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Abstract: Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver
disease worldwide. At the same time, the relationship between air pollution and the likelihood of
developing NAFLD has been a subject of debate due to conflicting findings in previous observational
research. Our objective was to examine the potential correlation between air pollutant levels and
the risk of NAFLD in the European population by employing a two-sample Mendelian random-
ization (MR) analysis. The UK Biobank Consortium provided the summary statistics for various
air pollution indicators (PM2.5, PM2.5 absorbance, PM2.5–10, PM10, NO2, and NOx). Additionally,
information on NAFLD was obtained from three studies, including one derivation set and two vali-
dation sets. Heterogeneity, pleiotropy, and sensitivity analyses were performed under different MR
frameworks, and instrumental variables associated with confounders (such as education, smoking,
alcohol, and BMI) were detected by tools. In the derivation set, causal relationships between PM2.5,
NO2, and NAFLD were observed in univariable Mendelian randomization (UVMR) (Odds Ratio
(OR) = 1.99, 95% confidence interval (95% CI) = [1.22–3.22], p = 0.005; OR = 2.08, 95% CI = [1.27–3.40],
p = 0.004, respectively). After adjustment for air pollutants or alcohol intake frequency in multivari-
able Mendelian randomization (MVMR), the above genetic correlations disappeared. In validation
sets, the null associations remained in UVMR. Our findings from MR analysis using genetic data
did not provide evidence for a causal association between air pollution and NAFLD in the Euro-
pean population. The associations observed in epidemiological studies could be partly attributed
to confounders.

Keywords: air pollution; NAFLD; UK Biobank; Finngen; Mendelian randomization

1. Introduction

The escalating prevalence of non-alcoholic fatty liver disease (NAFLD) has made it a
major global health issue. The estimated worldwide incidence rate of NAFLD stands at
approximately 24% [1]. Notably, dietary patterns and lifestyle choices have been recog-
nized as crucial elements linked to the emergence of NAFLD, with countries exhibiting a
higher consumption of high-calorie diets experiencing a greater incidence of the disease.
Furthermore, NAFLD independently contributes to the likelihood of various comorbidities,
including hypertension, type 2 diabetes (T2D), and cardiovascular diseases (CVDs) [2–4].
Although metabolic disorders have been established as the primary risk factor for NAFLD,
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increasing evidence supports the view that exposure to certain environmental factors may
have a profound impact on liver disease, including NAFLD.

A matter of concern is the detrimental impact of air pollution on human health, as
over 80% of city dwellers are exposed to air pollutants whose levels exceed the thresholds
set by the World Health Organization (WHO) [5]. Air pollutants typically encompass
particulate matter (PM) and specific chemical gases. PM can be categorized based on
its physical diameter: particulate matter with aerodynamic diameters ≤ 2.5 µm (PM2.5);
particulate matter with diameters ≤ 10 µm and >2.5 µm (PM2.5–10); particulate matter
with diameters > 10 µm (PM10). The chemical substances include gases such as nitro-
gen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O3), and so on.
PM2.5, originating from vehicle exhaust emissions, industrial emissions, and combustion
processes, is the pollutant most commonly detected among them. Air pollutants have
been officially classified by the International Agency for Research on Cancer (IARC) as
the main category of substances that cause cancer in humans. A number of studies have
consistently demonstrated correlations between air pollution and various forms of cancer,
including lung cancer [6], gastrointestinal cancer [7], ovarian cancer [8], and others [9].
As a kind of well-established and extensively widespread industrial contaminant, PM2.5
possesses the capacity to deeply infiltrate the respiratory system, disturb the exchange of
gases, and infiltrate the bloodstream, consequently presenting a substantial risk in relation
to respiratory ailments, cardiovascular conditions, and mental well-being. In the year
2015, surrounding PM2.5 became the fifth leading cause of death, accounting for 4.2 million
fatalities and 103.1 million disability-adjusted life-years (DALYs). The aforementioned
statistics represented 7.6% of all deaths worldwide and 4.2% of global DALYs, with a
noteworthy majority (59%) concentrated in the eastern and southern Asian regions [10].

It is crucial to acknowledge that the emergence of numerous illnesses is an intricate
consequence arising from the interaction among various genetic factors, lifestyle choices,
and environmental elements. Previous research has indicated that genetic polymorphism
plays a vital part in investigating the effects of contaminants on different physiological
and immune functions in the human body. For instance, a study rooted in genetics has
demonstrated that women with the GPX4-rs376102 AC/CC genotype exhibit heightened
vulnerability to atmospheric pollutants, consequently increasing the likelihood of preterm
births [11]. Similarly, elderly individuals with PARP4 G-C-G and ERCC1 T-C are prone to
increased levels of fasting blood sugar when exposed to PM2.5, PM2.5–10, and PM10 [12].
Moreover, the presence of indoor PM2.5 and environmental tobacco smoke during preg-
nancy greatly increases the occurrence of lower respiratory tract infections in newborns
who possess the GSTM1 null, GSTP1-rs1695 AG/GG, or Nrf2-rs6726395 GG genotypes [13].

While several observational studies have suggested a correlation between air pol-
lution and NAFLD, it is crucial to obtain further evidence to establish a more robust
causal relationship. This requirement stems from the potential influence of confounding
factors, misclassification, and the inherent difficulties associated with reverse causality
that are prevalent in observational study designs. MR research is usually likened to a
natural randomized controlled trial (RCT), as it relies on the random assignment of genetic
variations/alleles from parents during meiosis in pregnancy. Conceptually, MR research
shares similarities with a RCT, wherein participants are randomly placed in different exper-
imental groups. This implies that there is no discernible association between individuals
possessing a specific genetic variation and exposure factors, thus rendering it a natural
random allocation. Moreover, due to the inherent stability of the human genome once
established, confounding biases that are arduous to regulate (e.g., lifestyle, economic status)
are significantly diminished, thereby yielding more dependable causal evidence. At the
pragmatic level of implementation, MR studies employ genetic variations (single nucleotide
polymorphisms, SNPs) as instrumental variables to deduce a causal relationship between
exposures and outcomes. Additionally, genome-wide association studies (GWASs) furnish
an extensive repertoire of genetic variation analysis data related to human diseases by
testing the correlation between millions of genetic variations and disease outcomes. To es-
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tablish the causal connection between air pollution and NAFLD, a two-sample MR (TSMR)
analysis was performed.

2. Materials and Methods
2.1. Study Design

The genetic variations employed in this analysis are required to adhere to the three
assumptions of Mendelian randomization (MR) [14], as presented in Figure 1. Firstly, the ge-
netic instrumental variables (IVs) related to air pollution, such as PM2.5, PM2.5 absorbance,
PM2.5–10, PM10, NO2, and NOx exposure levels, exhibit significant associations. Secondly,
the relationship between these genetic IVs and NAFLD remains unaffected by confounding
factors. Lastly, the genetic IVs solely influence the risk of NAFLD through exposure.
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Figure 1. MR assumptions and the design flow chart of this study. (A) MR assumptions: assumptions
1, 2, and 3. The solid line represents direct putative causal effects that air pollution genetic instrumen-
tal variants are reliably associated with air pollutant levels and influence the risk of NAFLD through
the exposures in assumption 1. The dotted line represents that genetic instrumental variants are not
associated with any measured or unmeasured confounders and do not influence the risk of NAFLD
through other pathways in assumptions 2 and 3, respectively. (B) The flow chart of the study design.
MR, Mendelian randomization; PM, particulate matter; NAFLD, non-alcoholic fatty liver disease;
UVMR, univariable Mendelian randomization; MVMR, multivariable Mendelian randomization.

The study design depicted in Figure 1 provides an overview of the research methodol-
ogy. The objective of this MR study was to examine the possible causal connection between
the atmospheric contaminants (PM2.5, PM2.5 absorbance, PM2.5–10, PM10, NO2, and NOx)
and NAFLD. Firstly, a derivation outcome set was obtained from the same source as the
previous observational study [15], and a univariate Mendelian randomization (UVMR)
study model was employed for discovery purposes. Subsequently, exposures with positive
UVMR results and the confounding factors identified in the aforementioned observational
study were included for multivariate Mendelian randomization (MVMR) analysis. Addi-
tionally, validation outcome sets from two distinct populations were employed to improve
the overall dependability of this research. It is important to mention that this research
followed the reporting recommendations specified in Strengthening observational studies
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using Mendelian randomization (STROBE-MR) [16]. The Supplementary Materials contain
the STROBE-MR checklist for reference.

2.2. Data Sources

The summary datasets for the air pollution GWASs in Europe were obtained from
the MRC-IEU, a unit of the Medical Research Council that has streamlined its process to
perform GWASs on the imputed genetic dataset of the entire UK Biobank population of
500,000 individuals with efficiency, effectiveness, and uniformity. Land use regression
(LUR) models were used to measure the relevant indicators for air pollution in Europe,
which include PM2.5, PM2.5 absorbance, PM2.5–10, PM10, NO2, and NOx [17]. Other datasets
could also be found in the IEU open GWAS project, including the alcohol-intake frequency
dataset. The NAFLD GWAS summary datasets were derived from three studies that
exclusively included individuals of European descent (GWAS ID: ebi-a-GCST90054782 [18],
ebi-a-GCST90091033 [19], finn-b-NAFLD [20]). Considering the distinct sources of the
queues and different sample overlap ratios of these datasets, we employed the first dataset
as the derivation dataset and the other two datasets as the validation datasets. Consisting
of 10 centers in the United States, the eMERGE Network is a substantial genetic research
establishment. With a population of around 200,000 Estonian adults, the Estonian Biobank
is an organized biobank established by the Estonian Genome Center of the University
of Tartu (EGCUT). FinnGen is an extensive research project that integrates inherent gene
data obtained from recently gathered and existing samples from 400,000 participants
in the Finnish biobank. It also incorporates digital health registers to offer innovative
understandings of the genetics of human disorders [20].

The specific information of the datasets, such as cohort sources, diagnostic codes, and
data adjustment methods, is listed in Tables 1 and S1. All documents in this undertaking
originated from the project website and were accessible to the general public. In the
respective original studies, all participants provided informed consent. Therefore, there is
no requirement for additional ethical authorization or a form of informed consent.

Table 1. GWAS data sources of this MR study.

Exposure/Outcome
Dataset Sample Size or

Case/Control NSNP Unit Population Consortium/Cohort Year
GWAS ID PMID

Exposure

PM2.5 ukb-b-10817 —— 423,796 9,851,867 SD European MRC-IEU 2018
PM2.5 absorbance ukb-b-11312 —— 423,796 9,851,867 SD European MRC-IEU 2018

PM2.5–10 ukb-b-12963 —— 423,796 9,851,867 SD European MRC-IEU 2018
PM10 ukb-b-18469 —— 423,796 9,851,867 SD European MRC-IEU 2018
NO2 ukb-b-9942 —— 456,380 9,851,867 SD European MRC-IEU 2018
NOx ukb-b-12417 —— 456,380 9,851,867 SD European MRC-IEU 2018

Alcohol intake
frequency ukb-b-5779 —— 462,346 9,851,867 SD European MRC-IEU 2018

Outcome

NAFLD ebi-a-
GCST90054782 34535985 4,761/373,227 9,097,254 Event European UK Biobank 2021

NAFLD ebi-a-
GCST90091033 34841290 8,434/770,180 6,784,388 Event European

eMERGE, UK
Biobank, FinnGen

and Estonian
Biobank

2021

NAFLD finn-b-
NAFLD —— 894/217,898 16,380,466 Event European FinnGen 2021

NSNP, number of Single Nucleotide Polymorphisms; PMID, PubMed ID; SD, standard deviation.

2.3. Selection of Instrumental Variables

To satisfy assumption 1, we implemented a selection procedure for the relevant
SNPs for exposure, utilizing a widely recognized threshold of genome-wide significance
(p < 5 × 10−8). However, only NO2 and NOx exposures yielded an adequate number of
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SNPs. Previous research has suggested a limited potential for weak instrumental variable
bias in MR analysis when employing linear regression of each genetic variant on risk
variables at a screening threshold of p < 1 × 10−5 [21]. Based on the extant literature on
MR studies related to PM2.5, we discovered that the threshold values for screening IVs
were set at p < 1 × 10−6, p < 5 × 10−6, or even p < 1 × 10−5, which exceeded the usual
range. As a result, we performed MR operations under two different threshold conditions
(p < 1 × 10−6 and p < 1 × 10−5) to acquire a sufficient quantity of SNPs. The independence
of SNPs was verified by implementing rigorous inclusion criteria (r2 ≤ 0.001; clumping
window, 10,000 kb) without a proxy SNP in linkage disequilibrium. A harmonization
procedure was undertaken to ascertain positive strand alleles and employ allele frequencies
for palindromes as a means of quality control by R software.

To fulfill assumption 2, we used the PhenoScanner (http://www.phenoscanner.m
edschl.cam.ac.uk/) and GWASCatalog (https://www.ebi.ac.uk/gwas/) tools (accessed
on 25 December 2023) to determine if there was a significant correlation between IVs and
the risk factors associated with NAFLD, including smoking, alcohol, BMI, T2DM, blood
pressure, education, and other factors that had been confirmed to have a causal relationship
with NAFLD in MR analyses published so far. For detailed information, please refer to
Table S3. When one SNP was mixed with multiple variables, only the variable with the
lowest p-value or the strongest level of clinical evidence was listed in the table.

To meet assumption 3, we used the above tools and conducted MR Steiger filtering to
monitor the direction of causation [22] and calculated the proportions of variance explained
by exposures (R2) relying on prior investigations. In addition, the F-statistic (F = β2/SE2)
for each SNP listed in Table S2 was calculated to present the strength of IVs, and a value
greater than 10 was deemed satisfactory, indicating poor chances of weak instrumental
bias [23].

2.4. Mendelian Randomization Analysis

The primary approach used for evaluating the causal relationship was the inverse
variance weighted (IVW) method, which employed an odds ratio (OR) as the effect value.
In MR analysis, IVW employs a single genetic IV to estimate the causal effect using the Wald
ratio. After that, several evaluations are meta-analyzed using a fixed-effect model, ensuring
a reliable estimation of causality without directed pleiotropy. This approach is commonly
employed and referenced in studies [21,24]. To improve accuracy and stability, we enhanced
our verification by incorporating the MR-Egger regression, weighted median, weighted
mode, simple mode, and MR Robust Adjusted Profile Score (MR-RAPS). By utilizing MR-
RAPS, it becomes possible to incorporate numerous weak instruments that fall below the
typical GWAS threshold, thereby enhancing the dependability of Cochran’s Q-statistic in
detecting heterogeneity caused by pleiotropy. This is especially beneficial in reducing the
false positive (or type I error) rate. Online calculations were performed to estimate the bias
and type I error rate of MR with sample overlap (https://sb452.shinyapps.io/overlap/,
accessed on 31 December 2023). Post hoc power calculations [25] for IVW-MR estimates
were produced using an online MR power calculation tool (https://sb452.shinyapps.io/p
ower/, accessed on 31 December 2023). Moreover, to mitigate the influence of variables
that may distort the results in UVMR, MVMR was utilized to assess the relationship among
exposures, confounding factors, and outcomes.

2.5. Sensitivity Analysis

Sensitivity analyses encompassed three components and were executed using several
methods. Initially, we assessed the heterogeneity by employing Cochran’s Q test for the
IVW approach, and a p-value less than 0.05 indicated the presence of heterogeneity among
the chosen IVs [21,26]. In addition, we assessed horizontal pleiotropy by employing MR-
Egger regression and MR-pleiotropy residual sum and outlier (MR-PRESSO) [27] to ensure
compliance with assumptions 2 or 3. The MR-Egger regression model enables the estimation
of corrected pleiotropic effects in a causal manner, assessing the null causality assumption

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.ebi.ac.uk/gwas/
https://sb452.shinyapps.io/overlap/
https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
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based on the InSIDE (instrument strength independent of direct effect) assumption. When
the p-value of the MR-Egger intercept was less than 0.05, we deemed the impact of SNPs
linked to exposure factors on outcomes to be untrustworthy. The MR-PRESSO algorithm
allows for a systematic evaluation of the impact of pleiotropy and identifies exceptional
SNPs, while also offering a causal estimation by eliminating associated outliers. Thirdly,
we employed the leave-one-out permutation test [28] to test if our findings were impacted
by a specific SNP in order to eliminate chance errors from the selection of IVs. If the
results of the MR study were significantly altered by excluding a single SNP, it suggests
that this particular SNP might have a direct association with the results, thereby violating
assumption 3.

If heterogeneity was detected without pleiotropy, the weight median method or the
multiplicative random-effects inverse variance weighting (mre-IVW) method was chosen
for analysis. If there was identification of horizontal pleiotropy but no heterogeneity, the
MR-Egger method was chosen. While the MR-Egger method is recognized for its resilience
against pleiotropy, it is also influenced by diminished statistical accuracy and increased
likelihood of Type I error in practical applications [29]. Therefore, if the IVW approach
yielded a significant outcome without any detected pleiotropy or heterogeneity, while the
outcomes of alternative methods were not significant but exhibited beta values in the same
direction, it could be considered a favorable outcome. Additionally, to provide further
clarification, scatter plots, forest plots, and funnel plots were generated.

2.6. Statistical Analysis

R software (version 4.3.0) was utilized for all analyses, employing the packages
“TwoSampleMR” (version 0.5.7), “MRPRESSO,” and “MR.RAPS”. The level of statisti-
cal significance for evidence was established at p < 0.05. It is important to acknowledge
that no correction methods for multiple testing were employed. After taking into account
the possible constraints of implementing corrections, such as the Bonferroni correction, this
choice was made, as it may severely limit the detection of causal relationships. Multiple
test corrections are not always applicable, particularly in exploratory studies [30]. Due
to the investigative character of our study, which sought to reveal fresh associations and
impacts, the application of various test adjustment techniques was considered unsuitable
for accomplishing our goals.

3. Results
3.1. UVMR Results in the Derivation Dataset

In the UVMR analysis of the derivation set, the screening threshold was set at
p < 1×10−6 (as indicated in Table 2), and SNPs associated with confounding factors
or NAFLD were excluded. The genetic prediction indicated that PM2.5 was linked to
a higher risk of NAFLD (OR = 4.83, 95% CI = [1.03–22.65], Pweighted median = 0.046),
with heterogeneity observed and no evidence of pleiotropy. Based on the leave-one-out
plot illustrated in Figure 2, it was observed that rs1318845 stood out as an anomalous
SNP. After removing it, the UVMR calculation was performed again. Currently, the IVW
approach yielded a positive outcome (OR = 4.26, 95% CI = [1.24–14.64], PIVW = 0.021), with
the absence of heterogeneity or pleiotropy. Figure 2 displays the scatter plots, funnel plots,
and leave-one-out plots.

In the analysis of the derivation set using the UVMR set at p < 1 × 10−5 (shown
in Table 3 and Figure 3), it was observed that PM2.5 and NO2 had a connection with
NAFLD (OR = 1.99, 95% CI = [1.22–3.22], PIVW = 0.005; OR = 2.08, 95% CI = [1.27–3.40],
PIVW-mre = 0.004, respectively).

Moreover, there was no observed association between NAFLD and PM2.5 absorbance,
which served as a substitute for carbonaceous elements in PM2.5. Table S4 showed that,
when using the IVW, weighted median, MR-Egger, simple mode, weighted mode, and
MR-RAPS methods, there was no indication of a causal connection between NAFLD
and other air pollutants (IVW method, PM2.5 absorbance: p = 0.503; PM2.5–10: p = 0.813;
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PM10: p = 0.124; IVW-mre method, NOx: p = 0.159). Table S4 displays the outcomes of the
prejudice and type I error rates in MR with sample overlap, along with post hoc power
calculations. Steiger-MR found that the SNPs accounted for a greater amount of variability
in exposure compared to the outcome.
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Table 2. MR analytical results of air pollution on NAFLD in the derivation dataset at level
p < 1 × 10−6.

Exposure Method OR (95% CI) p NSNP
F Statistic
Median

(Min, Max)

p (Cochran’s
Q Hetero-

geneity Test)

p (MR-Egger
Intercept

Test)

p (MR-
PRESSO

Global Test)

PM2.5

IVW 2.88 (0.73–11.33) 0.129

13
26.0

(24.1, 30.1) 0.027 0.504 0.030
MR Egger 9.33 (0.25–347.19) 0.251

Weighted median 4.83 (1.03–22.65) 0.046
IVW-mre 2.88 (0.73–11.33) 0.129
MR-RAPS 3.11 (1.12–8.60) 0.029

PM2.5
(Outlier-

corrected)

IVW 4.26 (1.24–14.64) 0.021

12
25.9

(24.1, 30.1) 0.147 0.783 0.173
MR Egger 6.53 (0.26–163.21) 0.280

Weighted median 5.59 (1.27–24.63) 0.023
IVW-mre 4.26 (1.24–14.64) 0.021
MR-RAPS 4.59 (1.56–13.44) 0.006

Note: NSNP, number of Single Nucleotide Polymorphisms.

Table 3. MR analytical results of air pollution on NAFLD in the derivation dataset at level
p < 1 × 10−5.

Exposure Method OR (95% CI) p NSNP
F Statistic
Median

(Min, Max)

p (Cochran’s
Q Hetero-

geneity Test)

p (MR-Egger
Intercept

Test)

p (MR-
PRESSO

Global Test)

PM2.5

IVW 1.99 (1.22–3.22) 0.005

72
21.1

(19.6, 30.1) 0.321 0.317 0.313
MR Egger 1.08 (0.30–3.88) 0.908

Weighted median 1.94 (0.98–3.80) 0.055
IVW-mre 1.99 (1.22–3.22) 0.005
MR-RAPS 2.06 (1.26–3.35) 0.004

NO2

IVW 2.08 (1.27–3.40) 0.004

89
22.1

(19.5, 37.8) 0.028 0.099 0.031
MR Egger 5.63 (1.58–20.07) 0.009

Weighted median 1.76 (0.92–3.36) 0.085
IVW-mre 2.08 (1.27–3.40) 0.004
MR-RAPS 2.17 (1.39–3.40) 0.001

Note: NSNP, number of Single Nucleotide Polymorphisms.

3.2. MVMR Results in the Derivation Dataset

To account for the influence caused by the interaction of PM2.5 and NO2, we con-
ducted an MVMR analysis simultaneously considering PM2.5 and NO2 as exposures. As
a result, the causal effects of PM2.5 and NO2 on NAFLD were absent after conducting
MVMR analysis (OR = 1.42, 95% CI: 0.24–8.57, p = 0.701; OR = 1.49, 95% CI: 0.24–9.33,
p = 0.668; respectively). At the same time, we accounted for the frequency of alcohol
intake as a modifying factor for the relationship between air pollution and NAFLD risk.
Subsequently, the MVMR analysis depicted in Figure 4 revealed that the connections be-
tween PM2.5 and NO2 with NAFLD (OR = 1.76, 95% CI = [0.98–3.14], p = 0.057; OR = 1.54,
95% CI = [0.84–2.80], p = 0.159, respectively) contradicted the estimates obtained from the
UVMR analysis.

3.3. UVMR Results in the Validation Datasets

For further validation, we used two outcome datasets with different sample overlap
ratios to perform UVMR. In the UVMR analysis of validation sets at p < 1 × 10−5, we found
no causal relationship between PM2.5, NO2, and NAFLD using all MR methods (shown in
Table S4). Steiger-MR found that the SNPs accounted for a greater amount of variability in
exposure compared to the outcome.
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Figure 3. Scatter plots for visualizing the causal effects of air pollution on NAFLD in the derivation
dataset at level p < 1 × 10−5. (A–F) Scatter plots for the exposure of PM2.5, PM2.5 absorbance,
PM2.5−10, PM10, nitrogen dioxide, and nitrogen oxides, respectively. Each black point representing
each SNP effect on the exposure (horizontal-axis) and outcome (vertical-axis) is plotted with error
bars corresponding to standard error. The slope of each line corresponds to the combined estimate
using different methods: inverse variance weighted (light blue line), MR-Egger (blue line), simple
mode (light green line), weighted median (green line), and weighted mode (pink line).
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4. Discussion

Epidemiological studies on air pollution and NAFLD have been conducted around
the world. Research from Asia presented consistent results. In two separate studies,
which included 23,170 and 90,086 Chinese individuals, it was discovered that different
air pollutants were linked to advanced liver fibrosis (ALF) in patients with metabolic-
associated fatty liver disease (MAFLD) and increased odds of MAFLD itself. Notably,
PM2.5 emerged as the primary factor in these associations [31,32]. A study conducted
in Taiwan involving around 35,000 Chinese Taiwanese individuals revealed that being
exposed to PM2.5 was linked to a higher chance of developing NAFLD [33]. Additionally,
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a separate study with 351,852 participants discovered that prolonged exposure to PM2.5
might lead to higher levels of liver enzymes, particularly alanine aminotransferase (ALT)
and γ-glutamyl transferase (γ-GT) [34]. Liver enzyme increases were also found to be
linked to exposure to PM10 and CO in Korea [35]. Research from western countries pre-
sented contradictory results. According to research involving 2513 individuals from the
Framingham (Massachusetts) Offspring Study and Third Generation Cohort, residing in
proximity to main highways, instead of PM2.5, was found to have a probable connection
with liver fat [36]. Conversely, a study conducted in Germany involving 4814 inhabi-
tants indicated a positive correlation between prolonged exposure to air pollution and
NAFLD. The study found that the most reliable connections were observed between PM2.5
and NAFLD. However, it did not establish a consistent link between air pollution expo-
sure and an increased likelihood of advanced fibrosis [37]. Similarly, research involving
456,687 individuals residing in the United Kingdom discovered that the presence of PM2.5,
PM2.5–10, PM10, NO2, and NOx in the environment contributed to the additional hazard of
NAFLD linked to air pollution scores. Furthermore, the impact of alcohol consumption
acted as a modifying factor in the connection between these factors, as revealed by sub-
group analysis. After adjusting for alcohol consumption and other covariates in the past
10 years, the majority of associations remained [15]. The derivation set of our study used
the same sample source as the observational study and obtained similar results during the
UVMR process. However, after adjusting for alcohol intake frequency as a confounding
factor through MVMR, the previously discovered association disappeared. One possible
reason was that the exposure sets and derivation outcome set used in this study were
both from the UKB, so the results were affected by confounding factors during the UVMR
process, which often occurred in single-sample Mendelian studies. Although we used
parameter estimates to evaluate possible biases caused by sample overlap, and the results
showed no unacceptable biases or inflated Type I error rates (Table S4), combining the
MVMR results of the derivation set and the UVMR results of the validation sets, we still
considered that the results in the derivation queue were false positive. In other words,
the available data failed to substantiate the hypothesis of a causal association between air
pollutants and NAFLD within the European population. Perhaps this was also the reason
why PM2.5 absorbance, representing the composition of carbon elements, was not found to
have a causal relationship with NAFLD in this study.

However, even so, we cannot completely deny the potential impact of air pollutants on
NAFLD. One possible inference is that there exists a threshold effect, which has sparked dis-
cussion in the field of cardiovascular disease [38]. The PM2.5 level in the UKB datasets was
9.99 ± 1.06 µg/m3 (Table S1), with 50% falling below 10 µg/m3 and 90% below 12 µg/m3,
which are limits established by the European Union and the United States Environmental
Protection Agency, respectively. The baseline level of air pollutant concentrations might
influence the analysis results, so regional differences may lead to different results.

The significant results in animal models may also be due to this reason. Researchers
found obvious changes in liver morphology and function in mice after short-term exposure
to large amounts of inhalable pollutants, with doses far exceeding those that humans could
come into contact with in their daily lives. For a period of 30 days, Leah J. Schneider et al.
subjected three-month-old male C57Bl/6 mice to either a low-fat or high-fat (HF) diet
and exposed them to either filtered air (FA) or MVE (30 µg/m3 gasoline engine emissions
+ 70 µg/m3 diesel engine emissions) for 6 h per day. Histology findings showed that
MVE exposure alone resulted in mild microvesicular steatosis and hepatocyte hypertrophy,
compared to FA controls. Additionally, the mixed effect of HF diet and MVE exposure led
to increased lipid accumulation, inflammatory infiltrates, and hepatocyte hypertrophy [39].
Hui-Hui Tan et al. exposed mice to PM2.5 at an average level of 85 µg/m3 for 6 weeks; it
was discovered that exposure to PM significantly enhanced the secretion of IL-6 by isolated
wild-type Kupffer cells. The increase in IL-6 secretion was up to seven times higher and
showed a dependence on the dosage, whereas TLR4−/− Kupffer cells did not exhibit the
same response. The progression of NAFLD is significantly influenced by the activation of
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TLR in Kupffer cells, which are macrophages residing in the liver, leading to the production
of pro-inflammatory cytokines. Dongxiao Ding et al. verified that a 3-day exposure to
liposoluble extracts of PM2.5 at a concentration of 25 µg/cm2 caused the accumulation of
lipids in HepG2 cells. This accumulation was linked to a reduction in the expression of
miR-26a and a subsequent increase in the levels of fatty acid translocase (FAT, or CD36),
whose increase resulted in enhanced uptake of free fatty acids (FFAs) [40].

At present, the disease progression of NAFLD from simple steatosis is elucidated
by the “two-hit” theory. The “first hit” involves reversible and simple fat accumulation
(fatty liver or steatosis). Excessive buildup of triglycerides (TG) in liver cells occurs due to
heightened absorption of lipids and the synthesis of new lipids, inadequate breakdown
of fatty acids oxidation (FAO), and diminished release of lipids [41]. The “second hit”
encompasses various damages and conditions, such as inflammatory cytokines, oxidative
stress, and toxins, promoting the advancement of NAFLD to non-alcoholic steatohepatitis
(NASH), fibrosis, and hepatocellular carcinoma [42]. For example, augmented lipid content
and impaired FAO facilitate the generation of reactive oxygen species and lipophilic lipid
intermediates in hepatic cells, promoting oxidative stress and endoplasmic reticulum
stress. Chronic oxidative stress initiates an inflammatory reaction, primarily through
the activation of the JNK and NF-κB signaling pathways. This results in an increased
production of pro-inflammatory proteins (i.e., IL-6 and TNF-α) transmitted by liver cells
and non-parenchymal cells [43]. The continuous stimulation of pro-inflammatory reactions
sustains a persistent state of inflammation, leading to the enlistment of additional immune
cells and the initiation of cellular apoptosis and other mechanisms of cell demise. Cell
damage and apoptosis can be promoted by non-triglyceride lipid substances, including
long-chain fatty acids, and their products, such as ceramides and diacylglycerols, leading to
the harmful effects of lipid accumulation in liver cells known as lipotoxicity [44]. Extended
exposure to PM2.5 resulted in elevated insulin resistance, impaired glucose tolerance,
peripheral inflammation, and dysarteriotony in mice induced by PM2.5. Moreover, the
hepatic function and lipid accumulation in the liver were significantly influenced by the
inflammation response and oxidative stress, as indicated by previous research [45]. This
phenomenon can be described as a “second hit” for NAFLD. Other air pollutants have also
been tested in animal models. Female mice exposed to NO2 experienced elevated levels of
hepatic enzymes in their serum, resulting in liver dysfunction. However, this effect was not
observed in male mice. Furthermore, NO2 disrupted the process of glucose metabolism
by decreasing the synthesis of hepatic glycogen and increasing the production of glucose,
while also promoting lipid deposition through increased lipogenesis and uptake. As a
result, it led to elevated levels of lipid oxidation and secretion [46].

Over the last three years, there has been widespread utilization of Mendelian ran-
domization to establish a causal relationship between the two diseases. Recently, there has
been a growing application of this method to investigate the link between pollutants and
diseases. Liu C.X. et al. discovered casual links between PM2.5 and high blood pressure,
T2D, and obesity [47]. Similarly, Li W.J. et al. identified positive associations between
NOx exposure and squamous cell lung cancer as well as esophageal cancer; between NO2
exposure and endometrial cancer as well as ovarian cancer; between PM2.5 exposure and
ER+ breast cancer as well as ER- breast cancer; between PMcourse exposure and glioma; and
between PM10 exposure and mesothelioma as well as esophageal cancer [48]. Ning P.P.
et al. found that PM10 was associated with an increased risk of Alzheimer’s disease [49].
Qiu S.Z. et al. found that, while the link between PM2.5 levels and lifespan was not sta-
tistically significant, PM2.5 exposure indirectly impacts lifespan through factors such as
diastolic blood pressure (DBP), high blood pressure, angina pectoris, high cholesterol, and
Alzheimer’s disease [50].

Our MR study has several advantages. Although there have been clinical cohort stud-
ies focused on air pollutants and NAFLD in various regions, as well as animal studies using
different modeling methods, this is the first study to explore the influence of air pollutants
on NAFLD using human GWAS data. Based on previously published authoritative epi-
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demiological studies, the derivation set and validation sets were selected within the same
race with different sample overlap rates, making the results comparable. Moreover, we
used different MR methods and threshold conditions in the derivation set for discovery. At
the same time, MVMR was used in the derivation set and UVMR was used in the validation
sets for checking, which deepened the credibility of the results.

This study is subject to certain limitations. Recently, some researchers have questioned
the use of MR to explore the relationship between air pollution and other diseases. The
estimation of air pollutants was typically conducted by utilizing an individual’s residential
address. Au Yeung believes that the use of MR is inappropriate because any genetic associ-
ations with air pollutants could easily be a reflection of hidden confounding, rendering the
positive findings uninterpretable in relation to the research questions originally posed [51].
The application of MR in this article may also face such doubts, but it is still meaningful
due to different study designs and assumption directions. Different from traditional MR,
which attaches importance to evaluating the biological plausibility of genetics, MR in this
article is only used as a mathematical statistical inference method, compared with tradi-
tional regression analysis methods used in epidemiology using the same exposure dataset.
Presently, the prevailing techniques for sampling environmental air pollution rely on fixed-
location and time-sampling methods, with the UKB serving as the most extensively utilized
and expansive database in traditional epidemiological research. There may be varying
degrees of confusion bias due to exposure and outcome datasets coming from the same
source, so this article used two different outcome datasets as validation sets to reduce the
interference of confounding factors. Meanwhile, when traditional epidemiology corrects
confounding factors, the results may also be disrupted due to incomplete correction, so this
article applied MVMR with confounding factor data from the same source as an exposure
dataset for adjustment and obtained different results from the traditional epidemiology.
Different statistical inference methods were used for the same dataset, resulting in different
results and opposite conclusions, which made the finding valuable despite the use of
MR potentially violating the assumption of biocompatibility to some extent. In addition,
the MR analysis was conducted solely on individuals with European heritage, and this
association might vary in individuals of different ancestries such as a South-East Asian
population exposed to different levels of outdoor and indoor air pollution and with differ-
ent distributions of confounders. Additionally, the data sets employed in our research had
constraints regarding the air pollutant constituents. For instance, the absence of explicit
PM2.5 component data in the summarized data hindered our ability to carry out additional
subgroup analyses. Therefore, more research is still needed to determine whether different
air pollutants can increase the risk of NAFLD and how.

5. Conclusions

In conclusion, this MR study provides genetic evidence for a null causal relationship
between air pollution and NAFLD in the European population. Perhaps confounding
elements have played an undeniable role in epidemiological studies that have found
atmospheric pollutants were positively bound up with NAFLD. More human data and
animal experiments are warranted to enhance our understanding in this area.
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factors for NAFLD or NAFLD directly at genome-wide significance level (p < 1 × 10−5); Table S4: MR
analytical results of air pollution on NAFLD at different significance levels; STROBE-MR checklist.
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