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Abstract: Due to their significant environmental impact, there has been a gradual restriction of
the production and utilization of legacy per- and polyfluoroalkyl substances (PFAS), leading to
continuous development and adoption of novel alternatives. To effectively identify the potential
environmental risks from crop consumption, the levels of 25 PFAS, including fourteen perfluoroalkyl
acids (PFAAs), two precursor substances and nine novel alternatives, in agricultural soils and edible
parts of various crops around a fluoride industrial park (FIP) in Changshu city, China, were measured.
The concentration of ΣPFAS in the edible parts of all crops ranged from 11.64 to 299.5 ng/g, with
perfluorobutanoic acid (PFBA) being the dominant compound, accounting for an average of 71% of
ΣPFAS. The precursor substance, N-methylperfluoro-octanesulfonamidoacetic acid (N-MeFOSAA),
was detected in all crop samples. Different types of crops showed distinguishing accumulation
profiles for the PFAS. Solanaceae and leafy vegetables showed higher levels of PFAS contamination,
with the highest ΣPFAS concentrations reaching 190.91 and 175.29 ng/g, respectively. The highest
ΣAlternative was detected in leafy vegetables at 15.21 ng/g. The levels of human exposure to PFAS
through crop consumption for various aged groups were also evaluated. The maximum exposure
to PFOA for urban toddlers reached 109.8% of the standard value set by the European Food Safety
Authority (EFSA). In addition, short-chained PFAAs and novel alternatives may pose potential risks
to human health via crop consumption.

Keywords: per- and polyfluoroalkyl substances (PFAS); novel fluorinated alternatives; crop contamination;
health risk assessment

1. Introduction

Per- and polyfluoroalkyl substances (PFAS), owing to their strong chemical stability,
thermal stability and high surface activity, are extensively employed in various industrial
sectors such as chemicals, electronics, aviation and textiles. Specifically, perfluorooctane
sulfonate (PFOS) is utilized in the production of pesticides, flame retardants, textiles and
in metal processing [1,2], while perfluorooctanoic acid (PFOA) serves as a processing aid
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(emulsifier) in the creation of fluoropolymer coatings and is added to synthetic industrial
products [3]. Consequently, the ubiquitous application of PFAS results in their contin-
uous release into the environment [4,5]. However, toxicological evidence suggests that
PFAS may cause a range of detrimental effects to human health, including neurotoxic-
ity, hepatotoxicity, carcinogenicity, reproductive and developmental toxicity, as well as
immunotoxicity [6,7]. Given its potential for toxicity, bioaccumulation, persistence and
long-distance migratory capacity, international attention has been further increased [8].
Legacy PFAS, such as PFOA and PFOS, have been included in international Stockholm
Convention to restrict their production and use [9]. However, due to the wide range of
application scenarios in industrial production attributed to their unique material proper-
ties, some short-chained PFAS and novel perfluorinated alternatives have been developed
by fluorochemical manufacturers [10]. These novel alternatives have been developed
to mitigate policy and regulatory uncertainties and minimize environmental risks while
maintaining the excellent chemical properties of legacy PFAS such as chemical stability,
hydrophobicity and lipophobicity [11]. For example, Hexafluoropropylene oxide dimmer
acid (HFPO-DA) and Hexafluoropropylene oxide trimer acid (HFPO-TA) were used as alter-
natives to PFOA [12], while 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA)
and 6:2 fluorotelomer sulfonate (6:2 FTS) were chosen as substitutes for PFOS. Studies
have indicated that HFPO-DA can be produced at a rate of up to 100 t/a in Europe [13].
Additionally, HFPO-TA is predominantly utilized as a PFOA alternative in China, with
researchers predicting total riverine emissions of HFPO homologues exceeding 8.4 t (2.4 t
of HFPO-DA and 6.0 t of HFPO-TA, respectively) [14]. Moreover, 6:2 Cl-PFESA has served
as an alternative to PFOS in the chromium plating industry in China for over 30 years.
Monitoring of chromium plating wastewater has revealed that concentrations of the sub-
stance in the effluent and influent reached 43–78 and 65–112 µg/L, respectively [15]. It was
believed that developing alternatives by shortening the length of the fluorocarbon chain or
inserting heteroatoms into it (e.g., HFPO-DA), and substituting C-F bonds with C-H ones,
would result in a reduced environmental impact [16]. Nevertheless, the potential toxicity of
these new substitutes has been gradually revealed as research deepens [17]. Toxicological
studies have indicated that the novel alternatives, e.g., HFPO-TA, may exhibit stronger
hepatotoxicity compared to conventional PFAS, thereby posing greater potential health
risks to humans [18–20]. These findings suggest that more attention should also be given
to novel perfluorinated alternatives.

Crop uptake and the accumulation of PFAS in contaminated soil have been identified
as crucial processes by which these substances can enter terrestrial food webs [21]. The
consumption of crops contaminated with PFAS has become a significant pathway for
human exposure to these chemicals [22]. Studies have confirmed the absorption and
accumulation of PFAS by major food crops such as wheat, corn and soybeans, as well as
vegetables like lettuce, tomatoes and radishes, in soil or nutrient solutions where PFAS are
artificially introduced. Vegetable intake occupies a large proportion of the daily dietary
structure of human beings; thus, contaminated crops pose potential hazards to human
health [23]. However, accurately reflecting the contamination characteristics of PFAS under
open-field cultivation in potting and hydroponic experiments is challenging [24,25]. Hence,
it is of great significance to study field crops that have been contaminated with PFAS.

Emissions from industrial production have been identified as the main contributor to
PFAS pollution [26]. In recent years, with the implementation of restrictions imposed by
European and American agreements on the production and emission of PFAS, enterprises
involved in the manufacture and application of PFAS have gradually moved to developing
countries, including China [27]. This study was conducted in the fluoride industrial park
(FIP) located in the Yangtze River Delta region of China, and the production and application
of PFAS in this FIP has been carried out since 1999 [28]. Additionally, the contamination
levels of PFAS in soil and different types of crops at various distances around the FIP
were systematically examined. The goals of this study are: (1) to explore the occurrence
characteristics, contamination and the risk of exposure to PFAS through the consumption
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of agricultural products grown locally; and (2) to propose planting optimization and food
safety measures to reduce the risk of human exposure.

2. Materials and Methods
2.1. Sample Collection

Sampling activities were conducted in August 2020 in the FIP (Changshu City, Jiangsu
Province, China), an industrial park comprising various industries such as chemicals,
textiles, metal processing, industrial equipment manufacturing and fluorochemicals. In
addition, the area serves as an important crop production region, characterized by a dense
network of rivers, extensive farmland and scattered villages. The cultivation of staple
grains and various types of vegetables plays a vital role in the local diet. The sampling
locations were centered around the Daikin Fluorochemical factory, starting within a 300 m
radius southwest of the factory’s perimeter. Subsequently, the distance was increased to
1 km and 3 km southwest of the factory (Figure 1).
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Figure 1. The map of the sampling locations for agricultural soil and crops around the fluoride
industrial park in Changshu City, Jiangsu Province, China.

The samples collected included edible parts of various vegetables and soil samples.
Specific information about the types and quantities of vegetables sampled is shown in
Table S1. At each sampling point, edible parts of vegetables were randomly sampled from
the center and the four corners of a 5 m × 5 m field. The vegetables of the same type
were then mixed together to create a composite sample. For soil sample collection, topsoil
(0–20 cm) was collected at the corresponding plant sampling points using a clean stainless
steel trowel. The soil samples were also mixed to form a composite sample. After collection,
all samples were placed in clean polypropylene (pp) ziplock bags and transported back
to the laboratory in a −20 ◦C refrigerator. Once in the laboratory, crop samples were
thoroughly washed with purified water, followed by Milli-Q water, and then frozen in a
−40 ◦C refrigerator. The fully frozen samples were then freeze-dried. The freeze-dried crop
samples were homogenized by grinding in a pulverizer, while the soil samples were ground
using a mortar and pestle and sieved through a 2 mm mesh. To avoid cross-contamination
during the grinding process, the pulverizer and mortar were rinsed and cleaned with
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methanol after each use. The resulting powdered samples were collected in polypropylene
(pp) ziplock bags and stored in a refrigerator at −40 ◦C until extraction.

2.2. Standards and Reagents

A total of 25 PFAS were identified and quantified in all samples, including 14 PFAAs,
PFBA, Perfluorohexanoic acid (PFHxA), Perfluoroheptanoic acid (PFHpA), PFOA, Per-
fluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid
(PFUnDA), Perfluorododecanoic acid (PFDoDA), Perfluorobutane sulfonate (PFBS), Per-
fluoropentane sulfonate (PFPeS), Perfluorohexane sulfonate (PFHxS), Perfluoroheptane
sulfonate (PFHpS), Perfluorooctane sulfonate (PFOS), Perfluorononane sulfonate (PFNS);
2 precursor substances, N-MeFOSAA, N-ethylperfluorooctanesulfonamidoacetic acid (N-
EtFOSAA); and 9 novel fluorinated alternatives, 6:2 Cl-PFESA, 8:2 chlorinated polyfluo-
rinated ether sulfonic acid (8:2 Cl-PFESA), Sodium 8-chloroperfluoro-1-octanesulfonate
(8Cl-PFOS), HFPO-DA, HFPO-TA, Hexafluoropropylene oxide tetramer acid (HFPO-TeA),
4:2 fluorotelomer sulfonic acid (4:2 FTS), 6:2 FTS, 8:2 fluorotelomer sulfonic acid (8:2 FTS).
To ensure accurate quantification, 18 mass-labelled internal standards were utilized. De-
tailed information on the standards and reagents used in the experiments can be found in
Tables S2 and S3.

2.3. Sample Extraction and Instrumental Analysis

Soil and plant samples were extracted using solid-phase extraction (SPE) following the
method previously described by Chen et al. [29]. Briefly, three extractions were performed
on plant and soil samples using acetonitrile/water (v/v = 9:1) and acetonitrile. The extracts
were then concentrated with nitrogen and underwent extraction clean-up using Oasis
WAX SPE tubes as detailed in the Supplementary Materials. PFAS were quantified in
negative electrospray ionization (ESI) mode using an Agilent 1290 infinity II UPLC (Agilent
Technologies, Santa Clara, CA, USA) combined with an API 5500 triple-quadrupole mass
spectrometer (AB SCIEX Inc., Framingham, MA, USA). Separation of the target PFAS
was performed using the Waters acquity BEH C18 column (1.7 µm, 2.1 mm × 100 mm).
Detailed descriptions of the instrumental analyses and mass spectral parameters for the
target compounds are given in Tables S4 and S5.

2.4. Quality Assurance and Quality Control (QA/QC)

To avoid possible cross-contamination during sampling, soil and plant samples were
individually stored in polythene ziplock bags. To monitor possible external contamination
during extraction and instrumental analyses, procedure and solvent blanks were prepared
using Milli-Q water and methanol, respectively. No PFAS were detected above the limit of
quantification (LOQ) in all the blank samples. Concentrations over the limit of detection
(LOD) were used to correct for sample concentrations. The LOD and LOQ were designated
as the peaks with signal-to-noise ratios (S/N) of 3 and 10, respectively. Experiments were
conducted to quantify the target analytes using 8-point matrix-matched standard curves
(0.05, 0.1, 0.5, 1, 5, 10, 50 and 100 ng/mL) spiked with a 5 ng/mL internal standard. The
regression coefficients (R2) of the calibration curves were >0.99 for all target analytes.
Detailed QA/QC information can be found in Table S6.

2.5. Statistical Analyses and Graphic Plotting

In this study, the concentrations of PFAS in both soil and crop samples were calculated
based on dry weight (dw). Statistical analysis and graphical representation were performed
using SPSS Statistics V22.0 (SPSS Inc., Quarry Bay, Hongkong, China), OriginPro 9.0
(OriginLab Corporation, USA) and Excel 2016 (Microsoft Corporation, USA).

2.6. Dietary Intake Estimation

The consumption of contaminated crops has been identified as a significant pathway
for exposure to PFAS, posing a potential risk to human health [30]. Vegetables are an
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essential part of the human diet, with an average intake of 121.6 kg per year, which is
similar to the consumption of staple foods (126.8 kg). Therefore, it is crucial to evaluate
the risk of PFAS exposure through crop intake in the daily diet. The estimated daily intake
(EDI, ng/kg body weight (BW)/day) is an important indicator for assessing health risks.
Therefore, the present study calculated the EDI of PFAS from different types of vegetables
and cereals (maize). The calculations are given below:

EDI =
Daliy consumption (g/d fw)×PFAS concentration (ng/g fw)

Body weight (kg)
(1)

Data on daily consumption of the selected food items were obtained from the Exposure
Factors handbook of the Chinese population (children and adults) [31,32]. The concentra-
tions of PFAS in the edible fractions of crops were measured based on dry weight and were
converted to the corresponding fresh weight (fw) based on water content. Information on
the water content of different types of crops was obtained from the food nutrient content
query platform of the National Institute for Nutrition and Health, Chinese Center for
Disease Control and Prevention (NINH, China CDC) [33]. In order to demonstrate the most
severe dietary exposure, known as the upper bound scenario, the crop with the highest
moisture content was chosen for each type of crop, taking into account the large-scale
production of crops and the large number of consumers in the study area. To account for
variations in daily dietary intake and body weight, the EDI were calculated for three age
groups, i.e., toddlers (2–5 years), children and teenagers (6–17 years) and adults (>18 years).
In addition, given the sampling area’s urban–rural setting, the potential consumption of
contaminated crops by urban residents was taken into account. As a result, we calculated
Estimated Daily Intakes (EDIs) for different age groups in urban and rural areas separately.
The specific intake and body weight data for the different crop types are presented in
Table S7. Non-carcinogenic risk evaluation was performed using the hazard quotient (HQ)
and hazard index (HI). An HI value exceeding 1.0 signifies a high risk level, whereas an HI
value below 1.0 indicates a low risk level [34].

HQ = EDI/RfD (2)

HI = ∑ HQ (3)

The RfD values for PFBA and PFBS were 2900 ng/kg BW/d and 430 ng/kg BW/d,
respectively, and were sourced from the Minnesota Department of Health (MDH) [35]. A
RfD value of 320 ng/kg BW/d for PFHxA was obtained from the French Agency for the
Safety of Food, Environment and Occupational Health and Safety (ANSES) [36]. According
to the EPA report, the RfD values for HFPO-DA and PFOA were 30 ng/kg BW/d and
20 ng/kg BW/d, respectively [37,38].

3. Results and Discussion
3.1. PFAS in Agricultural Soils

A total of 20 different PFAS were detected in the soil samples. The highest concentra-
tion of the total PFAS (∑PFAS) detected in soil samples was 133.13 ng/g. The levels of total
PFAAs (∑PFAAs) in the soil samples ranged from 0.15 to 13.98 ng/g, while those of total
novel alternatives (∑Alternatives) ranged from 0.05 to 131.1 ng/g. Among the precursors,
N-MeFOSAA was detected with a detection rate of 67% and an average concentration of
0.55 ng/g (Figure 2a). PFOA was also commonly detected in 96% of the soils, with a maxi-
mum concentration of 6.8 ng/g (Figure 2a). Listed as a persistent organic pollutant (POP) in
the Stockholm Convention in 2019 [39], PFOA has a high detection rate and concentration
due to its previous extensive use and strong hydrophobicity, which causes it to readily
adsorb to soil particles and limits its ability to migrate through soil systems [40]. In a related
study on PFAS contamination in Uganda, the highest PFAS level detected in wetlands and
surrounding agricultural soils (∑PFAS = 3000 pg/g) was only 21.1% of the highest soil
∑PFAAs found in this study [41]. The detection rate of novel fluorinated alternatives in the
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soil was relatively low, with the highest detection rate observed for 6:2 FTS at 33% with an
average concentration of 56.37 ng/g (Figure 2b). In a study of surface water and sediment
around the FIP (Changshu), the concentrations of 6:2 FTS in the surface water and sediment
ranged from 10.3 to 402 ng/L and 32.8 to 46.1 ng/g, respectively [42], which were similar
to the concentrations detected in the soil in this study.
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3.2. PFAS in Edible Parts of Crops

The concentrations of PFAS in the edible parts of crops were determined. The high-
est concentrations of the ∑PFAS detected in crop samples were 299 ng/g. The levels of
∑PFAAs in the crop samples were 2.35–286.64 ng/g, while those of ∑Alternatives were
0.03–19.10 ng/g. PFBA was detected in all of the crop samples, with a maximum con-
centration of 272 ng/g (Figure 3a), accounting for 84% of the ∑PFAS content in all of the
crop samples. Short-chained PFAS, due to their smaller molecular size and higher water
solubility, are more likely to pass through root cell walls and membranes, enter the xylem
tissues of plants through water transpiration and then translocate to the shoot, where they
are more likely to be taken up and accumulated by the plants compared to the long-chained
PFAS [43]. While previous studies have shown that PFOA tends to accumulate in the
roots of crops [44], the detection rate of PFOA in edible parts of the crops in this study
was 36%, with an average concentration of 1.9 ng/g (Figure 3a). A previous study in
Saudi Arabia reported the highest concentration of ∑PFAAs in agricultural crops to be
90.2 ng/g, with an average concentration of 20.5 ng/g. The contamination of agricultural
crops in this study exceeded this level, with emissions from the FIP contributing to the
increased PFAS contamination in the study area [45]. It is worth noting that, although
the precursor compound N-MeFOSAA did not contribute significantly to the cumulative
concentration of PFAS in crops, it was detected in 100% of crops with an average con-
centration of 7.6 ng/g (Figure 3a). Fewer toxicological studies have been conducted on
precursor substances; however, a previous study showed that N-MeFOSAA has a high
detection rate in cerebrospinal fluid and may pose a potential risk for the development
of behavioral disorders and cognitive developmental deficits in humans [46]. Among the
novel alternatives of concern in the study, hexafluoropropylene oxide (HFPO) homologues
were detected in 73% of all of the alternatives, with an average concentration of 0.88 ng/g
(Figure 3b). The highest detected concentration among the alternatives was 6:2 FTS, with
an average concentration of 6.18 ng/g (Figure 3b). A previous study indicated that 6:2 FTS
undergoes a biotransformation in plants, resulting in the formation of metabolites such
as PFHpA, PFHxA, PFBA, Perfluoropentanoic acid (PFPeA), PFBA and Perfluoropropi-
onic acid (PFPrA). These metabolites can pose significant health risks through the food
chain [47].
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3.3. Spatial Distribution of PFAS around the FIP

The concentration of PFAS in the soil varied depending on the distance from the FIP.
The higher concentration of PFAS at the 3 km sampling site, compared to the 1 km site,
was primarily due to the elevated levels of 6:2 FTS in the soil at the 3 km site, where it
accounted for more than 90% of the PFAS present (Figure 4a and Figure S1). The 6:2 FTS
alternative is extensively used in the electroplating industry, fire-fighting foams and as
a surface treatment agent for industrial products like leather, textiles and wood [48]. A
previous study on the distribution and potential release of PFAS in the fire training site
revealed high levels of contamination, with 6:2 FTS concentrations in the concrete ranging
from 23 to 553 ng/g [49]. The 3 km sampling area of this study is in close proximity to
several apparel and electroplating companies, as well as the FIP’s fire station. These various
potential emission sources may have contributed to the elevated concentrations of 6:2 FTS
detected in this area.
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The Daikin Fluorochemicals factory is one of the largest and most productive compa-
nies in the area [23], and crops within 300 m of the plant show the highest concentrations of
ΣPFAS (Figure 4b). There was a general trend of decreasing levels of PFAS detected in the
crops as the distance increased. However, the concentration of PFAS was higher in the crops
at the 3 km location compared to the 1 km location (Figure 4b). The main reason for this
phenomenon could be attributed to the presence of numerous small- and medium-sized
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fluoride factories to the north-east of the 3 km sampling area. These factories potentially
impact the concentration levels of PFAS in crops through atmospheric precipitation [50].
Additionally, the sampling site is located near a tributary of the Fushan Pond, where several
small- and medium-sized fluoride factories are located upstream. The use of this water
source for irrigation by local residents may further contribute to the contamination of soil
and crops with PFAS [51].

3.4. Contamination of PFAS in Different Crop Species

Various types of crops, such as leafy vegetables, solanaceae, cucurbitaceae, gramineae
and leguminosae, were gathered in the sampling area, representing a significant portion
of the local population’s daily diet. The specific crop species collected are detailed in
Table S1. The composition of crops collected at different distances varied, with leafy
vegetables and solanaceae being present at all three sampling locations (0.3, 1, and 3 km).
PFBA was identified as contributing to over 50% of the contamination load of ∑PFAS in
the crops across all sampling sites, except for gramineae crops from the 3 km location
(Figure 5). At the 0.3 km site, both leafy vegetables and solanaceae exhibited similar
∑PFAAs concentrations of 167.3 and 149.5 ng/g, respectively, with PFBA accounting for a
significant portion of the ∑PFAAs load in both crops (Figure 5a). At the 1 km area, leafy
vegetables had the highest concentration of ∑PFAAs at 59.7 ng/g, while solanaceae showed
a 63% lower concentration compared to leafy vegetables, with PFBA again playing a major
role in the contamination (Figure 5b). In contrast, the highest ∑PFAAs concentration
in solanaceae at 173.5 ng/g was found at the 3 km location, with PFBA contributing to
a large portion of the contamination load in all crop types (Figure 5c). Overall, leafy
vegetables absorbed and accumulated the most PFAAs, including long-chained ones like
PFOA, PFHxS and PFNS. Legacy PFAS like PFOA were detected in leafy vegetables at
various sampling points, with the highest mean concentration observed at the 0.3 km
site (Figure 5a–c). In comparison to the other crop types, gramineae and cucurbitaceae
crops exhibited lower average concentrations of legacy PFAS. The highest concentration
of PFBA, a specific substance, was found in cucurbitaceae at 3 km area with an average
concentration of 12.01 ng/g (Figure 5c). Gramineae samples, on the other hand, were only
collected at the 3 km location, where PFBA was also detected at an average concentration
of 4.8 ng/g (Figure 5c). N-MeFOSAA, a precursor substance, showed similar accumulation
levels in various crop types across different sampling sites, with average concentrations of
7.72 and 8.25 ng/g even in the cucurbitaceae and gramineae from the 3 km site, where the
accumulation of PFAAs was low (Figure 5a–c).

Analyses of the concentrations of the novel alternatives in various crops demonstrated
that leafy vegetables consistently exhibited high levels of enrichment at both the 1 and
3 km sites (Figure 5e,f). The main alternatives identified were 6:2 FTS and 4:2 FTS, with
an average concentration of 11.34 ng/g of 4:2 FTS in leafy vegetables, representing 90.4%
of the leafy vegetable ∑Alternatives load at the 1 km location (Figure 5e). In the 3 km
area, the highest average concentration was found to be 9.67 ng/g of 6:2 FTS, accounting
for 63.6% of the ∑Alternatives load (Figure 5f). These findings can be attributed not only
to the fugitive behavior of pollutants in the study area but also to the specific uptake
and accumulation characteristics of certain crop species. A study on the uptake and
accumulation characteristics of PFAS in cabbage revealed that 6:2 FTS exhibited a higher
bioaccumulation in cabbage leaves, with higher transfer factors (TFs) from roots to stems
and from stems to leaves, indicating that substitutes developed by replacing fluorine atoms
with hydrogen atoms have greater mobility and are more readily transported to the shoot
parts, thereby increasing the risk of food contamination [52]. HFPO homologues were
also commonly detected in various crops, with high mean concentrations of HFPO-TA in
solanaceae across the different sampling sites (Figure 5d–f). The highest mean concentration
of 10 ng/g was observed at the 0.3 km site, constituting 98.3%, 69.3% and 25.5% of the
∑Alternatives loadings in solanaceae at the three sampling sites, respectively (Figure 5d–f).
In contrast, the accumulation of alternatives in cucurbitaceae differed significantly from
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the other crop types, with only HFPO homologues being detected (HFPO-DA: 0.084 ng/g,
0.078 ng/g; HFPO-TA: 0.41 ng/g, 2.04 ng/g, Figure 5e,f).
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Different types of crops showed varying characteristics of PFAS accumulation. Solanaceae,
leafy vegetables and leguminosae demonstrate higher accumulation levels. Leafy vegetables,
with a significant proportion of edible parts, may experience a higher level of PFAS accumula-
tion due to increased transpiration flows and a larger leaf area, making them more susceptible
to the airborne deposition of PFAS [53]. The higher levels of accumulation in leguminosae, on
the other hand, can be attributed to their higher protein and lipid content, which enhances
the adsorption and bioaccumulation of PFAS [54]. In the present study, the lower amount of
accumulation of PFAS in the edible part of the gramineae (maize) may be attributed to the
stronger biological barrier between the root and seed in maize, the longer transit distance
within the plant and the lower protein and lipid content of maize kernels [23]. Conversely, for
cucurbitaceae, it has been found that the leaves play a crucial role in the accumulation of PFAS,



Toxics 2024, 12, 269 10 of 15

which could explain the lower levels of PFAS in the edible parts [25]. It is important to note
that sampling was conducted in August, one of the most critical growing seasons of the year
in the study area and a suitable time for our contamination investigation. However, future
studies should focus on examining soil levels before, during and after the growing season.

3.5. Assessment of the Health Risks to the Local Population Associated with Exposure to PFAS

In this study, the highest detected concentrations of PFOA and 6:2 FTS in soils near
the FIP were 6.79 and 131.1 ng/g, respectively, which were much lower than the current
predicted no-effect concentrations of PFOA (160 ng/g) and 6:2 FTS (210 ng/g) [55]. How-
ever, considering the significant contribution of crops to the human daily dietary intake,
the potential risk to human health from enriched PFAS cannot be ignored [56]. Therefore,
this study aimed to calculate the EDI values of PFAS consumed through crops in the daily
diets of urban and rural residents across different age groups. In addition, it aimed to
investigate the risk of PFAS exposure resulting from the intake of different types of crops
by the residents (Table 1).

Table 1. Estimated daily intake (EDI, ng/kg BW/d) values of different types of crops.

EDIs EDI (Cucurbitaceae) EDI (Leguminosae)

Age 2–5 y 6–17 y >18 y 2–5 y 6–17 y >18 y

Area U R U R U R U R U R U R

PFBA 3.05 2.71 1.79 1.85 1.65 1.76 50.11 44.57 29.42 30.42 27.18 28.92
PFHxA ND ND ND ND ND ND 0.07 0.06 0.04 0.04 0.04 0.04
PFOA 0.04 0.03 0.02 0.02 0.02 0.02 ND ND ND ND ND ND
PFBS ND ND ND ND ND ND ND ND ND ND ND ND

PFHxS 0.13 0.11 0.07 0.08 0.07 0.07 0.09 0.08 0.05 0.06 0.05 0.05
PFNS ND ND ND ND ND ND ND ND ND ND ND ND

N-MeFOSAA 2.08 1.85 1.22 1.26 1.13 1.20 5.02 4.47 2.95 3.05 2.73 2.90
N-EtFOSAA 0.15 0.14 0.09 0.09 0.08 0.09 0.02 0.02 0.01 0.01 0.01 0.01
8:2 Cl-PFESA ND ND ND ND ND ND 0.13 0.12 0.08 0.08 0.07 0.08

8Cl-PFOS ND ND ND ND ND ND ND ND ND ND ND ND
HFPO-DA 0.02 0.02 0.01 0.01 0.01 0.01 0.04 0.04 0.02 0.03 0.02 0.02
HFPO-TA 0.41 0.36 0.24 0.25 0.22 0.23 0.44 0.39 0.26 0.27 0.24 0.26
HFPO-TeA ND ND ND ND ND ND 0.23 0.21 0.14 0.14 0.13 0.13

4:2 FTS ND ND ND ND ND ND 1.08 0.96 0.64 0.66 0.59 0.62
6:2 FTS ND ND ND ND ND ND 1.74 1.55 1.02 1.05 0.94 1.00

EDIs EDI (Leafy Vegetables) EDI (Solanaceae) EDI (Gramineae)

Age 2–5 y 6–17 y >18 y 2–5 y 6–17 y >18 y 2–5 y 6–17 y >18 y

Area U R U R U R U R U R U R U R U R U R

PFBA 27.33 24.32 16.05 16.59 14.82 15.78 35.32 31.42 20.74 21.44 19.15 20.38 11.66 9.79 10.02 6.68 5.15 6.35
PFHxA 0.88 0.78 0.52 0.53 0.48 0.51 ND ND ND ND ND ND ND ND ND ND ND ND
PFOA 0.69 0.61 0.40 0.42 0.37 0.40 ND ND ND ND ND ND ND ND ND ND ND ND
PFBS 0.10 0.09 0.06 0.06 0.05 0.06 4.83 4.29 2.83 2.93 2.62 2.79 ND ND ND ND ND ND

PFHxS 0.04 0.04 0.02 0.02 0.02 0.02 0.28 0.25 0.16 0.17 0.15 0.16 2.19 1.84 1.88 1.25 0.97 1.19
PFNS 0.26 0.23 0.15 0.16 0.14 0.15 ND ND ND ND ND ND ND ND ND ND ND ND

N-
MeFOSAA 2.47 2.19 1.45 1.50 1.34 1.42 2.66 2.36 1.56 1.61 1.44 1.53 20.05 16.84 17.24 11.49 8.86 10.93

N-EtFOSAA ND ND ND ND ND ND ND ND ND ND ND ND 1.98 1.67 1.71 1.14 0.88 1.08
8:2 Cl-PFESA ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

8Cl-PFOS 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.02 0.02 0.02 0.02 ND ND ND ND ND ND
HFPO-DA 0.12 0.10 0.07 0.07 0.06 0.07 0.04 0.03 0.02 0.02 0.02 0.02 ND ND ND ND ND ND
HFPO-TA 0.68 0.61 0.40 0.41 0.37 0.39 0.74 0.66 0.44 0.45 0.40 0.43 ND ND ND ND ND ND
HFPO-TeA 0.10 0.09 0.06 0.06 0.05 0.06 0.15 0.13 0.09 0.09 0.08 0.08 ND ND ND ND ND ND

4:2 FTS 1.55 1.38 0.91 0.94 0.84 0.90 1.29 1.15 0.76 0.79 0.70 0.75 ND ND ND ND ND ND
6:2 FTS 3.25 2.89 1.91 1.97 1.76 1.87 ND ND ND ND ND ND ND ND ND ND ND ND

Note: U, urban areas; R, rural areas; ND, nondetectable; 2–5 y represents toddlers, 6–17 y represents children and
teenagers, >18 y represents adults.

PFBA accounted for the majority of PFAAs intake, with the highest concentration at
50.11 ng/kg BW/d, followed by PFBS (4.83 ng/kg BW/d) and PFHxS (1.88 ng/kg BW/d).
These pollutants accounted for 84.2–99.68%, 0.33–11.94% and 0.14–15.8% of the EDI load of
∑PFAAs, respectively. Calculations suggest that toddlers, children and teenagers have a
higher intake of PFAAs compared to adults, which is possibly due to the relatively homo-
geneous diets of toddlers, children and teenagers, and their higher food consumption per
kg of BW. Additionally, adults living in rural areas have a higher projected intake of PFAAs
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compared to those in urban areas. This could be attributed to the higher intake of vegetables
in rural areas compared to urban areas [57]. For the precursors, N-MeFOSAA is of partic-
ular interest, with an EDI range of 1.13–20.05 ng/kg BW/d and a mean concentration of
4.56 ng/kg BW/d. Residents of all age groups were more highly exposed to N-MeFOSAA
compared to the PFAAs, except for PFBA. Regarding the novel alternatives studied, 6:2 FTS
had higher EDI values compared to 4:2 FTS (0.94–3.25 ng/kg BW/d, 0.59–1.55 ng/kg
BW/d), followed by HFPO-TA (0.22–0.68 ng/kg BW/d). These alternatives accounted for
47.35–56.91%, 27.18–57.22% and 11.93–94.89% of the ΣEDI, respectively.

The results of ΣEDI for PFAAs ingested through different types of crops showed
leguminosae > solanaceae > leafy vegetables > cucurbitaceae. The concentrations of PFAAs
in the edible parts of solanaceae, leguminosae and leafy vegetables were similar, and the
differences in ΣEDI were mainly due to the variations in water content among the different
types of crops. Leguminosae had increased exposure due to their lower water content. The
highest EDI values for precursor compounds, particularly N-MeFOSAA, were found in
gramineae. In the urban toddler group, the EDI value reached 20.05 ng/kg BW/d, and
the mean value across different groups was 14.24 ng/kg BW/d. However, it is important
to note that this study only sampled a single crop, maize, from the gramineae family due
to time and location constraints. Therefore, the exposure of the local population to PFAS
through the consumption of gramineae may not be fully reflected, as rice is the predominant
form of gramineae intake in their daily diet. Leafy vegetables, compared to other crop types,
had high EDI values for the remaining PFAS studied, except for the precursor compounds.
The ΣEDI of leafy vegetables for the alternatives reached 23.98 ng/kg BW/d, with 6:2 FTS
contributing the most (57%) with an average EDI value of 2.275 ng/kg BW/d. The ΣEDI
values of the other types of crops for the alternatives ranged from 1.8 to 15.42 ng/kg BW/d,
excluding gramineae.

Among the PFAS of concern, PFBA was found to be the contaminant with the highest
risk of exposure to the local population through the consumption of crops. The maximum
intake of PFBA (50.11 ng/kg BW/d) was much lower than the reference dose (RfD) recom-
mended by the Minnesota Department of Health (2900 ng/kg BW/d) [35]. The calculated
HI values for PFBA, PFHxA, PFOA, PFBS and HFPO-DA were consistently below one
across all crop types in this study. The estimated range of HI values for consumption of
contaminated crops by urban and rural dwellers at various age points was 0.002–0.051 (Ta-
ble S8), indicating a low non-carcinogenic risk associated with consuming these crops.
However, for the other PFAS of concern in our research (e.g., PFBS, N-MeFOSAA, and
6:2 FTS), it was not possible to provide clarification due to the lack of corresponding as-
sessment thresholds. To our knowledge, tolerable daily intake (TDI) values for health risk
assessment currently exist only for PFOA and PFOS. In this study, the highest EDI value
of PFOA in the upper bound scenario was 0.69 ng/kg BW/d, which is far lower than the
current TDI value (1500 ng/kg BW/d). However, the maximum estimated weekly intake
(EWI, seven times EDI) of PFOA for urban toddlers (4.83 ng/kg BW/week) exceeded
the tolerable weekly intake (TWI) established by the European Food Safety Authority
(EFSA, 4.4 ng/kg BW/week) [58]. The alternatives have similar structures and modes of
action to PFOA and PFOS, and generally exhibit toxic effects including hepatotoxicity and
immunotoxicity. With in-depth studies on human and ecotoxicology, future TDI values
may incorporate the risk to human health from co-exposure to these substances. It is worth
noting that the production scale of novel alternatives has been expanding without restric-
tion. Local populations are exposed to increased health risks from continued exposure
to these substances due to the lack of safer alternatives or effective control policies. To
minimize the health risk associated with crop consumption, it is recommended to cultivate
crop varieties with low PFAS accumulation instead of solanaceae and leafy vegetables near
the FIP. Additionally, there is a potential risk of exposure for humans through the use of
leafy vegetables as animal feed, which should be monitored in the future.
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4. Conclusions and Environmental Implications

Considering the continuous movement of PFAS-related industries to agriculture-
intensive developing countries and the growing production and use of novel alterna-
tives, this study investigated the distribution and occurrence of PFAS in the industrial–
agricultural interaction and evaluated the associated health risks. The concentrations of
PFAS in various types of soil and edible parts of crop samples were explored. The results
of this study revealed that the concentrations of ΣPFAS in the edible parts of all crops
ranged from 11.64 to 299.5 ng/g, with PFBA being the dominant compound, accounting
for an average of 71% of the ΣPFAS. Among the crops, solanaceae showed the highest
levels of ΣPFAS (maximum 190.91 ng/g), while cereals exhibited the lowest (14.77 ng/g).
Leafy vegetables had the highest contents of ΣAlternative (maximum 15.21 ng/g). The
precursor compound N-MeFOSAA was detected in all of the crop samples, with an average
concentration of 7.6 ng/g. The risk of human exposure to PFAS through the consumption
of different types of crops was evaluated using established criteria such as RfD, TDI and
TWI values. The estimated PFOA exposure of urban toddlers through crop consumption
accounted for 109.8% of the TWI value set by the EFSA, suggesting that specific local
populations may face potential health risks from consuming crops. However, the lack of
appropriate assessment criteria for the PFAS we were concerned with in this study hindered
a more accurate risk assessment. Obtaining additional toxicological data and exposure
hazard information on PFAS, especially novel alternatives, is crucial for establishing more
comprehensive criteria for risk assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
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parameters for the quantification of the target PFAS; Table S5: Optimal UPLC-MS/MS parameters
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individual PFAS in crops and soil; Table S7: Reference daily crop intake (g/d), body weight (BW,
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different age groups; Figure S1: Proportion of different PFAS in soil and crop samples.
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