.75 0.8 125 130 220 [215]

Zimbabwe Water 1.02 0.12 2.48 2.37 [178]
Zimbabwe Harare Vegetable 6.77 3.68 0.05 111 221 16.1 [172]
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Pb is a non-beneficial element multi-organ toxicant [216]. Pb exposure resulting from both
environmental and occupational activities has been identified as among the public health problems
affecting the globe [217]. Young children are at high risk to lead because of their propensity to pick up
particles from the ground and put into their mouths, and due to high levels of absorption of ingested
Pb compared to adults [110].

Studies have reported that both long-term and short-term exposures to moderate levels of Pb
are followed with some deleterious effects [218,219]. Blood Pb levels ≤40 ug/dL of US occupational
exposure limit guidelines have been implicated to cause both systolic and diastolic hypertension
among women aged between 40–59 years old [220]. According to the National Research Council
report [221] 1993, children, pregnant women and breastfeeding mothers were grouped to be more
susceptible to Pb exposure due to high bone turnover associated with these physiological states. It has
been evidenced by some researchers that bone Pb stores add to the circulating levels of Pb in blood
particularly, in pregnant women [222,223]. This is as a result of the mobilization of Pb stored in the
bones, especially, in individuals with low Ca intake [222]. Studies have reported that maternal BLLs
≤ 10 ug/dL may result in problems during pregnancy, such as increased risk of high blood pressure,
miscarriage, reduced length of gestation, spontaneous abortion, and premature delivery [224,225].

Children living in SSA have an obvious risk for Pb poisoning [226]. Table 2 describes the blood
lead levels (BLLs) and public health effects in SSA. Njoku and Orisakwe [11] reported that 78.9% of
expectant mothers in Nigeria had BLLs ≥10 ug/dL (range: 0.5–448 ug/dL), while Adekunle et al. [227]
and Ugwuja et al. [228] reported that the geometric mean of Nigerian pregnant women (15–40 years old)
ranges between 2.7 and 73.8 ug/dL. Pb levels in cord blood varied from 2–17 ug/dL in South Africa [229].
The values obtained from these countries in SSA are higher than those reported in North Carolina
women (USA) (0.07–0.13 ug/dL) [230] or from the Duke cohort (>75% of pregnant women with BLLs
<1.00 ug/dL) [231] or from NHANES 2003–2004 (1.78 ug/dL) or in Quebec (1.50 ug/dL) [230]. It is
seen from these facts that young children resident in SSA are more probably exposed to lead in utero
than US children. The high mean BLLs shown in SSA children may be indicative of elevated levels of
Pb in their environments [231].

Despite the report by Adeniyi and Anetor [232] that the general Nigerian population has high
blood levels, there is still a scarcity of data on the BLLs in Nigerian pregnant women. The data from
Table 2 shows that the BLLs of the Nigerian population including children and pregnant women are
high. The high incidence of increased blood Pb among children and pregnant women may be indicative
of high Pb content in Nigeria’s gasoline [233], which was estimated at 0.66 g/L [175]. It could also be
attributed to increased use of petrol-powered generating set, causing lead pollution [228]. Furthermore,
the high incidence of elevated BLLs in Nigerian pregnant women could result from the consumption of
contaminated water and foods, inhalation of poor indoor air, and unregulated use of cosmetics [234].
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Table 2. Blood lead levels (ug/dL) and public health effects in Sub-Saharan Africa.

S/N Age
Groups Sex Place of Study

(City/Country) Condition Reported
Concentrations Disease Scenarios Exposure Scenarios Ref.

1 Adults F Abeokuta, Southwest
Nigeria Pregnant 54.50 ± 4.4

Spontaneous abortion, premature delivery,
pregnancy complications, still birth,

hypertension, low birth weight
Non-occupationally exposed [234]

2 Adults M Nkpor, Nigeria N/A 39.00 ± 4.00 Increases risk of hypertension and liver damage Occupationally exposed [235]
3 Adults M Nkpor, Nigeria N/A 17.00 ± 4.00 Increases risk of hypertension and liver damage Non-occupationally exposed [235]

4 Adults F Niger Delta, Nigeria Pregnant 40.00 ± 16.50
Spontaneous abortion, premature delivery,

pregnancy complications, still birth,
hypertension, low birth weight

Non-occupationally exposed [228]

5 Adults F Niger Delta, Nigeria Non-pregnant 27.7 ± 1.10 Hypertension, increased risk of renal failure,
cardiovascular attacks Non-occupationally exposed [236]

6 Adults M/F
Oshodi, Dopemu, &
Ojota in Southwest

Nigeria
N/A

155.42
148.56
122.6

Increases risk of hypertension and liver damage,
endocrine disorder, reproductive disorder Occupationally exposed [237]

7 Adults M Port Harcourt, Nigeria N/A 50.37 ± 24.58 Increases risk of hypertension and liver damage Occupationally exposed [238]
8 Adults M Port Harcourt, Nigeria N/A 41.40 ± 26.85 Increases risk of hypertension and liver damage Non-exposed [238]
9 Children M/F Nigeria N/A >10 or >20 Increases risk of hypertension and liver damage Non-exposed [239]

10 Adults M Abeokuta, Nigeria N/A 48.50 ± 9.08 Increases risk of hypertension and liver damage Exposed [240]
11 Adults M Southwest, Nigeria N/A 63.00 ± 9.00 Increases risk of hypertension and liver damage Exposed [241]
12 Adults M Southwest, Nigeria N/A 61.00 ± 11.00 Increases risk of hypertension and liver damage Non-exposed [241]

13 Children M/F Allada, Benin Republic N/A 46.6 Lowers intelligent quotient scores, aggressive
and violent behaviours Environmentally exposed [242]

14 Adults F Allada, Benin Republic Non-pregnant 55.1 Increases risk of hypertension and liver damage Environmentally exposed [242]

15 Adults M Kinshasa (Democratic
Republic of Congo) N/A 127 Increases risk of hypertension and liver damage Environmentally exposed [243]

16 Children M/F Kinshasa(Democratic
Republic of Congo) N/A 11.5 Lowers intelligent quotient scores, aggressive

and violent behaviours Environmentally exposed [243]

17 Children M/F Northwest, Nigeria N/A 143.8 Lowers intelligent quotient scores, aggressive
and violent behaviours Environmentally exposed [107]

18 Adults F Abakaliki, Nigeria Pregnant 40.0 ± 16.5 Spontaneous abortion, premature delivery,
pregnancy complications Environmentally exposed [228]
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6. Risk Assessment of Exposure to Mixtures of Heavy Metal

The mechanism of action of the metal is important while assessing the risk of heavy metal
mixtures [244,245]. The mechanism of action refers to the methods by the interaction of the toxicant
with the receptor and the progress through changes in the organism that leads to sub-lethal and deadly
effects. According to Borgert et al. [246], it is the response shown by an organism exposed to a pollutant
or the key features of the mechanism needed for the production of a biological response. The means of
action is needed in the estimation of the toxicity of mixtures of toxicants in the assessment of risk.

The difference in the concentration of single metals in mixtures is the underlying factor causing
the non-feasibility in assessing every metal mixture combination [247]. Many models have been used
to mimic the toxicity of metal mixtures to organisms. Most of these models are dependent on the
concepts of independent action (IA) and concentration additions (CAs) [248]. These models are based
on several theories linked to the modes of action of a compound. The CA is used when two or more
chemicals have a connected mode of action, for example, when they aim at the same enzyme. CA is
based on the theory of dilution and assumes that any constituent of a mixture can be replaced by an
effective concentration of another constituent, without changing the total effect of the mixture [249].
Independent action (IA) is used when two or more chemicals have dissimilar modes of action [250].
It is based on the principle of independent random events. It is assumed that the susceptibilities of an
organism to each of the chemicals in the mixture are statistically independent.

Both CA and IA depart from the idea that substances do not interact at target sites. However,
this prediction is not always satisfied because substances can increase or decrease each other’s toxicity,
i.e., substances may interact when combined in a mixture. If the observed mixture effect is more or less
than additive than the expected based on the reference model, the mixture acts either synergistically or
antagonistically respectively [251,252].

Studies on metal mixture toxicity have revealed that mixture effects are hard to predict
as all potential outcomes have been observed [253,254]. Studies have revealed that interactions
can be conflicting across various experiments [253], or that interactions can be dependent on
concentration [255,256].

Mixture effects and mixture interactions from chronic tests vary from those of acute tests because
acute tests do not account for metal interactions taking place during longer-term detoxification.
Some studies have concluded that there is a paucity of information on the validity of the mixture
reference models for chronic metal mixture toxicity at low concentration doses to permit the addition
of metal mixture toxicity in risk assessment frameworks [257,258].

A study by Spurgeon et al. [259] has explained the mechanisms underlying chemical mixtures
by proposing a biologically based framework that shows the idea of external exposure. This idea
explains the interaction of mixtures in the environment, its exposure and uptake by the host organism
(toxicokinetic), to the expression of toxicity in the host organism (toxicodynamics), and finally, to the
combined toxic effect known as toxicogenomics. Toxicogenomics is a recent scientific field, which shows
how genomes respond to environmental pollutants. It explains the molecular mechanisms looking at
both toxicity and biomarkers that reveal genetic vulnerability to toxicants [260]. Toxicogenomics is
important because environmental pollutants such as heavy metals contain more than one mechanism
of action and may interact with more than one specific site along an adverse outcome pathway [261].
The adverse outcome contains aspects of molecular interactions, followed by issues of responses to
stress due to exposure to the toxicant, and finally, to deleterious effects resulting from exposure to the
joint mixture [3].

7. Conclusions

It is clear from this review that evaluating exposures on an individual chemical basis does
not adequately account for the wide array of mixtures encountered in the environment [262,263].
While there is paucity of information on epidemiological evidence to heavy metal mixture exposures
and associated health effects in SSA, it is non-indicative of the increased level of heavy metal
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pollution in SSA due to several manmade activities in the region which include artisanal mining,
illegal refining, and others. The prevalence of mineral resources in SSA has resulted in threats in
relation to environmental safety. Products of artisanal mining including heavy metals have caused
environmental pollution as a result of poor regulation. This is because health regulations concerning
these exploratory activities are inadequate and feebly enforced. Additionally, urbanization and
industrialization contribute largely to heavy metal pollution as seen from the reviewed literature
above. With significant evidence from both occupational and environmental exposure to metal
mixtures, it is imperative to note that low dose metal mixtures can cause deleterious effects to man.

In order to reduce the environmental and public health effects of heavy metal pollution,
government and health agencies need to give additional attention to the environment and
anthropogenic activities. There is need for regulatory authorities in SSA to be stricter in enhancing
and enforcing existing rules in order to protect humans from heavy metal exposure resulting from the
environment. Furthermore, since heavy metals occur as heterogeneous mixtures in the environment
and are ubiquitous, there is need for researchers to start looking for an alternative medicare since
heavy metals have been shown to ward off treatment with modern medicine due to their toxicity.
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225. FaikoĞLu, R.; Savan, K.; Utku, Ç.; Takar, N.; Zebitay, A.G. Significance of maternal plasma lead level in early
pregnancy loss. J. Environ. Sci. Health Part A 2006, 41, 501–506. [CrossRef] [PubMed]

226. Ngueta, G.; Ndjaboue, R. Blood lead concentrations in sub-Saharan African children below 6 years:
Systematic review. Trop. Med. Int. Health 2013, 18, 1283–1291. [CrossRef] [PubMed]

227. Adekunle, I.M.; Olorundare, O.; Nwange, C. Assessments of lead levels and daily intakes from green leafy
vegetables of southwest Nigeria. Nutr. Food Sci. 2009, 39, 413–422. [CrossRef]

228. Ugwuja, E.I.; Ibiam, U.A.; Ejikeme, B.N.; Obuna, J.A.; Agbafor, K.N. Blood Pb levels in pregnant Nigerian
women in Abakaliki, South-Eastern Nigeria. Environ. Monit. Assess. 2013, 185, 3795–3801. [CrossRef]
[PubMed]

229. Naicker, N.; Norris, S.A.; Mathee, A.; von Schirnding, Y.E.; Richter, L. Prenatal and adolescent blood lead
levels in South Africa: Child, maternal and household risk factors in the Birth to Twenty cohort. Environ. Res.
2010, 110, 355–362. [CrossRef] [PubMed]

230. Sanders, A.P.; Flood, K.; Chiang, S.; Herring, A.H.; Wolf, L.; Fry, R.C. Towards prenatal biomonitoring in
North Carolina: Assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS ONE 2012,
7, e31354. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.scitotenv.2006.04.024
http://www.ncbi.nlm.nih.gov/pubmed/16759683
http://dx.doi.org/10.1007/BF00775913
http://dx.doi.org/10.1016/0160-4120(81)90114-8
http://dx.doi.org/10.1016/S0308-8146(98)00213-1
http://dx.doi.org/10.1016/S0160-4120(02)00099-5
http://dx.doi.org/10.4314/ajst.v7i1.55197
http://dx.doi.org/10.1016/S0009-2541(00)00422-8
http://dx.doi.org/10.1016/j.gexplo.2003.11.001
http://www.ncbi.nlm.nih.gov/pubmed/16192916
http://www.ncbi.nlm.nih.gov/pubmed/11019456
http://dx.doi.org/10.1080/00039890209601442
http://www.ncbi.nlm.nih.gov/pubmed/12641194
http://www.ncbi.nlm.nih.gov/pubmed/18787644
http://dx.doi.org/10.1001/jama.289.12.1523
http://www.ncbi.nlm.nih.gov/pubmed/12672769
http://dx.doi.org/10.1289/ehp.6548
http://www.ncbi.nlm.nih.gov/pubmed/15531434
http://dx.doi.org/10.1289/ehp.9610460
http://www.ncbi.nlm.nih.gov/pubmed/8834863
http://dx.doi.org/10.1016/S0300-483X(02)00589-9
http://dx.doi.org/10.1080/10934520500428435
http://www.ncbi.nlm.nih.gov/pubmed/16484079
http://dx.doi.org/10.1111/tmi.12179
http://www.ncbi.nlm.nih.gov/pubmed/23980755
http://dx.doi.org/10.1108/00346650910976284
http://dx.doi.org/10.1007/s10661-012-2828-1
http://www.ncbi.nlm.nih.gov/pubmed/22915221
http://dx.doi.org/10.1016/j.envres.2010.02.006
http://www.ncbi.nlm.nih.gov/pubmed/20226441
http://dx.doi.org/10.1371/journal.pone.0031354
http://www.ncbi.nlm.nih.gov/pubmed/22427803


Toxics 2018, 6, 65 31 of 32

231. Miranda, M.L.; Edwards, S.E.; Swamy, G.K.; Paul, C.J.; Neelon, B. Blood lead levels among pregnant
women: Historical versus contemporaneous exposures. Int. J. Environ. Res. Public Health 2010, 7, 1508–1519.
[CrossRef] [PubMed]

232. Rhainds, M.; Levallois, P.; Dewailly, É.; Ayotte, P. Lead, mercury, and organochlorine compound levels in
cord blood in Quebec, Canada. Arch. Environ. Health Int. J. 1999, 54, 40–47. [CrossRef] [PubMed]

233. Adeniyi, F.A.; Anetor, J.I. Lead-poisoning in two distant states of Nigeria: An indication of the real size of
the problem. Afr. J. Med. Med. Sci. 1999, 28, 107–112. [PubMed]

234. Ademuyiwa, O.; Arowolo, T.; Ojo, D.A.; Odukoya, O.O.; Yusuf, A.A.; Akinhanmi, T.F. Lead levels in blood
and urine of some residents of Abeokuta, Nigeria. Trace Elem. Electrolytes 2002, 19, 63–69.

235. Orisakwe, O.E.; Nwachukwu, E.; Osadolor, H.B.; Afonne, O.J.; Okocha, C.E. Liver and kidney function tests
amongst paint factory workers in Nkpor, Nigeria. Toxicol. Ind. Health 2007, 23, 161–165. [CrossRef] [PubMed]

236. Adekunle, I.M.; Ogundele, J.A.; Oguntoke, O.; Akinloye, O.A. Assessment of blood and urine lead levels of
some pregnant women residing in Lagos, Nigeria. Environ. Monit. Assess. 2010, 170, 467–474. [CrossRef]
[PubMed]

237. Osuntogun, B.A.; Koku, C.A. Environmental impacts of urban road transportation in South-Western states
of Nigeria. J. Appl. Sci. 2007, 7, 2356–2360. [CrossRef]

238. Alasia, D.; Emem-chioma, P.; Wokoma, F.; Okojaja, R.; Bellgam, H.; Iyagba, A.; Akobo, D. NDT Plus.
In Proceedings of the World Congress of Nephrology, Milan, Italy, 22–26 May 2009; Volume 2, p. Ii1733.

239. Nriagu, J.; Afeiche, M.; Linder, A.; Arowolo, T.; Ana, G.; Sridhar, M.K.; Adesina, A. Lead poisoning associated
with malaria in children of urban areas of Nigeria. Int. J. Hyg. Environ. Health 2008, 211, 591–605. [CrossRef]
[PubMed]

240. Babalola, O.O.; Ojo, L.O.; Aderemi, M.O. Lead levels in some biological samples of auto-mechanics in
Abeokuta, Nigeria. 2005. Available online: http://nopr.niscair.res.in/handle/123456789/3547 (accessed on
4 August 2018).

241. Arinola, O.G.; Nwozo, S.O.; Ajiboye, J.A.; Oniye, A.H. Evaluation of trace elements and total antioxidant
status in Nigerian cassava processors. Pak. J. Nutr. 2008, 7, 770–772. [CrossRef]

242. Bodeau-Livinec, F.; Glorennec, P.; Cot, M.; Dumas, P.; Durand, S.; Massougbodji, A.; LeBot, B. Elevated blood
lead levels in infants and mothers in Benin and potential sources of exposure. Int. J. Environ. Res. Public Health
2016, 13, 316. [CrossRef] [PubMed]

243. Tuakuila, J.; Mbuyi, F.; Kabamba, M.; Lantin, A.C.; Lison, D.; Hoet, P. Blood lead levels in the Kinshasa
population: A pilot study. Arch. Public Health 2010, 68, 30–41. [CrossRef]

244. Balistrieri, L.S.; Mebane, C.A. Predicting the toxicity of metal mixtures. Sci. Total Environ. 2014, 466, 788–799.
[CrossRef] [PubMed]

245. Charles, J.; Crini, G.; Degiorgi, F.; Sancey, B.; Morin-Crini, N.; Badot, P.M. Unexpected toxic interactions in
the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environ. Sci.
Pollut. Res. 2014, 21, 1099–1111. [CrossRef] [PubMed]

246. Borgert, C.J.; Quill, T.F.; McCarty, L.S.; Mason, A.M. Can mode of action predict mixture toxicity for risk
assessment? Toxicol. Appl. Pharmacol. 2004, 201, 85–96. [CrossRef] [PubMed]

247. Chen, J.; Jiang, Y.; Xu, C.; Yu, L.; Sun, D.; Xu, L.; Li, H. Comparison of two mathematical prediction models
in assessing the toxicity of heavy metal mixtures to the feeding of the nematode Caenorhabditis elegans.
Ecotoxicol. Environ. Saf. 2013, 94, 73–79. [CrossRef] [PubMed]

248. Qin, L.T.; Liu, S.S.; Zhang, J.; Xiao, Q.F. A novel model integrated concentration addition with independent
action for the prediction of toxicity of multi-component mixture. Toxicology 2011, 280, 164–172. [CrossRef]
[PubMed]

249. Berenbaum, M.C. The expected effect of a combination of agents: The general solution. J. Theor. Biol. 1985,
114, 413–431. [CrossRef]

250. Backhaus, T.; Altenburger, R.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L.H. Predictability of the
toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ. Toxicol. Chem. 2000,
19, 2348–2356. [CrossRef]

251. Jonker, M.J.; Svendsen, C.; Bedaux, J.J.; Bongers, M.; Kammenga, J.E. Significance testing of synergistic/
antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis.
Environ. Toxicol. Chem. 2005, 24, 2701–2713. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/ijerph7041508
http://www.ncbi.nlm.nih.gov/pubmed/20617043
http://dx.doi.org/10.1080/00039899909602235
http://www.ncbi.nlm.nih.gov/pubmed/10025415
http://www.ncbi.nlm.nih.gov/pubmed/12953998
http://dx.doi.org/10.1177/0748233707081908
http://www.ncbi.nlm.nih.gov/pubmed/18220158
http://dx.doi.org/10.1007/s10661-009-1247-4
http://www.ncbi.nlm.nih.gov/pubmed/19915952
http://dx.doi.org/10.3923/jas.2007.2356.2360
http://dx.doi.org/10.1016/j.ijheh.2008.05.001
http://www.ncbi.nlm.nih.gov/pubmed/18599348
http://nopr.niscair.res.in/handle/123456789/3547
http://dx.doi.org/10.3923/pjn.2008.770.772
http://dx.doi.org/10.3390/ijerph13030316
http://www.ncbi.nlm.nih.gov/pubmed/26978384
http://dx.doi.org/10.1186/0778-7367-68-1-30
http://dx.doi.org/10.1016/j.scitotenv.2013.07.034
http://www.ncbi.nlm.nih.gov/pubmed/23973545
http://dx.doi.org/10.1007/s11356-013-1978-1
http://www.ncbi.nlm.nih.gov/pubmed/23872894
http://dx.doi.org/10.1016/j.taap.2004.05.005
http://www.ncbi.nlm.nih.gov/pubmed/15541748
http://dx.doi.org/10.1016/j.ecoenv.2013.04.026
http://www.ncbi.nlm.nih.gov/pubmed/23721856
http://dx.doi.org/10.1016/j.tox.2010.12.007
http://www.ncbi.nlm.nih.gov/pubmed/21182889
http://dx.doi.org/10.1016/S0022-5193(85)80176-4
http://dx.doi.org/10.1897/1551-5028(2000)019&lt;2348:POTTOA&gt;2.3.CO;2
http://dx.doi.org/10.1897/04-431R.1
http://www.ncbi.nlm.nih.gov/pubmed/16268173


Toxics 2018, 6, 65 32 of 32

252. Jonker, M.J.; Gerhardt, A.; Backhaus, T.; van Gestel, C.A. Test design, mixture characterization, and data
evaluation. In Mixture Toxicity: Linking Approaches from Ecological and Human Toxicology; CRC Press: Boca
Raton, FL, USA, 2011; pp. 121–156.

253. Norwood, W.P.; Borgmann, U.; Dixon, D.G.; Wallace, A. Effects of metal mixtures on aquatic biota: A review
of observations and methods. Hum. Ecol. Risk Assess. 2003, 9, 795–811. [CrossRef]

254. Vijver, M.G.; Elliott, E.G.; Peijnenburg, W.J.; De Snoo, G.R. Response predictions for organisms water-exposed
to metal mixtures: A meta-analysis. Environ. Toxicol. Chem. 2011, 30, 1482–1487. [CrossRef] [PubMed]

255. Liu, Y.; Vijver, M.G.; Qiu, H.; Baas, J.; Peijnenburg, W.J. Statistically significant deviations from additivity:
What do they mean in assessing toxicity of mixtures? Ecotoxicol. Environ. Saf. 2015, 122, 37–44. [CrossRef]
[PubMed]

256. Sharma, S.S.; Schat, H.; Vooijs, R.; Van Heerwaarden, L.M. Combination toxicology of copper, zinc,
and cadmium in binary mixtures: Concentration-dependent antagonistic, nonadditive, and synergistic
effects on root growth in Silene vulgaris. Environ. Toxicol. Chem. Int. J. 1999, 18, 348–355. [CrossRef]

257. Van Genderen, E.; Adams, W.; Dwyer, R.; Garman, E.; Gorsuch, J. Modeling and interpreting biological
effects of mixtures in the environment: Introduction to the metal mixture modeling evaluation project.
Environ. Toxicol. Chem. 2015, 34, 721–725. [CrossRef] [PubMed]

258. Meyer, J.S.; Farley, K.J.; Garman, E.R. Metal mixtures modeling evaluation project: Background.
Environ. Toxicol. Chem. 2015, 34, 726–740. [CrossRef] [PubMed]

259. Spurgeon, D.J.; Jones, O.A.; Dorne, J.L.C.; Svendsen, C.; Swain, S.; Stürzenbaum, S.R. Systems toxicology
approaches for understanding the joint effects of environmental chemical mixtures. Sci. Total Environ. 2010,
408, 3725–3734. [CrossRef] [PubMed]

260. Koedrith, P.; Kim, H.; Weon, J.I.; Seo, Y.R. Toxicogenomic approaches forunderstanding molecular mechanisms
of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. [CrossRef]
[PubMed]

261. Beyer, J.; Petersen, K.; Song, Y.; Ruus, A.; Grung, M.; Bakke, T.; Tollefsen, K.E. Environmental risk assessment
of combined effects in aquatic ecotoxicology: A discussion paper. Mar. Environ. Res. 2014, 96, 81–91.
[CrossRef] [PubMed]

262. Suk, W.A.; Olden, K.; Yang, R.S. Chemical mixtures research: Significance and future perspectives.
Environ. Health Perspect. 2002, 110, 891–892. [CrossRef] [PubMed]

263. Sarigiannis, D.A.; Hansen, U. Considering the cumulative risk of mixtures of chemicals—A challenge for
policy makers. Environ. Health 2012, 11, S18. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/713610010
http://dx.doi.org/10.1002/etc.499
http://www.ncbi.nlm.nih.gov/pubmed/21337610
http://dx.doi.org/10.1016/j.ecoenv.2015.07.012
http://www.ncbi.nlm.nih.gov/pubmed/26188643
http://dx.doi.org/10.1002/etc.5620180235
http://dx.doi.org/10.1002/etc.2750
http://www.ncbi.nlm.nih.gov/pubmed/25809105
http://dx.doi.org/10.1002/etc.2792
http://www.ncbi.nlm.nih.gov/pubmed/25353683
http://dx.doi.org/10.1016/j.scitotenv.2010.02.038
http://www.ncbi.nlm.nih.gov/pubmed/20231031
http://dx.doi.org/10.1016/j.ijheh.2013.02.010
http://www.ncbi.nlm.nih.gov/pubmed/23540489
http://dx.doi.org/10.1016/j.marenvres.2013.10.008
http://www.ncbi.nlm.nih.gov/pubmed/24246633
http://dx.doi.org/10.1289/ehp.110-1241268
http://www.ncbi.nlm.nih.gov/pubmed/12634115
http://dx.doi.org/10.1186/1476-069X-11-S1-S18
http://www.ncbi.nlm.nih.gov/pubmed/22759500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Database Searching and Search Strategy 
	Inclusion and Exclusion Criteria 

	Exposure to Heavy Metal Mixture 
	Effects of Heavy Metal Mixture to Tissues and Organs 
	Cytotoxicity 
	Oxidative Stress 
	Immunotoxicity 
	Hepatotoxicity 
	Nephrotoxicity 
	Neurotoxicity 
	Development of Cancer 

	Public Health Effects of Heavy Metal Exposure in Sub Saharan Africa 
	Risk Assessment of Exposure to Mixtures of Heavy Metal 
	Conclusions 
	References

