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Abstract: Various geostatistical models have been used in epidemiological research to evaluate
ambient air pollutant exposures at a fine spatial scale. Few studies have investigated the per-
formance of different exposure models on population-weighted exposure estimates and the re-
sulting potential misclassification across various modeling approaches. This study developed
spatial models for NO, and PM; 5 and conducted exposure assessment in Beijing, China. It ex-
plored three spatial modeling approaches: variable dimension reduction, machine learning, and
conventional linear regression. It compared their model performance by cross-validation (CV)
and population-weighted exposure estimates. Specifically, partial least square (PLS) regression,
random forests (RF), and supervised linear regression (SLR) models were developed based on
an ordinary kriging (OK) framework for NO, and PM; 5 in Beijing, China. The mean squared
error-based R? (Rzmse) and root mean squared error (RMSE) in leave-one site-out cross-validation
(LOOCV) were used to evaluate model performance. These models were used to predict the ambi-
ent exposure levels in the urban area and to estimate the misclassification of population-weighted
exposure estimates in quartiles between them. The results showed that the PLS-OK models for
NO, and PM, 5, with the LOOCV R2 e Of 0.82 and 0.81, respectively, outperformed the other models.
The population-weighted exposure to NO, estimated by the PLS-OK and RF-OK models exhibited
the lowest misclassification in quartiles. For PM; 5, the estimates of potential misclassification were
comparable across the three models. It indicated that the exposure misclassification made by choosing
different modeling approaches should be carefully considered, and the resulting bias needs to be
evaluated in epidemiological studies.

Keywords: PM; 5; NO,; geostatistical modeling approach; exposure estimates; misclassification

1. Introduction

Long-term exposure to air pollutants has been proven to be associated with adverse
health outcomes [1-3]. Current research has focused on a medium- and long-term period
exposure assessment at an individual level [4], which needs accurate exposure assessment
at a fine spatial scale to eliminate exposure errors [5,6]. It is a big challenge because
of the sparse monitoring stations and missing coverage of specific predictors, such as
satellite-based models [7].

Geostatistical models developed by the land-use regression (LUR) approach have been
widely used to assess medium- and long-term exposure to air pollution in epidemiological
studies [8,9]. The geostatistical models were created based on the inputs of observational
and geographic data sets, in which the former was involved as outcome variables and
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the latter were predictor variables. The choice of model development approaches, the
method for dealing with predictor variables, and the model structures can all affect model
performances [10-13]. The golden standard method for model evaluation includes out-of-
sample validation and hold-out cross-validation (CV) [10,14]. However, some studies laced
sufficient observational data for out-of-sample model validation or hold-out CV. Also, some
results for evaluating some two-step models were not easy to interpret, e.g., the predictor
selection and dimension reduction methods [15,16]. In brief, evaluating the performance
of exposure models developed based on limited monitoring sites was challenging, but
they are still helpful for environmental health studies. In previous studies on modeling
approach comparison [10,17], the model performance was evaluated by cross-validation or
out-of-sample validation. Nevertheless, to further compare these models’ performances,
they need to be evaluated by exposure assessment in the real world, and potential exposure
bias caused by different modeling algorithms needs to be assessed.

In this study, we used three modeling approaches, variable dimensionality reduction,
machine learning, and variable screening, to build geostatistical models for NO, and
PM, 5 and to compare their model performance by estimating the misclassification of
population-weighted exposure estimates in quartiles.

2. Methods
2.1. Study Area and Observations at Monitoring Sites

Beijing, China’s capital city, is a mega-city with a population of 21.5 million during the
research period (2015-2020) [18]. Ambient concentrations of PM; 5 have decreased since
stringent national and local environmental regulations were implemented in 2014 [19].
However, the ambient exposure level of such air pollutants is still higher than the World
Health Organization (WHO) Global Air Quality Guidelines, 10 pug/ m? for NO, and 5 ng/ m3
for PM, 5 [20]. This study obtained NO;, and PM; 5 observational data from the Beijing
air quality monitoring network (Beijing Municipal Environmental Monitoring Center).
The NO; was measured using the ultraviolet fluorescence method, and the PM, 5 was
measured using the micro oscillating balance method at these monitoring sites [21]. A total
of 35 monitoring sites were divided into 4 types, including 1 background site, 7 traffic sites,
14 urban sites, and 13 suburban sites, as shown in Figure 1. The background site is located
near a reservoir in the Miyun district. The lowest NO, and PM; 5 concentrations were
observed at this background site. The traffic sites are close to the (A) type roads (highways
and arterial roads) with a distance of less than 250 m. The other 27 monitoring sites were
divided into urban and suburban sites, in which the urban sites were located inside and
around the 6th-ring road, and the suburban sites were the rest of them.
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Figure 1. Map of the 35 monitoring sites in Beijing.
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Annual average concentrations were obtained from the raw hourly concentrations.
First, the daily averages were calculated by hourly concentration, following a criterion that
50% of the data (12 h) were available at each monitoring site. Second, these daily averages
were used for calculating weekly averages, following the same criterion that 3-day data
were available. Third, these weekly averages were applied for calculating annual averages,
following another criterion of 25%. It allows the yearly averages to be calculated based on
daily, weekly, and seasonal bases and be temporally representative. A similar temporal
average strategy was used in Araki et al.’s NO, exposure modeling study [22]. Figure 2
depicts the calculated weekly average concentrations of NO, and PM; 5, where blank
spaces represent missing concentrations. The above criteria screened some of the missing
data, and the rest were due to the raw data loss. Table 1 shows the statistical summary
of annual average NO; and PM; 5 concentrations. In 2016 and 2017, the available yearly
averages were less than 35 because of the data screening criteria. After 2018, one of the
35 monitoring sites, the Beijing Botanical Garden site, was excluded from the monitoring
network, as shown in Figure 1.
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Figure 2. Weekly average concentrations of NO, and PM; 5 at the 35 monitoring sites in Beijing from
2015 to 2020.

Table 1. The annual average concentrations of NO, and PMj 5 from 2015 to 2020.

. - Annual Averages SD
Pollutant Year No. of Sites Missing (ng/m®) (ug/m?)

2015 35 8.79% 49.27 15.92

2016 34 8.79% 48.16 14.93

NO, 2017 32 10.22% 44.09 12.57
2018 34 3.08% 4212 12.96

2019 34 2.86% 37.19 10.73

2020 34 3.62% 30.30 8.72

2015 35 4.40% 82.56 13.39

2016 35 8.79% 74.01 11.58

PM, 5 2017 32 10.33% 58.60 6.59
: 2018 34 3.08% 52.58 6.32
2019 34 2.97% 43.04 5.86

2020 34 3.85% 38.55 5.40

2.2. Geographic Variables

In this study, we collected a wide array of geographic variables, including population
density, traffic network, features (e.g., airport, rail yard, railways, etc.), points of interest (POI),
land-use types, Normalized Difference Vegetation Index (NDVI), topography and coordinate
variables. Some of these geographic variables were related to the emission sources, such as
road network, features, and POI, while others were derived from the natural characteristics
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in the study area, e.g., population density and elevation. The details of these geographic
variables are described in Table S1 in the Supplementary Information (SI).

2.3. Algorithms for Model Development

In this study, three types of modeling approaches were applied for model development.
First, we chose the partial least squares (PLS) to represent the dimension reduction modeling
approach. Second, random forest (RF), an advanced and relatively simple modeling
approach with relatively fewer steps, was selected as a machine learning algorithm. Third,
the supervised linear regression (SLR) algorithm was chosen as a traditional modeling
approach. The PLS and SLR algorithms are based on a linear regression framework [10,16].
The RF algorithm is a complex algorithm dealing with non-linear relationships between
response and predictor variables and also between predictor variables [10]. The PLS
and SLR models have clear and interpretable frameworks, while the RF model is less
interpretable because of its hidden black box [23].

Specifically, the PLS regression algorithm reduces predictor variables to a smaller set of
uncorrelated components and performs least squares regression on these components. The
PLS decomposes the large geographic variable matrix into a sequence of orthogonal PLS
scores computed to maximize the covariance between concentrations and their prediction.
According to the experience in our previous study in Beijing [11,24], the number of PLS
scores was set to be 3.

As a machine learning algorithm, RF is an ensemble learning method that combines
multiple decision trees to improve the accuracy and robustness of the developed mod-
els [23]. In RF model development, potential predictor variables are forced to be partitioned
into subsets, which include separate decision trees for training. The output is the average
of the decision tree simulation results. The RF model provides an importance evaluation
index of the variables (IncMSE) that can be used to determine the influence of predictor
variables on the response variables [25]. In this study, the setting of the RF models was
based on our previous experience [11]. The coefficients of the random sampling times
(mtry), number of decision trees in a random forest (ntree), and a minimum number of
decision tree nodes (node size) were set to be 50, 500, and 5, respectively.

The SLR model is a traditional and widely used stepwise linear regression method
developed using selected geographic variables as predictors [26,27]. First, univariate linear
regression is conducted to find a starting point for an SLR model, as the highest R? is
obtained. Second, the additional predictor is added in each round to obtain the most
significant increase in R? until the rise of the R? is less than 0.1. The selected variable in each
round is available when its direction is plausible with the outcome pollutant. Third, the
variance inflation factor (VIF) is applied to prevent multicollinearity. The selected variables
with a value of VIF more than 3 were removed [28].

All the models were developed by R software (R 4.2.0, https:/ /www.r-project.org/,

Zai

accessed on 1 April 2022), using the R packages of “pls”, “randomForest” and so on.

2.4. Model Structure and Validation

For LUR models, their residuals are always spatially correlated [12]. Thus, we applied
a two-step model structure, a LUR model with ordinary kriging (OK), to develop a LUR-
OK model. First, a LUR model was developed; second, the residuals of the LUR model
were further explained by OK. The same or similar model structures were widely used in
previous studies [29-31].

The developed models were evaluated by using leave-one-site-out cross-validation
(LOOCYV). The observed data were split into groups equal to the number of monitoring
sites, in which each group included the observations from one monitoring site. One data
group was used for testing (testing group), and the other remaining data groups (training
group) were used to fit the model. Then, the fitted model was used to predict the testing
group and repeated until predictions for all groups were generated. We used mean square
error based-R-Squared (R%mse), regression-based R2 (Rzreg), and root-mean-square error
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(RMSE) to assess the accuracy and prediction ability of the model, which was computed on
observations (y;) and predictions (;) according to the equations below:

RMSE = \/m )

RMSE?
—\2
Yic(yi—y)/n
In both equations, n is the number of observations, and ¥ is the mean of observations.
R2 nse is @ measure of fit to the 1:1 line and is typically lower than Rzreg, which is a measure

of fit to the regression line. The model performance was mainly evaluated by R?pse and
RMSE, and the R2reg was also reported for comparisons with other studies.

R%pse = max (0,1 —

@

3. Results and Discussion
3.1. Model Development
3.1.1. PLS Models

The geographic variables were downscaled using the PLS approach. The first three
PLS scores were obtained as inputs for the PLS models. The first PLS score explains most
variations across the geographic data set. Thus, we evaluated correlation coefficients between
the first PLS score and geographic variables to represent the influence of the geographic
variables on PLS models. Figure 3 depicts these correlation coefficients for the annual NO,
and PM; 5 models. For NO, models, the correlation coefficients between the first PLS score
and the geographic variables were relatively stable across the annual models. The variables
of all the annual NO, models that were highly correlated with the first PLS score were
population density, POI variables (the count of temples, restaurants, gas stations and bus
stops), NDVI variables (NDVI in summer and the 75th percentile of NDVI), land-use type
variables (shrubland, impervious, grassland, and forest), and the proximity variables (the
distance to the type (C) road, railway, the intersection between type (A) and type (B) roads,
and the intersection between type (A) roads.
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Figure 3. Correlation coefficients between the first PLS score and the geographic variables. Each box
denotes the mean value of the correlation coefficient with corresponding geographic variables across
the buffers, and the upper and lower bars represent the standard deviation across the buffers. The
abbreviations of each geographic variable are shown in Table S1 in Supplementary Information.
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Compared with the annual NO, models, the correlation coefficients between the first
PLS score and the geographic variables varied among the annual PM; 5 models, especially
for the annual PM; 5 models after 2017. The variables of all the annual PM; 5 models
with an absolute value of these correlation coefficients greater than 0.5 included the NDVI
variables (NDVI in summer and the 75th, 50th, and 25th percentiles of NDVI), land-use
type of forest, longitude (Lambert y), elevation, and distance to the railyard. The contrast
of the correlation coefficients between these models presented different emission sources
of NO, and PM; 5. As a traffic-related primary air pollutant, the spatial distribution of
NO; was correlated with the geographic variables of road networks. In contrast, PM; 5 was
correlated with the longitude variable because of its partially secondary species formation
that originated from long-distance transportation [32].

3.1.2. RF Models

According to the IncMSE of the variables given by the RF models, the top ten variables
were summarized in Figure 4. The traffic-related variables significantly influence the
NO,; models. The variables of distance to the railyard, the count of gas stations, the
distance to the type (A) road, and the sum of the type (A) road length had relatively high
IncMSE values in all NO; models. For PM; 5, the most important variables were longitude,
shrubland, and NDVI. Similar variable sensitivities were observed in the PLS models for
PMj 5, in which the longitude variable was also highlighted.

NO22015  NOZ2018  NO22017_ NOZ2018  NO22019  NOZ2020  NOZLTM PM25.2015 PM25_2016 PM25.2017 PM25.2 19 PM25_2020 PM25_LTM
lambert y
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NDVI: q75(10,000)
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NDVI: q75(7500)
)

)
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No. of gas station(10,000)
Dist to airport other
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berty
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Population(500)
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Variables
e 121
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NDVI: summer(7500;

Population(15,000
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No. of restaurant(10.000 No. of restaurant(15,000)|
NDVI: summer(500) LU: forest(1500)
IncMSE (%) IncMSE (%)

Figure 4. The geographic variables with the top ten IncMSE values in the RF model results.

3.1.3. SLR Models

Figure 5 shows the selected geographic variables by the SLR model and their regres-
sion coefficients. For NO, models, the traffic-related variables were involved in model
development. It is consistent with the RF models. Specifically, the coefficients of the vari-
ables of the distance to the airport, railway, and railyard had relatively high values. In
addition, the NDVI and land-use type of water variables were also selected. Regarding
PM, 5, the annual PM; 5 models selected fewer variables than the NO, models. The vari-
ables of the distance to the airport and the distance to the type (B) road influenced the
annual PM; 5 models a lot.

NO2.2015 NO22016 NO2.2017 NO22018 NO22019 NO2.2020 NOZLTM PM25.2015 PM25.2016 PM25 2017 PM252018 PM252019 PM25.2020 PM25_LTM
X X x 2 X X z

Length of road b(150)
Length of road a(750)
Length of bus route(50) |
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Length of road a(5000) ] | |
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LU: water(300 1
NDVI: winter(1000
NDVI: winter(500
NDVI: winter(5000
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)
)
)
)
)
)
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Figure 5. The coefficients of the variables selected by the SLR model.
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3.1.4. Models Developed in the Urban Area

In order to compare model performance between the geostatistical models developed
in the whole Beijing area and inside the 6th-ring road area that covered the total urban
area. The LUR-urban (LURU) models were developed based on the monitoring sites
inside and around the 6th-ring road. The coefficients of these LURU models are shown in
Figures 51-S3.

For the urban model developed by the PLS approach (PLSU), some variables’ correla-
tion coefficients had significant changes, such as the variables of the count of industries
(POI), water land-use type, latitude, and distance to airports for the NO, models and the
variables of the count of industry (POI), NDVI in winter, latitude, and distance to the
airports for PMj 5 models. The predictors in the PLS and PLSU models were different. It
indicated that the PLS approach could be affected when the range of the observational data
was expanded as the suburban areas were included. Different model coefficients were also
found when comparing RF and RFU models, SLR and SLRU models.

3.2. Model Performance

The LOOCYV results of NO, and PM; 5 models are shown in Tables 2 and 3, respec-
tively. The performances of the LUR and LUR-OK models were summarized in each table.
Generally, the annual PLS models performed better than others, with a higher range of
R?nse for NO, (0.72~0.82) and PM, 5 (0.80~0.89), which were higher than the previous
studies in Beijing [33,34]. Regarding the LTM of NO,, the PLS models had comparable good
performance with the SLR models, which performed better than the RF models. Compared
with the NO; models without an OK in the model structure, the LUR-OK models improved
the model performance for PLS and SLR LTM models with a slightly higher R?se. For
annual NO; models, some performed worse when adding OK to the model structure.
However, adding OK into the model structure worked well for RF models of PM; 5. For
annual and LTM PMj; 5, the RF-OK models improved their performance with an increase
of 0.06~0.21 in R2 e compared with the RF models. In comparison, these increases in
R?mse of PLS and SLR models because of adding OK were —0.17~0.01 and —0.09~0.08,
respectively. For the LTM of PM; 5, the PLS-OK model performed best among the PLS,
RE and SLR models with or without OK. A spatiotemporal covariate model was built in
a previous study with an R% e of 0.93, and its RMSE was 1.72 pg/m?3 [35]. Improved
performance by adding OK in the model structure was also found in a previous study [36].
The good performance of the PLS approach on spatial modeling was concluded in the
previous study [11,30]. In terms of the comparisons between the traditional SLR model and
machine learning models, the SLR model underperformed in this study, which is different
from the previous comparisons [10]. The controversy over machine learning approaches
has existed for a long time. It may depend on the target air pollutants and the collecting
method of monitoring data [13].

Different model performances were found for PLSU, RFU, and SLRU models devel-
oped in urban areas with less observational data involved in model development, as shown
in Tables S2 and S3 in Supplementary Information. Compared with the models developed
in the whole city area, the PLSU models had better performance for both NO, (LOOCV
R? et 0.83~0.96) and PM, 5 (LOOCYV R?pee: 0.74~0.82), while RFU and SLRU models had
opposite performances. The increased performance of these PLSU models might be due
to overfitting. The RFU and SLRU models were sensitive to the number of observational
monitoring sites. We also found worse model performances from 2018 to 2020 than those
from 2015 to 2017, when observational data were missing from 2018 at the monitoring
site in the western mountain area. It indicated that the monitoring sites with various
observational levels were necessary for model development in the urban area [28].

Figure 6 shows the scatter plots of the long-term mean observations and LOOCV
predictions of the PLS, RF, and SLR mdels for NO, and PM; 5. For NO,, the PLS (LOOCV
R2pse: 0.78) and SLR (LOOCYV R?ee: 0.76) models performed better than the RF models
(LOOCV R? et 0.57). The RF model was overestimated at the background site. Similar
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results were found for PM, 5 models, in which the LOOCV R? ¢ of PLS, RF, and SLR
models were 0.80, 0.51, and 0.54, respectively. The PM; 5 RF model performed worse at the
background site than those at other types of monitoring sites.

Table 2. LOOCYV results of the NO, models.

Year PLS RF SLR

RMSE RZmse R?peg RMSE R%mse Rpeg RMSE R%mse RZpeg
2015 6.59 0.82 0.85 9.93 0.60 0.62 7.56 0.77 0.78
2016 7.64 0.73 0.78 9.90 0.55 0.57 11.46 0.39 0.44
2017 6.19 0.75 0.78 9.09 0.46 0.46 7.00 0.68 0.71
2018 6.34 0.75 0.78 8.60 0.55 0.57 7.23 0.68 0.69
2019 5.06 0.77 0.80 7.80 0.46 0.47 5.72 0.71 0.71
2020 455 0.72 0.77 6.79 0.37 0.38 4.81 0.69 0.70
LTM 5.66 0.78 0.81 7.93 0.57 0.59 5.97 0.76 0.76

PLS-OK RF-OK SLR-OK

Year

RMSE RZpmse RZpeg RMSE R%pse R?ieq RMSE R%mse RZpeq
2015 6.18 0.84 0.87 9.75 0.61 0.62 7.43 0.78 0.78
2016 7.74 0.72 0.78 10.23 0.52 0.55 11.42 0.40 0.46
2017 5.97 0.77 0.80 9.41 0.42 0.45 6.80 0.70 0.73
2018 5.77 0.80 0.82 8.22 0.59 0.59 7.06 0.69 0.72
2019 4.61 0.81 0.83 7.76 0.46 0.47 6.11 0.67 0.67
2020 453 0.72 0.77 7.67 0.20 0.29 5.38 0.61 0.64
LTM 5.16 0.82 0.84 7.92 0.57 0.58 5.73 0.78 0.78

Table 3. LOOCYV results of the PM, 5 models.
PLS RF SLR

Year

RMSE  RZ%pe RZreg RMSE  RZ%pe RZpeg RMSE  RZ%pee R?req
2015 4.39 0.89 0.89 7.88 0.64 0.73 7.64 0.66 0.68
2016 4.07 0.87 0.87 6.90 0.64 0.73 7.02 0.62 0.63
2017 2.73 0.82 0.82 4.24 0.57 0.62 5.30 0.33 0.42
2018 2.33 0.86 0.86 4.80 0.41 0.47 4.17 0.55 0.56
2019 2.13 0.86 0.86 4.02 0.51 0.57 3.75 0.58 0.60
2020 2.21 0.83 0.83 4.21 0.37 0.40 3.43 0.58 0.59
LTM 3.51 0.80 0.80 5.51 0.51 0.59 5.33 0.54 0.54

PLS-OK RF-OK SLR-OK

Year

RMSE  RZ%pe RZpeg RMSE  RZ%pe RZpeg RMSE  RZ%pee R?peg
2015 4.26 0.90 0.90 5.87 0.80 0.80 7.64 0.66 0.70
2016 4.25 0.86 0.87 5.51 0.77 0.77 7.05 0.62 0.67
2017 2.64 0.83 0.84 3.03 0.78 0.78 5.64 0.24 0.43
2018 3.45 0.69 0.72 3.99 0.59 0.59 3.90 0.61 0.62
2019 2.10 0.87 0.87 3.37 0.66 0.67 3.38 0.66 0.69
2020 2.31 0.81 0.82 4.00 0.43 0.45 3.29 0.62 0.63
LTM 3.38 0.81 0.82 4.42 0.68 0.69 511 0.58 0.60

3.3. Prediction in the Urban Area

A square covering the 6th ring road in Beijing was picked to show the predictions
around urban areas. It was divided into 3301 grids at a 1 km spatial scale. These grids
are categorized according to the quartile distributions of model predictions, as shown
in Figure 7. For NO,, the grids with high predictions were clustered in the central ur-
ban area. In addition, the hotspots of the PLS and SLR model predictions were high-
lighted across the road network, while the grids with high RF predictions were aggregated
(Figure 7). Regarding PM; 5, noticeable spatial differences were found across the three
model predictions. The hotspots of the PLS model predictions were sparsely distributed,
while the RF predictions were highlighted in the southern part of Beijing. In comparison,
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the SLR model predictions were shown with clear spatial clusters. The contrast among the
three PM; 5 model predictions arises from the difference in the selection of geographical
variables as primary predictors and the variations in the significance of predictors during
model development. Figures S4 and S5 in Supplementary Information show the correlation
coefficient between the three models. For LTM, the correlation coefficients of NO, models
among the three approaches were 0.72~0.83, and it was 0.81~0.85 in PMj 5 models. The
correlation coefficient between PLS and SLR was the lowest regardless of whether in either
NO, models or PM» 5 models. The lower correlation coefficients of SLR with the other two
models may be related to the fact that the variables were screened in SLR while the other
two modeling methods were not.

Since the LUR-OK model performed better than the LUR models in LTM predictions,
we focused on using the LUR-OK model to make predictions for population-weighted
exposure estimates. Figure 8 depicts the box plots of the spatial predictions at a 1 km spatial
scale (shown as grids in Figure 7) for NO, and PMj, 5 in the urban area. Regarding the
annual predictions, a noticeable decline was found for PM, 5 year by year. It is expected
that the air quality level in Beijing has become better in recent years [37]. Meanwhile,
regarding NO,, the decline in annual mean concentrations was almost flat from 2015 to
2017, especially for PLS-OK and RF-OK predictions. Comparing the predictions among
different models, the PLS-OK and RF-OK models had comparable median predictions.
In contrast, SLR had relatively low median predictions, especially for annual mean NO,
prediction in 2017 (34.98 ug/m?3) and NO, and PM, 5 LTM predictions (NO,: 37.58 ug/m3;
PMy5: 7143 pg/ m?). The NO, predictions obtained a more considerable divergence across
the three models with the coefficient of variation (COV) of 11.85~19.41 for three NO,
models, compared with the PM; 5 predictions among the three models with the COV of
7.57 ~11.88. It indicated that the NO, models were more sensitive to the predictors derived
from the geographic variables than the PM; 5 models.

NO:2
(pg/m?)

Prediction (ug/m®)

40

Monitoring sites & {Monitoring sites g |Monitoring sites
o | @ urban e urban | & urban
S | 4 taffic R 1 a traffic . 4 traffic .
suburban suburban L P o suburban 7
o | ® background 3 ¢ background R __® 7| * background /
© o, K
2 |
3

60

20

Prediction (ug/m
20 30 40
\
\
\
\
\
\
\
\
\
\
\
\
Prediction (ug/m’®
40 60
\
. e
A
e,

T
20

40 60
Observation (ug/m

10

T T
80 100 T T T
’) 10 20 30 60 70

40 50 N 20 40 60 80 100
Observation (ug/m”) Observation (ug/r ma)

80

PMas
(pg/m?)

Prediction (ug/m°)

60 80 100 120
)

40

A ftraffic

® urban

_ Monitoring sites

suburban
-+  background

Monitoring sites

b ~ ® urban
o | ¢ uran 4 traffic
o4 trafic - suburban

suburban
_| ® background . - - ® background

= [Monitoring sites

120

o

100

%
Prediction (ug/m")
70
\
80

60
Prediction (g/m®)

50
60

40

40

60

40

T T T T T
80 ,100 120 40 50 0 70 80 90 100 T ; T
Observation (ug/m®) Observation (jg/m") 40 60 120

80 Joo
Observation (ua/m™)

Figure 6. The average observations and LOOCYV predictions of the three models for NO, and PM; 5
from 2015 to 2020. Dashed lines denote the 1:1 line, and solid lines represent linear regression lines.
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Figure 7. Maps of the long-term mean NO, and PM; 5 predictions from 2015 to 2020.
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Figure 8. Distributions of annual averages and long-term means (LTM) from 2015 to 2020 of NO, and
PM,; 5 predicted by three models. Each box’s upper, middle, and lower lines denote 75%, 50%, and
25% of the concentration. The dots represent the predictions that are higher or lower than 1.5 times
the IQR from the median. The point in the box represents the means of the predictions.

3.4. Population-Weighted Exposure Estimates

The population-weighted exposure estimates (PEE) in urban areas from 2015 to 2020
were predicted using the PLS-OK, RF-OK, and SLR-OK models. The long-term mean
values of PEE in the urban area from 2015 to 2020 were calculated based on the model
predictions and population density across the 1 km grids [38]. The total population in the
prediction area was 15.94 million, accounting for about 76% of the entire population in
Beijing, ranging from 211 to 32,097 persons/km? across the grids in the urban area. The
misclassification of PEE in quartiles between the three models was estimated personally.

Figure 9 depicts the misclassification of PEE in quartiles between the PLS-OK, RF-
OK, and SLR-OK models. Tables S4 and S5 in Supplementary Information summarizes
the percentage of misclassification in quartiles for NO, and PM;5. For NO,, the total
misclassification of particular PEE between the PLS-OK and RF-OK models was 37.87%,
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49.27% between PLS-OK and RF-OK models, and 50.49% between RF-OK and SLR-OK
models. The contrast between PLS-OK and RF-OK models was smaller than the other two
pairs. Compared with the PEE predicted by the PLS-OK model, 19.16% of them indicated by
the RF-OK model were overestimated, and 18.72% were underestimated. Overestimation
and underestimation between the PEE predicted using the PLS-OK and SLR-OK models
were 23.25% and 26.03%, respectively. Most of the misclassifications happened across the
adjacent quartiles. For comparison between the PLS-OK and RF-OK models, only 4.74% of
the PEE was misclassified into the upper or lower quartiles that were not adjacent. This
number was about 10% for other pairs of comparisons. It indicated that the PEE of NO,
predicted by PLS-OK and RF-OK models obtained similar results, which resulted in the
least misclassifications of the PEE in quartiles across the three models. Regarding the PEE
of PM; 5, the misclassification in quartiles was comparable between the three models.
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Figure 9. The misclassification of the PEE in quartiles between the PLS-OK, RF-OK, and SLR-OK models
for NO, and PM; 5. The four classifications from top to bottom denote the ranges of 0~25%, 25~50%,
50~75%, and 75~100% of PEE. The numbers indicate the non-misclassified percentage in quartiles.

3.5. Strengths and Limitations

This study compared three geostatistical model performances in an air pollutant expo-
sure assessment study in a metropolitan city in China. The findings have a broad implica-
tion for environmental studies. First, the three approaches chosen for model development
represent a variety of advanced and traditional, complicated, and simple geostatistical
modeling methods. The usage of each modeling approach is distinctive. The SLR models
outperformed the RF models. However, compared with the PLS model predictions, the RF
model predictions had fewer misclassifications than the SLR predictions. Second, this study
focused on spatial model comparisons, which may provide a reference for spatiotemporal
modeling studies. For primary pollutants, like NO;, the spatial distribution of air pollu-
tants highly relies on local features related to emission sources. A comprehensive array of
geographic variables could influence the model performance at a fine spatial scale. The PLS
approach has such potential for exposure assessment on directly emitted air pollutants [39].
Third, the interpretability of machine learning models is challenging. Although its usage is
potentially limited because of its black box instinct, it possesses the capability for utilization
in an urban area abundant with spatially dense observational data on the basis of RF model
performance in this study.

There were also some limitations in this study. First, there is a lack of additional data
for model development and out-of-sample validation. In this study, the observational
data used for model development was derived from the national and regional monitoring
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network. Increasing the abundance of spatial data would enhance the accuracy and stability
of the model [40]. Second, the spatial models might be overestimated as less spatially rich
observational data were involved in model development. To make use of the limited spatial
information from these relatively sparse monitoring sites, an out-of-sample CV was not
used in this study. To address these limitations, we plan to conduct mobile monitoring in
the next step of our study. In addition, the inclusion of health outcomes for analyzing the
impact of exposure bias caused by choosing different exposure models will be considered.

4. Conclusions

Using three geostatistical modeling approaches, we developed spatial models for
NO, and PMy; in Beijing. After evaluating the model performances with LOOCYV, we
found that the PLS model exhibited the best performance among the three models. A hybrid
model framework, which used OK to further explain the residuals, could improve the model
performance. We compared the model performance by making predictions at a 1 km spatial
scale in the urban area. The misclassification of population-weighted exposure estimates in
quartiles caused by using a different modeling approach was also conducted. For NO,, both
the PLS-OK and RF-OK models showed the least misclassification in the comparisons. The
PM, 5 models obtained more misclassification than the NO, models.
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/ /www.mdpi.com/article/10.3390/toxics12030197 /s1, Figure S1: Correlation coefficients between
the first PLS score and the corresponding geographic variables in PLSU; Figure S2: The geographic
variables with the top ten IncMSE values in RFU results; Figure S3: The coefficients of the vari-
ables selected by the SLRU; Figure S4: The correlation coefficients of NO, models among the three
approaches; Figure S5: The correlation coefficients of PM, 5 models among the three approaches;
Table S1: Details of the geographic variables; Table S2: LOOCYV results of the NO, LURU models;
Table S3: LOOCYV results of the PM, 5 LURU models; Table S4: The NO, misclassification between
LUR models; Table S5: Quartile distribution of the PM, 5 misclassification between LUR models.
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