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Abstract: Widespread contamination of the Amazon basin with mercury has been reported to
occur since at least the mid-80s due to heavy gold mining activity. Although initial studies have
indicated that this may lead to deleterious neurological consequences to the indigenous populations
living in the region, further research is needed to better characterize the neurological burden of
such long-term exposure. With this aim, a cross-sectional exploratory study has been conducted
with the Yanomami indigenous population residing in a northern Amazon region. All participants
underwent a structured interview; detailed neurological examination, including assessment for
cognitive, motor, coordination, and sensory functions; and laboratorial testing for serum hemoglobin,
blood glucose, and methylmercury levels in hair samples. This study enrolled 154 individuals of
30.9 ± 16.8 years of age, of which 56.1% were female. Mean methylmercury levels in hair were
3.9 ± 1.7 µg/g. Methylmercury levels in hair > 6.0 µg/g were found in 10.3%. Among participants
with hair methylmercury levels ≥ 6.0 µg/g, the prevalences of peripheral neuropathy and reduced
cognitive performance were, respectively, 78.8% (95%CI 15–177%, p = 0.010) and 95.9% (95%CI
16–230.8%, p = 0.012) higher than those of individuals with lower levels. These results suggest
that chronic mercury exposure may lead to significant and potentially irreversible neurotoxicity to
Yanomami population living in the northern Amazon basin.

Keywords: mercury poisoning; neurotoxicity syndromes; indigenous peoples; cognitive dysfunction;
methylmercury compounds; polyneuropathy; environmental health

1. Introduction

Neurotoxicity due to methylmercury (MeHg), an organo–mercurial compound, was
classically described in Minamata and Niigata disasters, more than 50 years ago [1]. A mas-
sive poisoning of these Japanese communities took place due to human ingestion of fish
contaminated with high levels of MeHg. A wide range of serious, life-threatening, and
incapacitating neurological symptoms and signs were described and named as Minamata
disease. Paresthesia and other somatosensory deficits, ataxia, movement disorders such
as dystonia and parkinsonism, dysarthria, visual field alterations, and hearing problems
happened in a scenario that lasted for decades, and affected several generations [2,3].
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Following this episode, in the early 1970s, an acute exposure to high levels of MeHg in
Iraq led to the intoxication of thousands of adults and children, and hundreds of deaths in
a short period of time [4,5]. By then, improvements of the atomic absorption spectrometry
technique for analyzing mercury in human tissue (e.g., hair and blood) allowed for more
precise quantification of exposure to this substance. The range of MeHg levels necessary to
bring about signs of toxicity could be better understood [6], and a World Health Organiza-
tion (WHO) consensus established that the neurological effects related to MeHg poisoning
could be found in 5% of adult individuals who ingest 3 to 7 µg/kg/day, which corresponds
to levels of 200 µg/L in blood and 50 µg/g in hair samples [1].

Meanwhile, in the Amazon region of South America, decades of non-regulated and
undeterred gold mining activity have launched significant quantities of metallic mercury
into the rivers, leading to the progressive bioaccumulation of this substance in the food
chain [7]. Part of the metallic mercury dumped into rivers is converted into mercuric
ions when it encounters other ions dissolved in the water. The mercury ionic forms
adhere to particles suspended in water that tend to move to the bottom of rivers and
accumulate in sediments. In the sediment, methanogenic bacteria living in anoxic areas
absorb these ions and transform them into MeHg. Due to its lipophilic characteristics,
MeHg is quickly absorbed by the microscopic organisms that make up the aquatic biota
(e.g., phytoplankton, zooplankton). Such microscopic organisms serve as food for larger
ones (e.g., fish larvae), which in turn are consumed by small fishes. In this process,
methylmercury is bioaccumulated in aquatic life forms and transferred throughout trophic
levels (i.e., biomagnified) until it reaches organisms at the top of the trophic chain (for
example, carnivorous fish) [8,9].

In addition to gold mining, the construction of dams, deforestation, and fires have also
altered the local mercury cycle, contributing to this process [10–14]. Notably, since the mid-
90s, samples from various fish species have been demonstrated to contain Hg concentrations
above 1.0 mg/kg [15]. Once fish is the main protein source of many indigenous populations
in the Amazon, they became contaminated with this substance. However, differently from
the abovementioned episodes in Japan and Iraq, this exposure occurred at much lower
levels and for a longer period of time [16–19]. Despite the increasing expansion of gold
mining in the Amazonian indigenous lands (IL), few studies have aimed at investigating
the exposure of indigenous people to Hg and its health impacts. Covering this topic in
the Yanomami indigenous land, there are only three previous studies [9,20,21]. All these
studies revealed that the average Hg levels, assessed by biological exposure markers, were
above the limits recommended by several international health agencies (e.g., FAO/WHO,
U.S.EPA, NRC, Health Canada), as a result of the artisanal gold mining as the main
exposure source [22–24]. Furthermore, a recent study published by Vasconcellos et al.
(2022) reinforces these findings, once it pointed to high Hg concentrations in fish collected
from rivers that cross the Yanomami Indigenous Land, in the state of Roraima, Brazil [25].
Fish such as Filhote/Piraíba, Piracatinga, Pirandirá, and Barba-chata, which are much
appreciated by residents of this region, had total Hg levels above 1.0 µg/g and therefore
pose a high health risk [25].

Moreover, initial research carried out in this region indicated that, even at lower
levels, MeHg may prove to have significant neurotoxic consequences to these indigenous
populations. Psycho–behavioral changes, cognitive deterioration, somatosensory, and color
vision abnormalities have been described and associated with MeHg levels measured in
the exposed population [26]. These symptoms fall in line with the classic descriptions
of massive MeHg intoxication, as seen in Minamata disease [27]. However, these initial
studies are limited by relatively small samples, methodological issues, and most were
concentrated in the Tapajos river area, a small region within the south part of the Amazon
basin [15].

The Yanomami IL located in the northern Brazilian Amazon has harbored significant
gold-mining activities in the past decades, and therefore has possibly been subjected to
significant MeHg environmental poisoning. However, the severity and neurological conse-
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quences of the long-term exposure to this substance for the local indigenous population
are yet to be investigated. Therefore, an exploratory observational study was undertaken,
aimed at characterizing the extension of MeHg exposure and its possible neurological
burden to these traditional communities.

2. Materials and Methods
2.1. Study Design

This was a cross-sectional study aimed at evaluating the neurological consequences of
long-term MeHg exposure among the Yanomami indigenous population of the Brazilian
Amazon. It is part of a larger multidisciplinary and inter-institutional effort, led by the
Oswaldo Cruz Foundation, aimed at assessing the characteristics, severity, and conse-
quences of MeHg contamination due to local gold mining activity in the Brazilian IL of the
Amazon rainforest [7,27]. Data collection took place in the Northwest region of Roraima
state, Brazil, during October 2022. The research protocol was reviewed and approved by
the Institutional Review Board (#6.148.688), and all subjects provided written informed
consent before enrolment.

2.2. Sample Population and Research Site

A census was performed among the indigenous Yanomami population of the upper
Mucajaí river, in the Northwest region of the Brazilian Amazon. All individuals aged
≥ 12 years old were invited to participate; therefore, probabilistic sampling methods were
not employed. This population amounted to a total of 358 registered subjects, living within
nine separate villages across this region. The data collection site for this research was
centered in Lasasi, one of these villages. All interviews and instructions were conducted
in Brazilian Portuguese, and translation to the Yanomami language was offered by a local
guide or health agents when necessary.

2.3. Clinical Evaluation and General Physical Examination

All participants underwent a structured interview that obtained data about general
socio-demographic features and medical history. Following that, their weight and height
were measured with an electronic scale and a vertical anthropometer, respectively [27].
Blood pressure was assessed with an automatic pulse blood pressure monitor Omron
Model Hem-631INT (Omron Healthcare INC, Lake Forest, IL, USA), with the subject in the
sitting position with both feet flat on the floor and the left forearm resting on the anterior
part of the chest. Blood pressure was measured twice, and the mean systolic (SBP) and
diastolic (DBP) were recorded [27].

2.4. Neurological Examinations

A neurological examination was performed according to a standardized protocol,
by three previously trained neurologists (BDP, BHR, and RAAO), working as a team.
Disagreements were resolved by discussion until consensus was reached. The examination
protocol included testing for cognitive, motor, coordination, and sensory functions.

2.4.1. Cognitive Evaluation

The Brief Cognitive Screening Battery (BCSB) [28] and semantic verbal fluency test
(S-VFT) in the animal category [29] were used for overall cognitive assessment. Both these
instruments have been previously validated for the Brazilian population [30,31], and were
considered appropriate for assessing populations with a low level of formal education and
the time restraints of this research.

The BCSB is an instrument developed by the Department of Neurology of the Uni-
versity of Sao Paulo, Brazil [30]. It consists of naming and learning 10 simple images of
well-known objects, presented in a single picture, recalling them after a 5-min interval,
and then identifying them among a set of other images. As per the recommended test
protocol, during the 5-min interval the VFT was applied [30]. This instrument evaluates
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the following cognitive functions: (i) visual perception and naming, (ii) short-term episodic
memory and learning; (iii) operational memory and executive functions. An abnormal
result was considered as the inability to recall ≥ 6 images after the 5-min interval [30].

The S-VFT in the Animal category requires the participant to name as many animals
as possible within 1 min. This screening cognitive test assesses mainly language, semantic
memory, and executive functions. The individuals received the following instructions: “you
must say the animal names you remember, as quickly as possible. Any animal will do, four-legged,
fish, birds, the more you say, the better”. According to previously published work with the
Brazilian population, the cutoff for S-VFT was ≥9 [31,32].

2.4.2. Motor Function and Coordination

Muscular strength was evaluated in the proximal and distal segments of all four limbs,
and was classified according to the Medical Research Council Scale [33]. A score ≤ 4 in
any segment was considered as abnormal. Muscle rigidity was examined through passive
mobilization of the limbs; and bradykinesia (slowed movement) through finger tapping
maneuvers, facial expression assessment, and general spontaneous mobilization. Coordina-
tion was evaluated with finger-to-nose, heel-to-knee, and diadochokinesis (ability to make
alternating quick movements) tests. The deep osteotendinous ankle reflex was tested with
the Babinski hammer bilaterally. Toe amyotrophy was investigated through inspection.

2.4.3. Balance and Gait Evaluation

For static balance assessment, subjects were instructed to stand with their feet as close
as possible and remain still for 1 minute. Then, they were told to close their eyes while
remaining standing (i.e., Romberg test). In case significant oscillations or falls occurred,
or the subject needed support to remain standing (e.g., cane), balance was considered
abnormal. Following this, the subjects were instructed to walk in a straight line for 6 m,
turn around, and walk back the same distance, and their gait was inspected.

2.4.4. Sensory Testing

Our somatosensory system has three basic types of sensory receptors that detect
different types of external stimuli [34]. These include mechanoreceptors that detect light
touch, vibration, pressure, and texture; nociceptors that detect pain; and thermoreceptors
that detect temperature [34]. To evaluate these somatosensory modalities, the following
instruments were used:

1. Sharp nickel-plated pin (Bacchi® number 29): metal pin, commonly used in sewing,
but which can be used for physical neurological examination and assessment of
pin-prick pain sensitivity.

2. Von Frey 10 g monofilament: also known as an esthesiometer, its function is to measure
the tactile sensitivity of the skin. It is a nylon monofilament that bends when it is
applied with certain force to the skin, so that it always applies the same force to the
skin regardless of the examiner.

3. Dry cotton wad: to determinate the dynamic tactile sensitivity (i.e., sensitivity to
brushing touch).

4. 128 Hz tuning fork: An instrument used for tuning musical instruments due to its
ability to vibrate at a specific frequency. In neurological examination, this instrument
can be used at low frequencies to evaluate vibratory sensitivity. Furthermore, as it is a
metallic object and has a cold temperature, it can also be employed to assess thermal
sensitivity to cold during physical examinations.

The sensitivity in all these modalities was tested with the instruments above in a
comparative manner between the upper and lower limbs, comparing one side with the
other, as well as comparing proximal and distal levels. The sharp nickel-plated pin, von
Frey monofilament, dry cotton wad, and 128 Hz tuning fork were used on intact healthy
skin of the feet, thighs, hands, and shoulders, assessing pain, tactile, and thermal sensitivity,
respectively. Additionally, deep vibratory sensitivity was evaluated using the vibrating
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128 Hz tuning fork, applied to the bony prominences of the phalanges of the fingers and
toes. The sensitivity was classified as abnormal if altered in at least one parameter, when
compared with the contralateral side or the other assessed region of the body segment
(i.e., distal or proximal). These techniques for sensory evaluation have been previously
described and are widely used for bedside neurological examination [35,36].

2.4.5. Cranial Nerve Examination

The following parameters were evaluated: visual campimetry by confrontation, pupil
reflex and external ocular motricity, facial motricity and symmetry, facial sensibility, palate
elevation, gag reflex, and tongue motricity.

2.4.6. Peripheral Neuropathy Diagnosis

Peripheral neuropathy was diagnosed according to the current criteria from the Ameri-
can Academy of Neurology, for epidemiological research [37]. Therefore, this diagnosis was
established in case of: report of neuropathic symptoms in the distal regions of the limbs; in
addition to decreased or absent ankle reflex, decreased distal sensation at examination, or
distal muscle weakness or atrophy [37].

2.5. Blood Testing

Serum hemoglobin was measured with the HemoCue® device (HemoCue®, model
HB 301-System, Angelholm, Sweden) without the need to collect and store venous blood
samples. Hemoglobin levels were considered abnormal if ≤14 g/dL for men; ≤12 g/dL
for women in general; and ≤11 g/dL for pregnant women [38]. To collect whole blood,
the fourth digit was punctured with a lancet until a single drop of blood was obtained
(approximately 50 microliters). This blood sample was delicately transferred through
capillarity to a glass microcuvette specific for the HemoCue® device. When the microcu-
vette was filled with blood, it was inserted into the equipment for reading. This device
is factory-calibrated according to the reference method of the International Council for
Standardization in Hematology [39].

Blood glucose levels were measured with the Accu-Chek Active® blood glucose
monitor (Roche, Indianapolis, IN, USA) during the clinical assessments, without established
time interval since the last meal or fasting requirement. This device was used according
to the manufacturer’s specifications and had a measurement range of 10 to 600 mg/dL.
The glucose measurements were performed with whole blood, collected from the tip of the
fourth digit with a specific needle, and subsequently transferred to the analysis device.

2.6. MeHg Exposure Assessment

According to the guidance published by the World Health Organization [40], and
described by other authors [41,42], hair samples are considered the best biomarker of
MeHg human exposure, because almost all Hg detected in this biological matrix is in the
MeHg form. In addition, because the main MeHg exposure route observed in the studied
population is the consumption of MeHg-contaminated fish, and almost all Hg present in the
fish muscle is in the MeHg form, hair samples were used as its exposure biomarker [43–45].
Therefore, we assumed that all Hg present in hair samples was MeHg.

The hair samples were collected from the occipital region, with the aid of stainless- steel
dissection scissors. The samples were stored in individually identified paper envelopes
and sent for total mercury concentration (THg) analysis in the Toxicology Laboratory,
Environmental Section of the Instituto Evandro Chagas (IEC), in Ananindeua municipality,
in Pará State, Brazil.

In the laboratory, before starting the analyses, hair samples were repeatedly washed
with a neutral detergent (diluted 100-fold) (Extran detergent, Merck KGaA, Darmstadt,
Germany) to remove any exogenous contamination. After drying, the samples were
transferred into a 20 mL vial and cut into an approximately powdery state with dissection
scissors to make a homogenized sample before weighing (10–20 mg of hair are necessary



Toxics 2024, 12, 212 6 of 17

for this analysis). This methodology comprises chemical opening, wet digestion, and
subsequent reduction with a 10% SnCl2 solution to quantify total Hg in a cold vapor atomic
absorption spectrometry with a photo-absorption cell for the measurement of absorbance at
253.7 nm (CVAAS) (Mercury Analyzer, Model Hg-201 Semi-automated Mercury Analyzer,
Sanso Seisakusho Co., Ltd., Tokyo, Japan). All stages of this analysis method are presented
in detail in the “Mercury Manual Analysis” published by the Japanese Ministry of the
Environment in 2004 (http://nimd.env.go.jp/english/research/result/analysis_manual/;
accessed on 25 January 2024).

The protocols for Quality Assurance (QA)/Quality Control (QC) included the follow-
ing parameters: (i) a method blank; (ii) a 6-point calibration curve (concentration ranging
from 0.4 to 4 ng/g); (iii) the Human Hair Certified Reference Material (IAEA-86), whose
average recovery rate was 101% (n = 8, recovery ranging from 83.4 to 106.6%) from the
International Atomic Energy Agency; and (iv) the relative standard deviation (RSD) of
8.32%. Sample replicates (n = 10), whose RSD was 2.49%, were also randomly selected.
The detection and quantification limits (LOD/LOQ) obtained were 0.0083 ng/mg and
0.027 ng/mg, respectively.

2.7. Statistical Analyses

Firstly, general demographic features, physical and neurological examination findings,
and laboratory results were compared between individuals according to MeHg exposure
levels found in their hair samples. For this analysis, the hair MeHg concentrations of
2.0 µg/g and 6.0 µg/g were considered thresholds for neurological outcomes, because
previous studies already indicated these limits as relevant for other Hg exposed popula-
tions [46,47]. Following this, subjects were grouped according to the presence of peripheral
neuropathy and a reduced performance at cognitive testing. The latter was defined as a
score < 6 at the delayed recall phase of the BCSB or a score < 9 at the S-VFT. Likewise, de-
mographical, physical, and neurological examination and laboratorial data were compared
between these groups.

For these analyses, categorical variables were presented as total count and percentages,
and compared with chi-square test, or Fisher’s exact test when appropriate. Meanwhile, con-
tinuous variables were summarized as mean ± standard deviation (minimum–maximum),
and their distributions were classified as parametric or not through the Kolmogorov–
Smirnov and Shapiro–Wilk tests, and visual inspection of histograms and Q–Q plots.
Parametric variables were compared with the Student’s t-test, and non-parametric ones
with the Mann–Whitney U test. On the other hand, for analyzing the correlation between
continuous variables, Pearson’s or Spearman’s correlation tests were used, when appropri-
ate. Statistical significance was set at p < 0.05. Also, to evaluate the accuracy of hair-derived
MeHg levels in identifying peripheral neuropathy and reduced cognitive performance in
this indigenous population, a Receiver Operating Curve (ROC) was used, and the area
under the curve with its 95% confidence interval (95%CI) were estimated. The ROC curve
is a graphical plot that illustrates the performance of a test or variable in predicting a given
outcome, at varying threshold values. The larger the area under the ROC curve, the higher
the prediction accuracy.

Furthermore, to better characterize the association between the evaluated variables and
the addressed clinically relevant neurological outcomes (i.e., peripheral neuropathy and a
reduced performance at cognitive testing), a Poisson regression model was used. Prevalence
Ratio (PR), with its respective 95%CI, was used as the association measure. For such, firstly
univariate analyses were conducted for each independent variable. Variables found to
be significantly associated with the studied neurological outcomes were then included in
multivariate model analyses. For these latter, multicollinearity was assessed by calculating
the tolerance values. Tolerance < 0.1 was considered as indication of multicollinearity [48].

All statistical analyses were performed using the software Statistical Package for the
Social Sciences version 20.0.0 (SPSS Inc., Chicago, IL, USA).

http://nimd.env.go.jp/english/research/result/analysis_manual/
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3. Results
3.1. Studied Population

Of the total number of registered individuals older than 12 years old living in the
Mucajaí river basin, 154 (43.0%) volunteered to participate, including almost all those who
resided at the village in which the data collection center was located. Female sex accounted
for 87 (56.1%) individuals, mean age was 30.9 ± 16.8 years old, and only 11 (7.1%) subjects
were ≥65 years old. Reported previous medical conditions were reported by only 17 (11%).
An abnormal blood pressure was present in 3 (1.9%) and mean BMI was 22.5 ± 3.1 kg/m2.
Mean blood glucose levels was 94.2 ± 17.7 mg/dL (ranging from 56 to 150 mg/dL), and
mean Hb levels was 13.6 ± 1.4 g/dL (ranging from 10.4 to 17.2 g/dL).

Altered scores for the S-VFT and the delayed recall phase of the BCSB were found in
53 (34.2%) and 9 (5.8%) individuals, respectively. Furthermore, abnormal findings in the
remaining of the neurological examination were detected in 53 (34.2%). The most common
findings were: abnormal nociception (n = 25, 16.1%) and thermal sensitivity (n = 23, 14.8%)
in the lower limbs, altered ankle reflex (n = 26, 16.8%), and an abnormal gait (n = 12, 7.7%).

3.2. Exposure to Methylmercury

MeHg measurements from hair samples were available for all but one of the studied
individuals. Presence of MeHg was observed in all subjects, and mean MeHg levels
were 3.9 ± 1.7 µg/g. There was no correlation between these levels and age (rs = 0.137,
p = 0.091). Hair MeHg levels > 6.0 µg/g were observed in 16 (10.3%), and were significantly
associated with abnormal lower limb nociception (37.5% vs. 13.9%, p = 0.027) and peripheral
neuropathy (56.2% vs. 42.1%, p = 0.041; Table 1). A statistical trend for association with
reduced cognitive performance was also observed (66.7% vs. 35.9%, p = 0.059). On the
other hand, MeHg levels > 2.0 µg/g were found in the majority of individuals (n = 134,
86.5%), and were associated with older age (32.2 ± 17.0 vs. 22.6 ± 12.6, p = 0.008; Table S1).

Table 1. Demographic characteristics and neurological examination findings between subjects with
MeHg levels > 6.0 µg/g and those with levels ≤ 6.0 µg/g in the Yanomami indigenous population, 2022.

MeHg ≤ 6.0 µg/g
(n = 137)

MeHg > 6.0 µg/g
(n = 16) p

Female gender 79 (57.7%) 8 (50.0%) 0.558
Age (years) A 31.55 ± 16.84 (12–75.7) 35.18 ± 18.45 (12.5–69.8) 0.315

Monthly income (R$) A 1345.82 ± 956.04 (0–3450) 1356.88 ± 828.55 (350–3000) 0.956
BMI (kg/m2) A 22.62 ± 3.0 (17.1–33.1) 22.4 ± 2.9 (18.8–28.8) 0.672
SBP (mmHg) A 108.68 ± 11.6 (83–155.5) 106.6 ± 10.88 (91–130.0) 0.497
DBP (mmHg) A 70.67 ± 9.92 (41.5–98.5) 68.09 ± 7.76 (54.5–83.0) 0.313

Abnormal blood pressure B 3 (2.2%) 0 (0%) 1.000
Hb (mg/dL) A 13.57 ± 1.38 (10.4–17.2) 13.92 ± 1.22 (11.8–16.1) 0.360

Serum glucose levels (mg/dL) A 94.02 ± 18 (56–150) 96.88 ± 16.2 (71–128) 0.427
Serum glucose > 126 mg/dL 19 (13.9%) 2 (12.5%) 1.000
Previous medical conditions 14 (10.2%) 3 (18.8%) 0.391
Abnormal verbal fluency test 46 (33.6%) 7 (43.8%) 0.418

Verbal fluency test score A 14.8 ± 5.7 (4–30) 13.7 ± 5.9 (7–25) 0.522
Abnormal late recall test 8 (7.1%) 1 (10%) 0.546

Delayed recall score A 8.2 ± 1.2 (3–10) 8.1 ± 1.4 (6–10) 0.678
Abnormal cognitive testing C 46 (35.9%) 8 (66.7%) 0.059

Motor deficit 3 (2.2%) 0 (0%) 1.000
Toe amyotrophy 5 (3.6%) 1 (6.2%) 0.491
Abnormal gait 11 (8%) 1 (6.2%) 1.000

Abnormal tonus 2 (1.5%) 0 (0.0%) 1.000
Bradykinesia 2 (1.5%) 0 (0%) 1.000

Abnormal ankle reflex 22 (16.1%) 4 (25.0%) 0.478
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Table 1. Cont.

MeHg ≤ 6.0 µg/g
(n = 137)

MeHg > 6.0 µg/g
(n = 16) p

Distal sensory deficit 18 (13.1%) 3 (18.8%) 0.463
Abnormal nociception 19 (13.9%) 6 (37.5%) 0.027 *
Thermal sensory deficit 21 (15.3%) 2 (12.5%) 1.000
Abnormal deep sensory 10 (7.3%) 3 (18.8%) 0.140
Peripheral neuropathy 38 (42.1%) 9 (56.2%) 0.041 *

Speech disturbance 1 (0.7%) 0 (0%) 1.000
Visual field deficits 1 (0.7%) 0 (0%) 1.000

Values presented as n (%), unless stated otherwise. A Values presented as mean ± standard deviation (minimum–
maximum). B An abnormal blood pressure was considered to be a systolic arterial pressure ≥ 140 mmHg and/or
a diastolic blood pressure ≥ 90 mmHg. C An abnormal cognitive testing was considered to be a score < 6 at the
delayed recall phase of the Brief Cognitive Screening Battery or a score < 9 at the verbal fluency test. * p < 0.05.
SBP—systolic blood pressure; DBP—diastolic blood pressure; MeHg—methylmercury; BMI—body mass index;
SBP—systolic blood pressure; DBP—diastolic blood pressure; Hb—hemoglobin levels.

3.3. Peripheral Neuropathy

Peripheral neuropathy was detected in 47 (30.3%) individuals. This diagnosis was
associated with older age (39.7 ± 20.1 vs. 27.1 ± 13.6 years old, p < 0.001) and Hg lev-
els > 6.0 µg/g (19.1% vs. 6.6%, p = 0.041; Table 2). In the adjusted Poisson regression model,
each additional year of age was associated with a 2.6% (95%CI 1.4–3.7%) increase in the
prevalence of this condition; and a MeHg > 6.0 µg/g with an increase of 78.7% (95%CI
15–177%) in this frequency (Table 4). No evidence of multicollinearity between these two
variables was found.

Table 2. Demographic characteristics and laboratory findings between subjects with and without
peripheral neuropathy of the Yanomami indigenous population, 2022.

Peripheral Neuropathy
Present
(n = 47)

Peripheral Neuropathy
Absent

(n = 107)
p

Female gender A 27 (57.4%) 26 (56.1%) 0.874
Age (years) 39.7 ± 20.1 (12–75.7) 27.1 ± 13.6 (12–71.5) <0.001 *

Monthly income (R$) 1270.39 ± 784.70 (0–2980) 1322.50 ± 1006.28 (0–3450) 0.782
BMI (kg/m2) 22.9 ± 3.35 (17.6–33.1) 22.3 ± 2.9 (13.2–31.5) 0.303
SBP (mmHg) 111.4 ± 12.4 (93.5–155.5) 107.1 ± 10.8 (83–139.5) 0.064
DBP (mmHg) 71.81 ± 9.1 (53.5–98.5) 69.7 ± 9.9 (41.5–92.5) 0.293

Abnormal blood pressure A,B 2 (4.3%) 1 (1%) 0.226
Hb (mg/dL) 13.7 ± 1.5 (10.9–17.2) 13.6 ± 1.32 (10.4–16.7) 0.942

Serum glucose levels (mg/dL) 93.8 ± 14.7 (70–130) 94.4 ± 19.0 (56–150) 0.799
Serum glucosis > 126 mg/dL A 5 (10.6%) 17 (15.9%) 0.391
Abnormal cognitive testing A,C 21 (47.7%) 33 (34.4%) 0.132

Hair MeHg levels (µg/g) 3.7 ± 1.4 (1.2–7.0) 4.3 ± 2.1 (1.4–10.1) 0.162
Hair MeHg > 2 µg/g 40 (85.1%) 94 (88.7%) 0.536
Hair MeHg > 6 µg/g 9 (19.1%) 7 (6.6%) 0.041 *

Values presented as mean ± standard deviation (minimum–maximum), unless otherwise specified. A Values
presented as n (%). B An abnormal blood pressure was considered to be a systolic arterial pressure ≥ 140 mmHg
and/or a diastolic blood pressure ≥ 90 mmHg. C An abnormal cognitive testing was considered to be a score < 7
at the late recall test or a score < 12 at the verbal fluency test. * p < 0.05. MeHg—methylmercury; BMI—body mass
index; SBP—systolic blood pressure; DBP—diastolic blood pressure; Hb—hemoglobin levels; Hg—mercury.

However, MeHg exposure levels did not have statistically significant discriminatory
capability for identifying peripheral neuropathy (area under the ROC curve = 0.571, 95%CI
0.464–0.678).
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3.4. Reduced Cognitive Performance

A reduced cognitive performance was observed in 54 (34.8%) of subjects. This was
associated with lower SBP (104.7 ± 9.9 vs. 110.3 ± 11.3 mmHg, p = 0.004), lower DBP
(67.2 ± 8.6 vs. 72.2 ± 9.8 mmHg, p = 0.003), lower Hb levels (13.3 ± 1.3 vs. 13.8 ± 1.4
g/dL, p = 0.034), and higher MeHg levels (4.34 ± 1.65 vs. 3.54 ± 1.53µg/g, p = 0.002;
Table 3). A statistical trend was also observed between reduced cognitive performance and
an MeHg > 6.0 µg/g (14.8% vs. 4.7%, p = 0.059). In the adjusted Poisson regression model,
each additional 1.0 g/dL in Hb levels were associated with a 16.5% (95%CI 2.9–28.1%)
reduction in the prevalence of abnormal cognitive performance; and an Hg > 6.0 µg/g
with an increase of 95.9% (95%CI 16–230.8%) in this frequency (Table 4). No evidence of
multicollinearity between these two variables was found.

Table 3. Demographic characteristics and laboratory findings between subjects with and without
reduced cognitive performance in the Yanomami indigenous population, 2022.

Reduced Cognitive
Performance

(n = 54)

Normal Cognitive
Performance

(n = 86)
p

Female gender A 35 (64.8%) 45 (52.3%) 0.146
Age (years) 30.7 ± 17.2 (12–75.7) 30.9 ± 16.6 (12–74.7) 0.891

Monthly income (R$) 1415.69 ± 931.00 (400–3450) 1273.32 ± 970.03 (0–3000) 0.330
BMI (kg/m2) 22.3 ± 2.6 (17.2–28.8) 22.8 ± 3.2 (17.1–33.1) 0.325
SBP (mmHg) 104.7 ± 9.9 (83–130) 110.3 ± 11.3 (86.5–145.5) 0.004 *
DBP (mmHg) 67.2 ± 8.6 (51–92.5) 72.2 ± 9.8 (41.5–96) 0.003 *

Abnormal blood pressure A,B 1 (1.9%) 1 (1.2%) 1.000
Hb (mg/dL) 13.3 ± 1.3 (10.4–16.4) 13.8 ± 1.4 (10.6–17.2) 0.034 *

Serum glucose levels (mg/dL) 94.2 ± 15.4 (61–136) 92.9 ± 18.1 (56–150) 0.542
Serum glucosis > 126 mg/dL A 7 (13.0%) 11 (12.8%) 0.976

Peripheral neuropathy A 21 (38.9%) 23 (26.7%) 0.132
Hair MeHg levels (µg/g) 4.34 ± 1.65 (1.15–7.50) 3.54 ± 1.53 (1.17–10.11) 0.002 *

Hair MeHg > 2 µg/g 73 (84.9%) 49 (90.7%) 0.314
Hair MeHg > 6 µg/g 8 (14.8%) 4 (4.7%) 0.059

Values presented as mean ± standard deviation (minimum–maximum), unless otherwise specified. A Values
presented as n (%). B An abnormal blood pressure was considered to be a systolic arterial pressure ≥ 140 mmHg
and/or a diastolic blood pressure ≥ 90 mmHg. A reduced cognitive performance was considered to be a score < 6
at the delayed recall phase of the Brief Cognitive Screening Battery or a score < 9 at the verbal fluency test.
* p < 0.05. MeHg—methylmercury; BMI—body mass index; SBP—systolic blood pressure; DBP—diastolic blood
pressure; Hb—hemoglobin levels; Hg—mercury.

Table 4. Poisson regression for predicting the presence of peripheral neuropathy and reduced
performance at cognitive testing in the Yanomami indigenous population, 2022.

Peripheral Neuropathy

Prevalence
Ratio (Crude) 95%CI p

Prevalence
Ratio

(Adjusted)
95%CI p

Female gender 1.040 0.642–1.684 0.874 --- --- ---
Age (years) 1.027 1.016–1.038 <0.001 * 1.026 1.014–1.037 <0.001 *

BMI (kg/m2) 1.040 0.967–1.120 0.9290 --- --- ---
Abnormal blood pressure A 2.207 0.956–5.096 0.064 --- --- ---

Hb (g/dL) 1.024 0.857–1.224 0.792 --- --- ---
Serum glucose levels (mg/dL) 0.999 0.986–1.011 0.999 --- --- ---
Serum glucose > 126 mg/dL 0.714 0.318–1.606 0.416 --- --- ---

Hair MeHg levels (µg/g) 1.143 1.006–1.299 0.040 * --- --- ---
Hair MeHg > 2 µg/g 0.810 0.426–1.542 0.522 --- --- ---

Hiar MeHg > 3.7 µg/g 1.304 0.807–2.109 0.259 --- --- ---
Hair MeHg > 6 µg/g 2.028 1.218–3.376 0.007 * 1.787 1.150–2.777 0.010 *
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Table 4. Cont.

Reduced Cognitive Performance

Prevalence
Ratio (Crude) 95%CI p

Prevalence
Ratio

(Adjusted)
95%CI p

Female gender 1.382 0.883–2.160 0.156 --- --- ---
Age (years) 1.000 0.987–1.012 0.962 --- --- ---

BMI (kg/m2) 0.960 0.909–1.014 0.142 --- --- ---
Abnormal blood pressure A 1.292 0.318–5.251 0.720 --- --- ---

Hb (g/dL) 0.846 0.729–0.982 0.028 * 0.835 0.719–0.971 0.019 *
Serum glucose levels (mg/dL) 1.003 0.991–1.015 0.662 --- --- ---
Serum glucose > 126 mg/dL 1.009 0.543–1.878 0.976 --- --- ---

MeHg levels (µg/g) 1.186 1.048–1.342 0.007 * --- --- ---
Hair MeHg > 2 µg/g 1.446 0.666–3.141 0.352 --- --- ---

Hair MeHg > 3.7 µg/g 1.664 1.077–2.571 0.022 * --- --- ---
Hair MeHg > 6 µg/g 1.855 1.169–2.945 0.009 * 1.959 1.160–3.308 0.012 *

A reduced cognitive performance was considered to be a score < 6 at the delayed recall phase of the Brief Cognitive
Screening Battery or a score < 9 at the verbal fluency test. A An abnormal blood pressure was considered to be a
systolic arterial pressure ≥ 140 mmHg and/or a diastolic blood pressure ≥ 90 mmHg. * p < 0.05. 95%CI—95%
confidence interval; BMI—body mass index; Hb—hemoglobin levels; MeHg—methylmercury.

MeHg exposure levels allowed for the prediction of reduced cognitive performance
with an area under the ROC curve of 0.652 (95%CI 0.556–0.749; Figure 1). For this purpose,
a MeHg level > 6.0 µg/g was found to have a sensitivity (Se) of 13.3% and a specificity (Sp)
of 95.3%; while a MeHg level > 2.0 µg/g presented with an Se of 88.9% and Sp of 15.1%.
The optimum MeHg detection threshold was estimated to be 3.7 µg/g, which demonstrated
an Se of 55.3% and Sp of 54.7%.
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4. Discussion

This exploratory cross-sectional study was the first to have assessed the neurotoxic
effects of long-term MeHg exposure among individuals living in the Yanomami IL, at the
Mucajaí river basin. Exposure to MeHg was found in all studied subjects, with mean hair
levels of 3.9 ± 1.7 µg/g. In the group with MeHg levels of >6.0 µg/g, the prevalence
of peripheral neuropathy and reduced cognitive performance were, respectively, 78.7%
(95%CI 15–177%) and 95.9% (95%CI 16–230.8%) higher than among those with lower levels.
Notably, our sample was composed of mostly young people, with few comorbidities that
may otherwise lead to these neurological conditions.

Neurotoxicity attributed to MeHg is mostly due to its biomagnification capacity in
aquatic trophic chains and its ability to overcome blood–brain and placenta barriers. Hu-
man exposure to MeHg commonly occurs through the consumption of contaminated fish
and seafood [27]. Notably, fish is a cornerstone diet of many indigenous populations in
the Amazon, and evidence accumulated since the mid-90s have demonstrated elevated
MeHg concentrations in diverse fish species of this region, well above the safety limits
established by the World Health Organization (WHO) [15,27,49]. MeHg present in con-
taminated food is readily absorbed by the digestive system and is distributed to virtually
all body tissues [27,50]. Upon reaching the central nervous system, MeHg can undergo a
demethylation process and mercuric ions (Hg+2) accumulate in the nervous tissue, causing
irreversible damage [27,50]. Experimental evidence suggests that this may be the result
of mitochondrial dysfunction, abnormal release of excitatory amino acids, and alterations
of proteomic expression, which eventually results in increased oxidative stress, cellular
dysfunction, and death [27,50,51].

However, determining what long-term MeHg exposure levels constitute a significant
risk for neurological and other health-related conditions remains a challenge. In fact,
reference levels vary between international health agencies, and do not necessarily re-
flect biological safety parameters. For example, the Food and Agriculture Organization
(FAO/WHO) recommends maximum intake doses of 3.3 µg/kg/week for the general
population, which corresponds to hair MeHg levels of 4.5 µg/g [52]. Yet, although our
study has found a significant association between MeHg > 6.0 µg/g and both cognitive
impairment and higher prevalence of peripheral neuropathy, these levels only had low-to-
moderate accuracy for detecting the former, and no significant accuracy at all for the latter.
This may be explained by variations of individual susceptibility, possibly influenced by
several factors. Interestingly, polymorphisms of genes belonging to the metallothionein,
selenoprotein, and xenobiotic transporter protein superfamilies have been associated with
MeHg levels in human hair samples [53]. Characteristics of exposure besides dosage, such
as length, age, and pattern (continuous versus intermittent) may also play relevant roles in
individual susceptibility [32]. Alternatively, it is possible that other factors, unaddressed by
this study, may have had a more significant role in producing cognitive impairment and
peripheral neuropathy than MeHg exposure in the studied population.

Understanding of the neurological consequences of exposure to MeHg comes from
episodes of large-scale environmental poisonings that occurred in the Minamata Bay and
Yatsushiro Sea, Japan, between 1950 and 1968 [54], and in the rural region of Iraq during
the winter of 1971–1972 [4]. In severe cases, a neurological disorder known as Hunter–
Russell syndrome occurs, including visual field constriction, hearing impairment, ataxia,
and sensory disorders. In milder cases, however, only somatosensory neuropathy may be
observed, as well as psychomotor deficits [55].

On the other hand, data about the neurological consequences of long-term exposure to
lower concentrations of MeHg are still lacking. In fact, available studies within this context
are frequently hampered by small samples, absence of control populations, inadequate
MeHg measurement methods, and other methodological issues [15,56]. Nonetheless, they
suggest possible negative impacts in a variety of neurological functions, stemming from
cognitive, motor, and coordination, to hearing and visual impairments [56]. Furthermore,
even relatively low-level exposure to MeHg has been demonstrated to be significantly
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associated with lower regional grey matter volume in the thalamus and hippocampus,
and widespread reduction in regional white matter volume, mainly in the frontal lobes
bilaterally and right basal ganglia [57].

Particularly, a better understanding about the neurological burden of long-term expo-
sure to MeHg is paramount to indigenous populations living in the Amazon, where levels
of exposure have been deemed some of the highest in the world [15,17,58]. These popula-
tions have been subject to environmental exposure to MeHg for over 40 years mostly due
to illegal gold mining activities in the region [7]. However, data about mean mercury levels
in hair samples are only available since 1995, and vary from 2.0 to 75.5 µg/g, according to
the time period and studied region [59]. Furthermore, the large majority of studies were
conducted within the Tapajos river basin, located in the southern region of the Amazon
basin, and encompassing only about 7% of its full extension [15]. Also, while most studies
have reported on total mercury levels, only a small number have addressed specifically
MeHg [15]. Nonetheless, these studies have described significant associations between
high mercury levels and several neurological disorders, mostly compromising motor, color
vision, and somatosensory functions [15]. Contrastingly, despite also finding an association
between higher MeHg levels (i.e., >6.0 µg/g) and somatosensorial disorders, more specifi-
cally altered nociception (p = 0.027); our study was not able to detect an association between
higher levels of MeHg and the presence of motor deficits. This may be explained by the
relatively lower degree of mean mercury exposure observed in our population, which is in
the lower range of previously published literature [15,59]; but also by the abovementioned
variations of susceptibility to MeHg toxicity, which may also differ at populational levels.
On the other hand, our study highlighted associations between MeHg > 6.0 µg/g and
peripheral neuropathy, as well as cognitive impairment. Although such associations have
been described previously, these neurological outcomes were systematically addressed by
very few studies [60–62].

While peripheral neuropathy habitually occurs after elemental or inorganic mercury
poisoning due to occupational exposure, it has been described in some cases of chronic
environmental intoxication with MeHg [63]. Furthermore, it is possible that many cases
of MeHg-related peripheral neuropathy may go underdiagnosed, as a previous cross-
sectional study in the United States has found that 18% of individuals with idiopathic
axonal neuropathy and 9% of those with small fiber neuropathy had blood mercury lev-
els > 10 µg/L [64]. In the selected population of general young and healthy individuals,
we found a frequency of 30.3% of peripheral neuropathy, well above the estimated global
prevalence of 11.8% [65,66]. Moreover, this condition was significantly associated with a
MeHg > 6.0 µg/g. Notably, peripheral neuropathy was also associated with older mean
age (Table 2), and each additional year of life predicted a 2.6% (95%CI 1.4–3.7%) increase in
its frequency (Table 4). This finding may suggest that age was a confounding factor in the
relation between MeHg levels and peripheral neuropathy, as the older the individual, the
longer he or she would have been subject to environmental MeHg exposure. Also, older
age has been previously established as an independent risk factor for peripheral neuropa-
thy [67,68]. However, there was no correlation between age and hair MeHg levels in our
sample, and no evidence of multicollinearity was found between these variables, which
makes this possibility less likely. The frequency of MeHg-related peripheral neuropathy
has been very rarely addressed in the Amazon indigenous populations. To the best of
our knowledge, the only other study to have systematically surveyed this condition, with
well-established diagnostic criteria, was conducted in the Sawré Muybu IL, in the Tapajos
river basin [62]. It also found a high prevalence (i.e., 43.5%) of peripheral neuropathy, but
could not establish an association with the levels of MeHg in hair samples [62].

Meanwhile, the impact of chronic low-level exposure to MeHg on cognition has been
reported previously by observational research in various regions of the world [69–72].
Early-life MeHg poisoning may interfere in neurodevelopment, as both prenatal and
postnatal MeHg biomarkers have been revealed to be associated with lower cognitive
performance among children [70,71]. Notably, several studies with indigenous Amazonian
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children also support an association between hair MeHg levels and reduced scores in
cognitive and neurodevelopmental scales [16,73–76]. Furthermore, MeHg has been implied
to lead to neurodegeneration, as it may induce hallmark neuropathological changes seen in
Alzheimer’s disease [77,78]. In fact, a prospective cohort with 2136 subjects demonstrated
that baseline serum mercury levels were associated with the incidence of mild cognitive
impairment, after correcting for fish oil intake (OR 2.56; 95%CI 1.003–6.5) [69]. However,
the association between MeHg and cognitive disorders among adults in the Amazon
IL has only been addressed by few studies, but with positive findings [60–62]. One of
the largest of these observed significantly higher frequencies of cognitive abnormalities
among individuals with hair MeHg concentrations > 10.0 µg/g, as assessed by the BCSB
and S-VFT. These data fall largely in line with those found in our sample. Moreover, we
observed that a reduced cognitive performance was associated with lower serum levels of
Hb (Tables 3 and 4), as well as of systolic and diastolic blood pressures (Table 3). Further
research is needed to better explore the nature of these findings, but they may reflect the
consequences of MeHg poisoning in hematological [79] and cardiovascular systems [80].
Notably, however, no evidence of multicollinearity between these factors and MeHg levels,
which could support this hypothesis, was found. Interestingly, no association was found
between age and cognitive impairment, although the former is a well-established risk
factor for dementia and other cognitive disorders [81,82]. This may be explained by the
low proportion (7.1%) of elderly individuals in our sample.

It is important to highlight that the findings of this research should be interpreted
with caution taking in consideration its limitations. Firstly, this was a cross-sectional
study, and therefore the observed associations between hair MeHg levels and neurological
outcomes do not establish causality. In fact, bias due to reverse causality and unaddressed
confounding factors cannot be excluded. Therefore, further prospective studies are needed
to confirm and better explore the nature of these associations. Secondly, our sample was
composed mostly by relatively young people, as only 7.1% were ≥65 years old. This may
limit the generalizability of our findings for the indigenous elderly population. Thirdly,
as only 43% of the total population living in the studied region volunteered to participate
in this research, there is a risk for selection bias in our sample. For example, elderly
and handicapped people living in more distant villages, as well as those busy engaged
in laboring activities (e.g., fishing, agriculture, and hunting) may not have been able to
enroll. On the other hand, individuals who suffered from neurological symptoms or
who considered themselves more likely to have been exposed to MeHg contamination,
would have been more interested to volunteer, given the scope of our work. The relatively
small sample size may also have rendered some of the statistical analyses underpowered.
Notably, this is a common limitation of research in this context, reflecting the small sizes of
the indigenous villages inhabiting the Amazon basin, and the limitations of transportation
within this area. Nonetheless, this is one of the largest study published in this field, and
possibly the largest to have conducted a systematic detailed neurological evaluation of
the studied population, according to a standardized protocol. Furthermore, although the
case definition of peripheral neuropathy was made based on well-established criteria [37],
no data about complementary neurophysiological testing were available to support the
diagnosis. Finally, even though psychiatric symptoms and visual abnormalities have been
described in association with MeHg toxicity, they were not systematically surveyed in
this study.

In conclusion, the data from this research contribute to better characterize the severity
and spread of the consequences of long-term mercury contamination in the Amazon River
basin to the indigenous population. When considered together with findings from previous
studies in this and other regions of the world, it indicates that long-term environmental
MeHg poisoning, even at relatively low concentrations, may contribute significantly to the
development of peripheral neuropathy and cognitive impairment, both conditions which
may be irreversible and very debilitating. It also contributes to the body of evidence that
supports the urgent need for systematic surveillance and regulation of activities in the
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Amazon region that may lead to the implementation of legislative measures to reduce the
continued environmental contamination with mercury.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12030212/s1, Table S1. Demographic characteristics and
neurological examination findings between subjects with mercury levels > 2.0 µg/g and those with
levels ≤ 2.0 µg/g in the Yanomami indigenous population, 2022.
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