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Abstract: Several epidemiological studies have demonstrated that particulate matter (PM) in air
pollution can be involved in the genesis or aggravation of different cardiovascular, respiratory,
perinatal, and cancer diseases. This study assessed the in vitro effects of PM10 on the secretion of
cytokines by a human monocytic cell line (THP-1). We compared the chemotactic, pro-inflammatory,
and anti-inflammatory cytokines induced by PM10 collected for two years during three different
seasons in five different Mexico City locations. MIP-1α, IP-10, MCP-1, TNF-α, and VEGF were the
main secretion products after stimulation with 80 µg/mL of PM10 for 24 h. The THP-1 cells showed a
differential response to PM10 obtained in the different sites of Mexico City. The PM10 from the north
and the central city areas induced a higher pro-inflammatory cytokine response than those from the
south. Seasonal pro-inflammatory cytokine secretion always exceeded anti-inflammatory secretion.
The rainy-season-derived particles caused the lowest pro-inflammatory effects. We concluded that
toxicological assessment of airborne particles provides evidence supporting their potential role in the
chronic exacerbation of local or systemic inflammatory responses that may worsen the evolution of
some chronic diseases.

Keywords: air pollution; cytokine; megacity; PM10; spatial variation

1. Introduction

Air pollution is a well-known risk factor for adverse human health effects [1,2]. Expo-
sure to high quantities of airborne particulate matter (PM) is associated with pregnancy
complications [3–6] and increased morbidity and mortality from respiratory [7–9] and
cardiovascular diseases [10–13]. PM’s proposed damage mechanisms involve the secretion
of pro-inflammatory cytokines and direct cytotoxic and genotoxic effects [14–16]. Some
of these effects are mediated by reactive oxygen species, as demonstrated by in vivo and
in vitro studies [17–19]. Target organs and health outcomes have been related to three
types of particles of different sizes and compositions. The PM10 (aerodynamic diam-
eter (AED) < 10 µm) is mainly deposited in the upper airways. In comparison, PM2.5
(AED < 2.5 µm) and PM0.1 (AED < 0.1 µm) can reach the intravascular compartment from
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terminal bronchioles and alveoli [20,21]. All these size fractions of PM can induce or aggra-
vate conditions with an inflammatory background. PM also significantly contributed to
excess mortality during the COVID-19 pandemic [22,23].

PM composition depends on the sources, human activities, and geographical and me-
teorological local characteristics. PM can be anthropogenic derived from vehicle emissions,
industry, soil erosion or produced naturally during dust storms, forest fires, or volcanic
eruptions. Seasonal variations in air pollution and PM-related health effects have been
demonstrated [10,24,25]. Indeed, PM’s toxic and inflammatory potential has been shown
to vary due to the chemical diversity of its components based on local conditions and the
time of the year [26–28]. A relationship has been demonstrated between elevated PM10
levels and increased mortality, showing evidence even from the assessment of seasonality
together with temperature variability in Mexico City [29].

Mexico City is one of the most densely populated cities globally, with 5967 people
per km2, and it is also among the most polluted cities in Latin America [30]. Given the
multifactorial causes of pollution and that 99.5% of the population is urban, Mexico City
residents have been exposed to high pollutant levels for decades, with notably high levels
of O3, PM2.5, and PM10. Additionally, geographical conditions, including altitude and
being located at a tropical latitude within a valley surrounded by mountains, make the city
more prone to high air pollution levels. Studies conducted by the air-monitoring network
of the Mexico City government showed that the permissible PM10 level of 150 µg/m3 was
generally exceeded in some areas of the city, mainly in correlation with the location of
industrial activity [31,32]. In addition, different studies examining PM in Mexico City have
shown a seasonal variation in size and chemical composition [33,34].

Most public health recommendations about air pollutant exposure are based on epi-
demiological findings correlating air quality monitoring with health outcomes, and few
efforts are available to evaluate the direct effect of air pollutants on biological responses
and to use these results to identify geographical regions or seasonal timeframes with higher
risks for health. Therefore, in this study, the human monocyte cell line THP-1 was evaluated
as a biomonitor of inflammatory responses to PM10 collected in different areas and seasons
of a megacity.

2. Materials and Methods

PM sampling. PM10 were collected in five Mexico City locations from March 2010
to February 2012. The ethics committees of Facultad de Medicina, UNAM (102-2009)
and the University of Michigan Institutional Review Board (HUM00023514) approved the
protocols for sample collection and analysis. Sampling sites were selected based on their
proximity to Mexico City’s air monitoring stations in areas representing either dominant
industrial, business, or residential activities. The chosen locations vary in traffic-related
pollution, demographics, and urban infrastructure: an industrial region located in the
north, a business one situated downtown or central, and residential areas in the south, the
east, and the west [35].

High-volume air samplers (TE6070V-2.5, Tisch Environmental, Inc.; Hamilton, OH,
USA, airflow rate 1.13 m3 min−1) [14] equipped with modified nitrocellulose membranes
were used to collect PM10 for 24 h on Mondays, Wednesdays, and Fridays for 24 months.
The PM collection periods corresponded to the three seasons observed at Mexico City’s
latitude, namely warm-dry (WD): March–May; rainy (R): June–October; and cold-dry (CD):
November–February.

PM sample preparation. PM was mechanically recovered from the membranes and
pooled according to month and site, resulting in 18 samples from the WD season, 30 samples
from the R season, and 24 samples from the CD season. Following measurements of their
weight, the PM samples were stored individually in baked glass vials and preserved in
the dark, at 4 ◦C, in desiccators. PM samples were sterilized by autoclaving before use for
in vitro exposure experiments [33].
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Cell culture. To evaluate the cell response to PM, we used THP-1 cells (human mono-
cytic cell line) obtained from the American Type Culture Collection (TIB 202). The cell
suspensions were grown in RPMI 1640 media (Sigma Chemical, St. Louis, MO, USA) sup-
plemented with 10% fetal bovine serum, containing penicillin (50 U/mL) and streptomycin
(50 mg/mL).

One milliliter per well cell suspensions (550,000 cells/mL) were kept in 24-well plates
at 37 ◦C in a 5% CO2/95% air atmosphere. Culture media was replaced by serum-free
media and incubated for 24 h before exposure to PM. In previous work, 80 µg/mL was
the optimal PM concentration to induce cytokine production with minimal cell viability
loss (up to 10%) [33]. PM stock suspensions (1.0 mg/mL) were prepared in cell culture
media, sonicated for 5 min, and vortexed before addition to cell cultures to reach a final
concentration of 80 µg/mL. THP-1 cells were incubated for 24 h in the presence of PM,
then centrifuged at 2000× g, and supernatants were recovered and maintained at −80 ◦C
until use for cytokine quantification. Three independent experiments were carried out in
triplicate with each PM sample. Non-exposed cells were used as negative controls, and
their basal cytokine levels were subtracted from the experimental values.

Multiplex for cytokines/chemokines. A panel of fifteen cytokines (MAP human
cytokine/chemokine magnetic bead panel kit; Millipore Corporation, Billerica, MA, USA)
was used, including Eotaxin, interleukin (IL), IL-10, IL-17, IL-2, IL-6, IL-12p40, IL-1α,
IL-1β, interleukin-1 receptor antagonist (IL-1RA), soluble interleukin-2 receptor alpha (sIL-
2Rα), interferon-gamma-induced protein 10 (IP-10), monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein (MIP-1α), tumor necrosis factor-alpha (TNF-α),
and vascular endothelial growth factor (VEGF). Multiplex analyses were performed in
samples kept at −80 ◦C for no more than 90 days, following the published protocol of the
manufacturer, and concentrations are expressed in pg/mL.

Statistical Analysis. Cytokine concentrations in culture media of PM-stimulated
THP-1 were averaged according to each triplicate. Descriptive statistics were calculated
for each of the city’s five locations and seasons of the year. Natural log (ln)-transformation
of cytokine data was performed to approximate normality. The Shapiro–Wilk test and
Anderson–Darling test were used to assess continuous data for normality, and the Levene’s
and Breusch–Pagan tests were used to evaluate heteroskedasticity. One-way analysis of
variance (ANOVA) with post hoc test Tukey’s HSD was used to test differences across
regions and seasons. A supervised clustering heatmap was performed separating cytokine
families by regions and seasons. Concentrations were standardized, and the Spearman
correlation distance measure was applied to cluster analysis.

Principal component analysis (PCA) was used to characterize a cytokine profile to
indicate the level of inflammatory balance in the cellular response. An iterative process
was used to reduce cytokines’ dimensionality and lead to the maximum variance between
cytokine families and city-regions. To achieve this, data were normalized and centered with
a mean of 0 and a standard deviation of 1. The Kaiser–Guttman criterion was used to choose
the number of components to retain [36]. The cytokines selected for the final PCA explained
the highest variance within two principal components; they defined the best profile that
maximized the variance between the city sectors (one chemotactic, two pro-inflammatory,
and one anti-inflammatory). Principal component scores were compared between city
regions using the Kruskal–Wallis rank-sum test with Dunn’s multiple comparison test. A
Mexico City region-level choropleth map indicating distinct areas according to the balance
between the selected cytokines was created. To calculate the proinflammatory (IL-1α,
IL-β, TNF-α, IL-6) ratio over the anti-inflammatory (IL-1RA, IL-10) in the different regions,
simple ratios were calculated in each of them, according to the values reported in Table 1.
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Table 1. Descriptive statistics for cytokine production over the course of two years in response to PM
exposure according to Sectors.

Sector

Residential-East
(n = 24)

Industrial-North
(n = 24)

Residential-South
(n = 24)

Business-Center
(n = 24)

Residential-West
(n = 24)

Cytokine Mean
(95% CI a)

Mean
(95% CI a)

Mean
(95% CI a)

Mean
(95% CI a)

Mean
(95% CI a)

Chemotactic

MIP-1α 3753.16
(2558.64, 4947.68)

7208.64
(5737.58, 8679.70)

3731.48
(1933.75, 5529.22)

6687.41
(5671.14, 7703.68)

5371.56
(3996.32, 6746.81)

IP-10 401.28
(305.08, 497.48)

314.71
(249.20, 380.22)

251.75
(193.87, 309.63)

360.32
(278.25, 442.39)

341.20
(273.55, 408.85)

MCP-1 170.07
(78.26, 261.89)

155.29
(92.50, 218.08)

98.79
(52.01, 145.57)

74.78
(51.14, 98.43)

175.82
(128.74, 222.89)

Pro-inflammatory

IL-1α 2.93
(2.78, 3.07)

7.11
(5.10, 9.12)

3.57
(2.10, 5.05)

3.57
(2.53, 4.60)

5.62
(4.55, 6.69)

IL-1β 13.96
(7.11, 20.81)

17.65
(10.94, 24.37)

52.41
(19.31, 85.52)

26.38
(20.29, 32.48)

21.14
(11.94, 30.34)

TNF-α 266.62
(160.49, 372.76)

323.55
(197.03, 450.06)

318.79
(152.66, 484.91)

652.74
(525, 780.47)

301.23
(164.04, 438.43)

IL-6 0.71
(0.35, 1.06)

0.64
(0.33, 0.96)

2.79
(2.26, 3.31)

2.37
(1.97, 2.77)

0.49
(0.26, 0.72)

Anti-inflammatory

IL-1RA 30.59
(23.32, 37.86)

9.13
(7.26, 11.01)

33.46
(12.26, 54.67)

24.50
(20.01, 28.98)

15.68
(12.36, 18.99)

IL-10 5.58
(4.48, 6.68)

4.55
(3.81, 5.29)

6.46
(4.82, 8.11)

8.95
(6.17, 11.73)

4.01
(3.40, 4.62)

Growth factor

VEGF 551.93
(405.15, 698.70)

566.49
(110.62, 1022.35)

283.30
(193.44, 373.16)

324.72
(259.72, 389.73)

569.17
(353.70, 784.64)

MIP-1α, macrophage inflammatory protein-1 alpha; IP-10, interferon-γ-inducible protein 10; MCP-1, monocyte
chemoattractant protein-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; TNF-α, tumor necrosis factor alpha;
IL-6, interleukin-6; IL-1RA, interleukin-1 receptor antagonist; IL-10, interleukin-10; VEGF, vascular endothelial
growth factor. Units in picograms per mL (pg/mL). a 95% confidence interval [x ± S√

n t∝/2(n − 1 )].

3. Results

Eotaxin, IL-2, IL-12p40, IL-17, and sIL-2Ra were not included in the analysis because
their concentrations in the culture media were below the detection limit. MIP-1α, IP-10,
MCP-1, TNF-α, and VEGF were the main secretion products of THP-1 cells upon PM10
stimulation. IL-6 had a minor contribution to THP-1 responses. Cytokines were grouped
for analysis according to their main biological activity: chemotactic (MIP-1α, IP-10, and
MCP-1), pro-inflammatory (IL-1α, IL-1β, TNF-α, and IL-6), and anti-inflammatory (IL-1RA
and IL-10). THP-1 cells showed differential responses to PM10 obtained from different
regions of Mexico City and during the two years of follow-up (Figure 1; Table 1).
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Figure 1. Matrix showing change in pro-, anti-, and chemotactic cytokines when THP−1 cells are
incubated with PM10 from different regions of Mexico City. Concentration units (pg/mL) were
standardized, and the Spearman correlation distance measure was applied to cluster analysis. IL,
interleukin; IP10, induced protein-10; MCP, monocyte chemotactic protein; MIP, macrophage inflam-
matory protein; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.

Chemokine averaged concentrations were higher with PM10 obtained in the north,
central, and west areas and lowered with particles from the south (Figure 2; Table 1). In
addition, the secretion of MIP-1α was twice as high when stimulated with PM10 from the
north, central, and west compared with the response induced by particles from the south
or east (Figure 2, Tables 1 and 2).
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Figure 2. Concentrations of cytokines secreted by TPH-1 cells stimulated by PM10. Comparison
between the average values obtained for each of the cytokines secreted by samples collected during
two years in different megacity regions. Data are presented as medians (middle line) and first and
third quartiles (boxes) on a logarithm scale of pg/mL. Units in picograms per milliliter (pg/mL).
Significance codes: * (p < 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) or **** (p ≤ 0.0001).
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Table 2. Differences across Sectors over the course of two years according to cytokine production in response to PM exposure.

Sector

R-E, I-N R-E, R-S R-E, B-C R-E, R-W I-N, R-S I-N, B-C I-N, R-W R-S, B-C R-S, R-W B-C, R-W

Chemotactic

MIP-1α

DBM
(95% CI)

0.87
(0.09, 1.64)

−0.32
(−1.10, 0.45)

0.96
(0.19, 1.74)

0.53
(−0.25, 1.30)

−1.19
(−1.96, −0.42)

0.10
(−0.68, 0.87)

−0.34
(−1.11, 0.43)

1.29
(0.51, 2.06)

0.85
(0.08, 1.62)

−0.44
(−1.21, 0.34)

p-value 1.97 × 10−2 * 7.75 × 10−1 6.76 × 10−3 ** 3.28 × 10−1 3.92 × 10−4 *** 9.97 × 10−1 7.42 × 10−1 9.99 × 10−5 **** 2.35 × 10−2 * 5.22 × 10−1

IP-10

DBM
(95% CI)

−0.18
(−0.64, 0.29)

−0.48
(−0.95, −0.02)

−0.06
(−0.53, 0.41)

−0.11
(0.57, 0.36)

−0.31
(−0.77, 0.16)

0.12
(−0.35, 0.58)

0.07
(−0.39, 0.54)

0.42
(−0.04, 0.89)

0.38
(−0.09, 0.85)

−0.05
(−0.51, 0.42)

p-value 8.29 × 10−1 3.83 × 10−2 * 9.97 × 10−1 9.71 × 10−1 3.68 × 10−1 9.56 × 10−1 9.93 × 10−1 9.37 × 10−2 1.70 × 10−1 9.99 × 10−1

MCP-1

DBM
(95% CI)

−0.18
(−0.75, 0.40)

−0.57
(−1.15, 0.01)

−0.66
(−1.23, −0.08)

0.13
(−0.45, 0.71)

−0.39
(−0.97, 0.19)

−0.48
(−1.06, 0.10)

0.31
(−0.27, 0.88)

−0.09
(−0.66, 0.49)

0.70
(0.12, 1.28)

0.79
(0.21, 1.36)

p-value 9.15 × 10−1 5.58 × 10−2 * 1.75 × 10−2 * 9.71 × 10−1 3.33 × 10−1 1.52 × 10−1 5.83 × 10−1 9.93 × 10−1 9.41 × 10−3 ** 2.36 × 10−3 **

Pro-inflammatory

IL-1α

DBM
(95% CI)

0.70
(0.24, 1.16)

−0.14
(−0.60, 0.32)

0.03
(−0.43, 0.49)

0.57
(0.12, 1.03)

−0.84
(−1.30, −0.38)

−0.67
(−1.13, −0.21)

−0.13
(−0.59, 0.33)

0.17
(−0.29, 0.63)

0.71
(0.25, 1.17)

0.54
(0.08, 1.00)

p-value 4.30 × 10−4 *** 9.18 × 10−1 1.00 6.44 × 10−3 ** 1.44 × 10−5 **** 9.02 × 10−4 *** 9.39 × 10−1 8.37 × 10−1 3.28 × 10−4 *** 1.20 × 10−2 *

IL-1β
DBM

(95% CI)
0.42

(−0.34, 1.19)
1.02

(0.26, 1.78)
1.07

(0.30, 1.83)
0.44

(−0.32, 1.20)
0.60

(−0.16, 1.36)
0.64

(−0.12, 1.41)
0.02

(−0.74, 0.78)
0.04

(−0.72, 0.81)
−0.58

(−1.34, 0.18)
−0.62

(−1.39, 0.14)

p-value 5.45 × 10−1 2.94 × 10−3 ** 1.69 × 10−3 ** 4.99 × 10−1 1.96 × 10−1 1.41 × 10−1 1.00 1.00 2.25 × 10−1 1.64 × 10−1

TNF-α

DBM
(95% CI)

0.29
(−0.35, 0.94)

0.02
(−0.62, 0.67)

1.18
(0.53, 1.83)

0.07
(−0.58, 0.71)

−0.27
(−0.92, 0.38)

0.88
(0.24, 1.53)

−0.23
(−0.87, 0.42)

1.16
(0.51, 1.80)

0.04
(−0.60, 0.69)

−1.11
(−1.76, −0.46)

p-value 7.18 × 10−1 1.00 1.7 × 10−5 **** 9.99 × 10−1 7.75 × 10−1 2.25 × 10−3 ** 8.68 × 10−1 2.57 × 10−5 **** 1.00 5.62 × 10−5 ****

IL-6

DBM
(95% CI)

−0.02
(−0.55, 0.51)

1.55
(1.02, 2.09)

1.48
(0.95, 2.01)

−0.28
(−0.81, 0.25)

1.58
(1.04, 2.11)

1.50
(0.97, 2.03)

−0.26
(−0.79, 0.27)

−0.08
(−0.61, 0.45)

−1.84
(−2.37, −1.31)

−1.76
(−2.29, −1.23)

p-value 1.00 5.88 × 10−12 **** 4.7 × 10−11 **** 5.80 × 10−1 3.34 × 10−12 **** 2.6 × 10−11 **** 6.49 × 10−1 9.95 × 10−1 4.79 × 10−14 **** 6.59 × 10−14 ****

Anti-inflammatory

IL-1RA

DBM
(95% CI)

−1.17
(−1.63, −0.71)

−0.11
(−0.57, 0.35)

−0.13
(−0.59, 0.32)

−0.59
(−1.05, −0.13)

1.06
(0.60, 1.52)

1.03
(0.57, 1.49)

0.58
(0.12, 1.04)

−0.03
(−0.49, 0.43)

−0.48
(−0.94, −0.02)

−0.46
(−0.92, 0.00)

p-value 1.46 × 10−9 **** 9.66 × 10−1 9.26 × 10−1 4.73 × 10−3 ** 3.57 × 10−8 **** 7.8 × 10−8 **** 6.30 × 10−3 ** 1.00 3.39 × 10−2 * 5.26 × 10−2 *
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Table 2. Cont.

Sector

R-E, I-N R-E, R-S R-E, B-C R-E, R-W I-N, R-S I-N, B-C I-N, R-W R-S, B-C R-S, R-W B-C, R-W

IL-10
DBM

(95% CI)
−0.20

(−0.58, 0.18)
0.11

(−0.27, 0.50)
0.36

(−0.02, 0.75)
−0.30

(−0.68, 0.08)
0.31

(−0.07, 0.70)
0.56

(0.18, 0.95)
−0.10

(−0.48, 0.28)
0.25

(−0.14, 0.63)
−0.41

(−0.80, −0.03)
−0.66

(−1.05, −0.28)

p-value 5.97 × 10−1 9.25 × 10−1 7.52 × 10−2 * 2.00 × 10−1 1.64 × 10−1 8.45 × 10−4 *** 9.52 × 10−1 3.83 × 10−1 2.82 × 10−2 * 5.17 × 10−5 ****

Growth factor

VEGF
DBM

(95% CI)
−0.48

(−1.12, 0.17)
−0.69

(−1.34, −0.05)
−0.47

(−1.12, 0.17)
−0.11

(−0.76, 0.53)
−0.21

(−0.86, 0.43)
0.00

(−0.64, 0.65)
0.37

(−0.28, 1.01)
0.22

(−0.43, 0.86)
0.58

(−0.06, 1.23)
0.36

(−0.28, 1.01)

p-value 2.47 × 10−1 2.89 × 10−2 * 2.56 × 10−1 9.89 × 10−1 8.88 × 10−1 1.00 5.18 × 10−1 8.81 × 10−1 9.93 × 10−2 * 5.30 × 10−1

R-E, Residential-East; I-N, Industrial-North; R-S, Residential-South; B-C, Business-Center; R-W, Residential-West; CI, confidence interval; DBM, difference between means; MIP-1α,
macrophage inflammatory protein-1 alpha; IP-10, interferon-γ-inducible protein 10; MCP-1, monocyte chemoattractant protein-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta;
TNF-α, tumor necrosis factor alpha; IL-6, interleukin-6; IL-1RA, interleukin-1 receptor antagonist; IL-10, interleukin-10; VEGF, vascular endothelial growth factor. Comparisons of
means between Sectors were performed using one-way analysis of variance (ANOVA) and Tukey’s HSD test as post hoc analysis on natural log (ln)-transformed cytokines. Statistically
significant changes relative to Sectors within each cytokine are shown with * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) or **** (p ≤ 0.0001).
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PM10 induced differential location-based pro-inflammatory cytokine production. Par-
ticles from the south and central generated higher values of IL-1β and IL-6. However, IL-1α
was mainly caused by particles from the north and west (Figure 2, Tables 1 and 2), and
particles from the central induced the highest levels of TNF-α.

Particles from the north caused less secretion of the anti-inflammatory cytokines IL-10
and IL-1RA. VEGF did not show differential responses (Figure 2).

City-averaged values of particle-induced chemokines showed only a significant in-
crease in chemotactic (MCP-1) during the warm-dry season (WD) (Figure 3). Consistently
higher values of pro-inflammatory cytokines, except for IL-6, were induced by particles
collected during warm-dry and cold-dry seasons (Figure 3, Tables 3 and 4). No major
differences in anti-inflammatory cytokine secretion were found between seasons. VEGF
was increased in the media culture of rainy season stimulated cells (Figure 3).
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Figure 3. Mean value of cytokine secretion by the THP-1 cell line induced by PM10 collected in the
different monitoring stations for two years. Data are presented as medians (middle line) and first and
third quartiles (boxes) in a natural logarithm scale of pg/mL. One-way analysis of variance (ANOVA)
and Tukey’s HSD post hoc analysis were used to test differences across seasons. Significance codes:
* (p ≤ 0.05), ** (p ≤ 0.01) or **** (p ≤ 0.0001).

Table 3. Descriptive statistics for cytokine production over the course of two years in response to PM
exposure according to Seasons.

Season

Warm-Dry
(n = 30)

Rainy
(n = 50)

Cold-Dry
(n = 40)

Cytokine Mean
(95% CI a)

Mean
(95% CI a)

Mean
(95% CI a)

Chemotactic

MIP-1α 5918.32
(4339.06, 7497.59)

4817.26
(3320.05, 6314.48)

5591.04
(4231.61, 6950.47)

IP-10 337.36
(250.81, 423.91)

329.24
(265.28, 393.19)

336.99
(255.69, 418.30)

MCP-1 197.98
(109.46, 286.51)

135.27
(83.42, 187.13)

87.27
(63.10, 111.44)
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Table 3. Cont.

Season

Warm-Dry
(n = 30)

Rainy
(n = 50)

Cold-Dry
(n = 40)

Cytokine Mean
(95% CI a)

Mean
(95% CI a)

Mean
(95% CI a)

Pro-inflammatory

IL-1α 4.55
(2.89, 6.21)

3.51
(2.68, 4.33)

5.88
(4.26, 7.51)

IL-1β 28.93
(14.02, 43.83)

15.65
(4.03, 27.26)

37.67
(16.24, 59.10)

TNF-α 348.83
(230.86, 466.81)

236.71
(148.80, 324.63)

560.24
(383.38, 737.10)

IL-6 1.60
(0.93, 2.27)

1.40
(0.87, 1.93)

1.25
(0.79, 1.72)

Anti-inflammatory

IL-1RA 22.80
(16.19, 29.41)

18.79
(14.09, 23.49)

27.43
(10.66, 44.20)

IL-10 6.35
(4.39, 8.31)

4.70
(3.86, 5.54)

7.09
(4.99, 9.19)

Growth factor

VEGF 358.02
(203.39, 512.65)

590.60
(261.16, 920.03)

370.60
(263.45, 477.76)

MIP-1α, macrophage inflammatory protein-1 alpha; IP-10, interferon-γ-inducible protein 10; MCP-1, monocyte
chemoattractant protein-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; TNF-α, tumor necrosis factor alpha;
IL-6, interleukin-6; IL-1RA, interleukin-1 receptor antagonist; IL-10, interleukin-10; VEGF, vascular endothelial
growth factor. Units in picograms per milliliter (pg/mL). a 95% confidence interval [x ± S√

n t∝/2(n − 1 )].

Table 4. Differences across Seasons over the course of two years according to cytokine production in
response to PM exposure.

Season

WD, R WD, CD R, CD

Chemotactic

MIP-1α
DBM

(95% CI)
−0.25

(−0.84, 0.34)
0.06

(−0.56, 0.67)
0.31

(−0.23, 0.85)

p-value 5.78 × 10−1 9.72 × 10−1 3.71 × 10−1

IP-10

DBM
(95% CI)

0.06
(−0.27, 0.39)

0.03
(−0.32, 0.38)

−0.03
(−0.33, 0.27)

p-value 9.03 × 10−1 9.76 × 10−1 9.71 × 10−1

MCP-1

DBM
(95% CI)

−0.29
(−0.69, 0.12)

−0.61
(−1.04, −0.19)

−0.33
(−0.70, 0.05)

p-value 2.21 × 10−1 2.46 × 10−3 ** 9.91 × 10−2 *
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Table 4. Cont.

Season

WD, R WD, CD R, CD

Pro-inflammatory

IL-1α

DBM
(95% CI)

−0.15
(−0.50, 0.20)

0.30
(−0.06, 0.67)

0.45
(0.13, 0.77)

p-value 5.68 × 10−1 1.18 × 10−1 2.83 × 10−3 **

IL-1β
DBM

(95% CI)
−0.76

(−1.26, −0.27)
0.34

(−0.17, 0.86)
1.11

(0.65, 1.56)

p-value 1.12 × 10−3 ** 2.61 × 10−1 1.98 × 10−7 ****

TNF-α

DBM
(95% CI)

−0.36
(−0.82, 0.09)

0.52
(0.05, 1.00)

0.89
(0.47, 1.31)

p-value 1.46 × 10−1 2.82 × 10−2 * 5.62 × 10−6 ****

IL-6

DBM
(95% CI)

−0.04
(−0.62, 0.53)

−0.07
(−0.67, 0.53)

−0.03
(−0.55, 0.50)

p-value 9.82 × 10−1 9.59 × 10−1 9.93 × 10−1

Anti-inflammatory

IL-1RA

DBM
(95% CI)

−0.11
(−0.50, 0.28)

0.07
(−0.34, 0.48)

0.19
(−0.17, 0.55)

p-value 7.79 × 10−1 9.04 × 10−1 4.42 × 10−1

IL-10

DBM
(95% CI)

−0.26
(−0.54, 0.02)

0.06
(−0.23, 0.35)

0.32
(0.06, 0.58)

p-value 7.67 × 10−2 * 8.79 × 10−1 1.11 × 10−2 *

Growth factor

VEGF

DBM
(95% CI)

0.46
(0.02, 0.91)

0.14
(−0.33, 0.61)

−0.32
(−0.73, 0.09)

p-value 4.08 × 10−2 * 7.52 × 10−1 1.57 × 10−1

WD, warm-dry; R, rainy; CD, cold-dry; CI, confidence interval; DBM, difference between means; MIP-1α,
macrophage inflammatory protein-1 alpha; IP-10, interferon-γ-inducible protein 10; MCP-1, monocyte chemoat-
tractant protein-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; TNF-α, tumor necrosis factor alpha; IL-6,
interleukin-6; IL-1RA, interleukin-1 receptor antagonist; IL-10, interleukin-10; VEGF, vascular endothelial growth
factor. Comparisons of means between Seasons were performed using one-way analysis of variance (ANOVA)
and Tukey’s HSD test as post hoc analysis on natural log (ln)-transformed cytokines. Statistically significant
changes relative to Seasons within each cytokine are shown with * (p ≤ 0.05), ** (p ≤ 0.01) or **** (p ≤ 0.0001).

According to the function of the groups of cytokines previously mentioned, an iterative
selection was made using principal component analysis which allowed us to simplify the
data set for all cytokines secreted by THP-1 cells after being stimulated by particles from
different regions during two years of observation. Representative cytokines with direct
biological significance, including chemokine (MIP-1α), proinflammatory (IL-1α and IL-1β),
and anti-inflammatory (IL-1RA), resulted from this analysis. Using this combination of
cytokines, three clearly differentiated regions were identified: first the northern region,
characterized by the highest proinflammatory particles; second the central and west; and
third comprising the southern and eastern regions (Figure 4). Principal component scores
reflecting the balance between proinflammatory and anti-inflammatory cytokines revealed
that the northern zone induced the highest proinflammatory response and the southern
and eastern the lowest (Figure 5, Tables 5 and 6).
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Figure 4. Iterative principal component analysis of cytokines secreted by TPH−1 cells stimulated by
PM10 from the different regions of the city selected four main contributors for variance: (A). Principal
component 1(PC1, Dim 1) comprises IL-1b and IL-1RA. Principal component 2 (PC2, Dim 2) comprises
MIP-1a and IL-1a. (B). Comparison of scores PC1 + PC2 in different regions of the megacity. The
distribution pattern obtained is shown. With these cytokines, three clusters are identified: the first
included the north, the second was central and west regions, and the last one was in the south and
east regions. The black areas on the map are forest zones, almost not urbanized.
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Table 5. Eigenvalues for principal components selection extracted by principal component analysis
of MIP-1α, IL-1 α, IL-1β, and IL-1RA.

Eigenvalue Percentage of Variance Cumulative Percentage of Variance

MIP-1α 1.7923532 44.808831 44.80883

IL-1α 1.0874345 27.185863 71.99469

IL-1β 0.8309943 20.774857 92.76955

IL-1RA 0.2892180 7.230449 100.00000
MIP-1α, macrophage inflammatory protein-1 alpha; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1RA,
interleukin-1 receptor antagonist. Kaiser–Guttman criterion was used to choose the number of components to
retain (eigenvalue > 1).

Table 6. Loadings of variables in each of the four principal components extracted by principal
component analysis.

Dim.1 Dim.2 Dim.3 Dim.4

IL-1a 0.50658333 0.4456352 −0.7324773 0.09088234

IL-1b 0.89789048 0.1045237 0.2021667 −0.37682372

MIP-1a −0.08845469 0.8931446 0.4266453 0.11154469

IL-1RA 0.84952635 −0.2832159 0.2675326 0.35569656
MIP-1α, macrophage inflammatory protein-1 alpha; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1RA,
interleukin-1 receptor antagonist.

4. Discussion

We successfully used THP-1 cells as an experimental model for evaluating the innate
immune system’s response to airborne PM10. This monocytic human leukemia cell line
has been widely used to study the functions, mechanisms, signaling pathways, nutrient,
and drug transport of monocytes/macrophages [37,38], and we propose it can be used as a
proxy of the inflammatory responses induced by airborne PM10 obtained in places such as
Mexico City. Previous descriptions of THP-1 confirm that they can recognize, internalize,
and process PM, activating NOD-like receptors (NLR) that, in turn, induce the activation
of transcription factors, such as Nuclear Factor kB (NF-κB), AP-1, and SP-1 [38], and the
signal transducer and activator of transcription-1 (STAT1) [39]. This activation results in
the up-regulation of pro-inflammatory factors, such as TNF-α and IL-6, and the protein
NLR3, necessary for the assembly of the inflammasome and the proteolytic activation of
the pro-inflammatory cytokines IL-1β and IL-18 [40]. All these characteristics make THP-1
a well-characterized cell line that can be used to biomonitor the inflammation-mediated
responses to air pollutants and to correlate these responses with health outcomes.

This study allowed the collection of PM10 over two years, simultaneously obtaining
particles from five different sectors of a large city and evaluating them with the THP-1
biological system. Cytokine secretion patterns by THP-1 cells were consistent with the
environmental characteristics of each region of the city. Sites with the highest industrial
and pollution levels and a high population density, such as the northern and central
sectors [41], induced a predominant pro-inflammatory effect on cells, calculated by the
net amount of secreted chemokines and pro-inflammatory cytokines and as the ratio of
pro-inflammatory/anti-inflammatory cytokines. Particles captured in areas of the city with
well-preserved green spaces and little industrial activity showed a low capacity for the
induction of cytokine secretion. Cytokine secretion by stimulated THP-1 cells also varied
according to the season when the particles were collected, probably due to changes in their
composition, which has been reported in previous studies [25,33,42].

Air pollution composition in Mexico City has cycles associated with changes in hu-
midity, temperature, and precipitation levels in each season and other factors such as the
intensity of vehicular traffic, industrial activity, construction, and demolition activities,
which modify the content of several chemicals and diverse biological-derived materials.
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In the dry-cold season, pollution levels increase, with PM being higher in winter, while
ozone is more elevated in the rainy season [43,44]. Mexico City is located in a basin, and the
winds entering from the north and west disperse the particulate components in a gradient
from north to south [45]. According to these changes, chemokines and pro-inflammatory
cytokines were secreted by THP-1 cells in low concentrations when cells were exposed to
particles captured during the rainy season. On the contrary, higher values were observed
when using particles from the cold-dry season, supporting the existence of different city
microenvironments in which we may expect non-identical exposure to pollutants and
dissimilar extent and severity of health effects [46].

In this study, no attempt to characterize the composition of particles was made because
they have been extensively studied in the past [33,47–49]. Studies by Manzano-Leon et al.
in 2013 and 2016 [27,33], coupled with Rosas-Pérez et al. [48], show that the chemical
properties of particles are consistent and induce proinflammatory responses resulting from
complex interactions between PM constituents. In this study, we validate regional differen-
tial effects on the secretion of several cytokines, confirming region-specific contributions
of particle constituents in THP-1 cells. Previous studies in Mexico City have shown that
particles obtained from the northern area, but not those obtained from the south part of
the city, induced cell death and DNA damage in proliferating cells and may be related to
the high content of metals [50]. Pro-inflammatory effects of PM10 became more noticeable
in the central zone, which may be the result of a synergy between metals, PAHs, and
endotoxins. On the contrary, in the southern zone, the lowest proinflammatory effect of
particles was identified, in coincidence with low levels of metals and PAHs in particles
collected in this area in previous studies. In addition, PM10 levels are always lower in this
location, which is characterized by relatively well-preserved extensive green areas.

The adverse health effects of PM are a consequence of its physical characteristics
(size, mass, and even shape) and the chemical components they contain, such as poly-
cyclic aromatic hydrocarbons (PAHs), heavy metals (HM), and biogenic materials such as
lipopolysaccharide (LPS), all of them with potential pro-inflammatory effects. The response
of THP-1 cells to PAHs and dioxins is mediated by the aryl hydrocarbon receptor (AhR), a
highly conserved intracellular transcription factor that interacts with NF-kB [51] through
physical association and transcriptional modulation. AhR, when activated in the presence
of high concentrations of PAHs, a situation that may be induced by PM10 from the northern
and central zones in our study, induces increased TNFα secretion by a mechanism related
to MAPK and ERK [52,53]. On the other hand, NF-kB activity negatively regulates the
inflammatory response mediated by LPS in monocytes and macrophages, through its
interaction with Stat1 [39]. Thus, it induces the negative regulation of NLRP3, acting as
a physiological suppressor of NLRP3 inflammasome and caspase-1 activation, directly
affecting IL-1β secretion [54]. PM10 with low PAHs and high LPS concentrations such as
those collected in the southern region results in preferential NF-kB activation that inhibits
the activation of the AhR pathway [55].

A proposed biomonitor, such as THP-1 monocytes that evaluate the pro-inflammatory
effects of particles, must be correlated with clinical and epidemiological outcomes. Cy-
tokine secretion by THP-1 in response to PM10 is direct evidence that airborne particles can
contribute to increased inflammatory factors and cellular recruitment in the lung, which pro-
motes physiology alterations, resulting in enhanced acute respiratory symptoms as chronic
obstructive pulmonary disease and asthma, pulmonary and systemic oxidative stress, and
inflammation [56,57]. Likewise, PM can activate other cellular mediators that produce
pulmonary fibrosis. All components present in the particle form a final complex mix-
ture that will produce or activate inflammatory processes, damage, or oxygen-containing
reactive species (ROS) in the lung. All these changes harm the epithelium, increasing
epithelial permeability. In addition, once airway macrophages have phagocytized PM10,
the macrophages can divert some of these cytokines to the systemic circulation, explaining
the long-distance effects of the cytokines in the cardiovascular system, modulating carcino-
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genesis [43,58,59] and inducing perinatal complications such as preterm labor or premature
rupture of the membranes [60].

Recent epidemiological evidence of the COVID-19 pandemic in Mexico City suggests
that air pollution may explain excess mortality in cities with high pollution levels [22,23].
Considering that inflammation is a primary contributor to morbidity and mortality, condi-
tioned by the innate immune response to SARS-CoV-2, our results provide direct evidence
that PM10 can induce additional pro-inflammatory responses that may explain the asym-
metry in both COVID-19-related excess mortality and morbidity during different seasons
of the year [61]. Identifying areas of the city with the highest capacity to induce inflam-
matory responses by the THP-1 bioindicator may aid in developing focalized government
efforts to modify air pollution sources and consequently lower population exposure to air
pollutants [62].

5. Conclusions

We validated the potential use of THP-1 as a biomonitor for the inflammatory effects
of PM10. It was interesting to observe that there are differences in the secretion of cytokines
according to the geographical region and season from which the particulate material comes.
Using data reduction techniques, we also identified four possible ‘sentinel’ cytokines that
can indicate the level of inflammatory balance in the cellular response, potentially reducing
the analysis costs and allowing for regular monitoring of the biological effects of PM by
season and location.

Our results support the hypothesis that particle composition may explain differences
in inflammation and toxic responses induced by air pollution in different sectors and
seasons in a megacity. This is relevant as it would help to carry out preventive measures in
the population according to where they live and the season of the year [63], as well as in
the treatment of people with different respiratory diseases exposed to particulate matter.
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