Next Issue
Volume 12, February
Previous Issue
Volume 11, December
 
 

Toxics, Volume 12, Issue 1 (January 2024) – 96 articles

Cover Story (view full-size image): As coral reefs face global decline from multiple anthropogenic stressors, including chemical substances such as herbicides and personal care products (e.g., sunscreens), the need for an accurate toxicity assessment is essential. Many existing studies on coral toxicity lack consistency and reproducibility. Addressing this gap, we present a standardizable acute toxicity test method for the common reef-building coral Montipora digitata. By testing multiple substances (i.e., BP-3, DCMU, Cu2+), our study reveals that the endpoints bleaching, and mortality offer the most robust and reliable results. Aligned with international testing standards, our method promises to enhance toxicity assessments of substances that potentially enter the marine realm, paving the way for evidence-based regulatory decisions. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 2155 KiB  
Article
Developing a Novel Read-Across Concept for Ecotoxicological Risk Assessment of Phosphate Chemicals: A Case Study
by Seokwon Lee, Seung-Yeop Ok, Hyo-Bang Moon, Sung-Chul Seo and Jin-Sung Ra
Toxics 2024, 12(1), 96; https://doi.org/10.3390/toxics12010096 - 22 Jan 2024
Viewed by 900
Abstract
This study introduces a novel concept approach for a read-across assessment, considering species sensitivity differences among phosphate chemicals within structurally similar compound groups. Twenty-five organic chemicals, with a log Kow of 5 or less, were categorized into three functional groups based on acetylcholinesterase [...] Read more.
This study introduces a novel concept approach for a read-across assessment, considering species sensitivity differences among phosphate chemicals within structurally similar compound groups. Twenty-five organic chemicals, with a log Kow of 5 or less, were categorized into three functional groups based on acetylcholinesterase (AChE) inhibition as a specific mode of action (MOA). The short-term aquatic toxicity data (LC50) for fish, crustaceans, and insects were collected from the U.S. EPA Ecotoxicology (ECOTOX) Knowledgebase. A geometric mean calculation method was applied for multiple toxic endpoints. Performance metrics for the new read-across concept, including correlation coefficient, bias, precision, and accuracy, were calculated. Overall, a slightly higher overestimation (49.2%) than underestimation (48.4%) in toxicity predictions was observed in two case studies. In Case study I, a strong positive correlation (r = 0.93) between the predicted and known toxicity values of target chemicals was observed, while in Case study II, with limited information on species and their ecotoxicity, showed a moderate correlation (r = 0.75). Overall, the bias and precision for Case study I were 0.32 ± 0.01, while Case study II showed 0.65 ± 0.06; however, the relative bias (%) increased from 37.65% (Case study I) to 91.94% (Case study II). Bland–Altman plots highlight the mean differences of 1.33 (Case study I) and 1.24 (Case study II), respectively. The new read-across concept, focusing on AChE inhibition and structural similarity, demonstrated good reliability, applicability, and accuracy with minimal bias. Future studies are needed to evaluate various types of chemical substances, diverse modes of action, functional groups, toxic endpoints, and test species to ensure overall comprehensiveness and robustness in toxicity predictions. Full article
Show Figures

Figure 1

0 pages, 6216 KiB  
Article
Geochemical Distribution and Environmental Risks of Radionuclides in Soils and Sediments Runoff of a Uranium Mining Area in South China
by Haidong Li, Qiugui Wang, Chunyan Zhang, Weigang Su, Yujun Ma, Qiangqiang Zhong, Enzong Xiao, Fei Xia, Guodong Zheng and Tangfu Xiao
Toxics 2024, 12(1), 95; https://doi.org/10.3390/toxics12010095 - 22 Jan 2024
Viewed by 804
Abstract
Uranium mining activities have contributed to the distribution and uptake of radionuclides, which have increased the active concentrations of natural radionuclides in environmental media, causing elevated human health risks. The present study aims to assess the spatial distribution characteristics of natural radionuclides in [...] Read more.
Uranium mining activities have contributed to the distribution and uptake of radionuclides, which have increased the active concentrations of natural radionuclides in environmental media, causing elevated human health risks. The present study aims to assess the spatial distribution characteristics of natural radionuclides in the surface soils and river sediments of the typical granite uranium mining area in South China, as well as investigate the geochemical features of natural radionuclides in the soil and sediments to understand their migration processes. The activity concentrations for 238U, 226Ra, 232Th, and 40K ranged from 17–3925 Bq/kg, 50–1180 Bq/kg, 29–459 Bq/kg, and 240–1890 Bq/kg, respectively. The open-pit mining areas and tailings pond locations exhibited the highest concentrations of activity for all these radionuclides. This distribution points to an elevated potential health risk due to radiological exposure in these specific areas. Additionally, the values of radium equivalent activity (Raeq) and annual gonadal dose equivalent (AGDE) in those areas were higher than the limits recommended by ICRP (2021). 238U and 226Ra have a significant correlation (0.724), and the cluster analysis was showing a statistically meaningful cluster below 5 indicated that they have similar behavior during parent rock weathering and watershed erosion, and the distribution of 232Th and 40K were influenced by the addition of rock types. The activity ratios of 226Ra/238U, 226Ra/232Th, 238U/40K, and 226Ra/40K variation indicated that 40K more mobile than 226Ra and 238U, U(VI) was reduced to U(IV) by organic matter in the downstream area and re-entered into the sediment during the sediment surface runoff in the small watershed of the uranium ore open-pit mining area. Therefore, it is necessary to further seal up and repair the tailings landfill area. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

9 pages, 212 KiB  
Article
Smoking Exposure and the Risk of Latent Tuberculosis Infection: Results from NHANES 2011–2012
by Xinsong Hu, Jiongya Liu, Yan Shao, Guoli Li, Honghuan Song, Qiao Liu, Cheng Chen and Limei Zhu
Toxics 2024, 12(1), 94; https://doi.org/10.3390/toxics12010094 - 22 Jan 2024
Viewed by 1134
Abstract
The association between smoking exposure and latent tuberculosis infection (LTBI) has been investigated in a few studies; however, further investigation is needed. In this study, the 2011–2012 NHANES population was used to evaluate smoking exposure and LTBI risk. A total of 7042 participants [...] Read more.
The association between smoking exposure and latent tuberculosis infection (LTBI) has been investigated in a few studies; however, further investigation is needed. In this study, the 2011–2012 NHANES population was used to evaluate smoking exposure and LTBI risk. A total of 7042 participants with available LTBI results and without active tuberculosis were included for analysis. Smoking was defined as participants who smoked at least 100 cigarettes in their life. Both univariable and multivariable analysis were adopted to evaluate smoking exposure, as well as related factors on the risk of LTBI. LTBI rates among current smokers (12.1%) and former smokers (9.9%) were higher than non-smokers (5.9%). However, current smokers and former smokers were not significantly associated with LTBI risk when compared to non-smokers after adjusting by age and sex in the multivariable analysis. Meanwhile, we found that passive smoking was not associated with LTBI (adjusted odds ratio (AOR), 0.85; 95%CI, 0.66–1.09). In multivariable analysis, current smoking was associated with LTBI (OR, 1.67; 95%CI, 1.28–2.19), while former smokers had an increased OR of LTBI, but the OR did not reach statistical significance (OR, 1.15; 95%CI, 0.90–1.48). Household tuberculosis (TB) contact was also related to LTBI (OR, 1.93; 95%CI, 1.25–2.99). However, BMI and diabetes were not found to be associated with LTBI. Smoking, especially current smoking, was significantly associated with LTBI. LTBI screening should be recommended for active smokers. Former smoking and passive smoking exposure were not found to have a significant relationship with LTBI risk. However, the high LTBI rate among quitters indicated we should pay more attention to former smokers with LTBI. Full article
(This article belongs to the Special Issue Exposure to Air Pollution and Respiratory Health Effects)
24 pages, 2123 KiB  
Article
Interlaboratory Study on Zebrafish in Toxicology: Systematic Evaluation of the Application of Zebrafish in Toxicology’s (SEAZIT’s) Evaluation of Developmental Toxicity
by Jon T. Hamm, Jui-Hua Hsieh, Georgia K. Roberts, Bradley Collins, Jenni Gorospe, Barney Sparrow, Nigel J. Walker, Lisa Truong, Robyn L. Tanguay, Sylvia Dyballa, Rafael Miñana, Valentina Schiavone, Javier Terriente, Andrea Weiner, Arantza Muriana, Celia Quevedo and Kristen R. Ryan
Toxics 2024, 12(1), 93; https://doi.org/10.3390/toxics12010093 - 22 Jan 2024
Viewed by 1536
Abstract
Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and [...] Read more.
Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and toxicity outcomes across laboratories and may hinder the broader adoption of this model for regulatory use. The Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative was developed to investigate the sources of variability in toxicity testing. This initiative involved an interlaboratory study to determine whether experimental parameters altered the developmental toxicity of a set of 42 substances (3 tested in duplicate) in three diverse laboratories. An initial dose-range-finding study using in-house protocols was followed by a definitive study using four experimental conditions: chorion-on and chorion-off using both static and static renewal exposures. We observed reasonable agreement across the three laboratories as 33 of 42 test substances (78.6%) had the same activity call. However, the differences in potency seen using variable in-house protocols emphasizes the importance of harmonization of the exposure variables under evaluation in the second phase of this study. The outcome of the Def will facilitate future practical discussions on harmonization within the zebrafish research community. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

24 pages, 5041 KiB  
Article
Erythrocyte Vulnerability to Airborne Nanopollutants
by Cristina Hermosillo-Abundis, Aracely Angulo-Molina and Miguel A. Méndez-Rojas
Toxics 2024, 12(1), 92; https://doi.org/10.3390/toxics12010092 - 21 Jan 2024
Cited by 1 | Viewed by 2231
Abstract
The toxicological impact of airborne polluting ultrafine particles (UFPs, also classified as nanoparticles with average sizes of less than 100 nm) is an emerging area of research pursuing a better understanding of the health hazards they pose to humans and other organisms. Hemolytic [...] Read more.
The toxicological impact of airborne polluting ultrafine particles (UFPs, also classified as nanoparticles with average sizes of less than 100 nm) is an emerging area of research pursuing a better understanding of the health hazards they pose to humans and other organisms. Hemolytic activity is a toxicity parameter that can be assessed quickly and easily to establish part of a nanoparticle’s behavior once it reaches our circulatory system. However, it is exceedingly difficult to determine to what extent each of the nanoparticles present in the air is responsible for the detrimental effects exhibited. At the same time, current hemolytic assessment methodologies pose a series of limitations for the interpretation of results. An alternative is to synthesize nanoparticles that model selected typical types of UFPs in air pollution and evaluate their individual contributions to adverse health effects under a clinical assay of osmotic fragility. Here, we discuss evidence pointing out that the absence of hemolysis is not always a synonym for safety; exposure to model nanopollutants, even at low concentrations, is enough to increase erythrocyte susceptibility and dysfunction. A modified osmotic fragility assay in combination with a morphological inspection of the nanopollutant–erythrocyte interaction allows a richer interpretation of the exposure outcomes. Membrane–nanoparticle interplay has a leading role in the vulnerability observed. Therefore, future research in this line of work should pay special attention to the evaluation of the mechanisms that cause membrane damage. Full article
Show Figures

Figure 1

15 pages, 1990 KiB  
Article
Mixture Effects of Per- and Polyfluoroalkyl Substances on Embryonic and Larval Sheepshead Minnows (Cyprinodon variegatus)
by Philip Tanabe, Peter B. Key, Katy W. Chung, Emily C. Pisarski, Jessica L. Reiner, Alix E. Rodowa, Jason T. Magnuson and Marie E. DeLorenzo
Toxics 2024, 12(1), 91; https://doi.org/10.3390/toxics12010091 - 20 Jan 2024
Cited by 1 | Viewed by 1250
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants originating from many everyday products. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two PFAS that are commonly found at high concentrations in aquatic environments. Both chemicals have previously been shown [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants originating from many everyday products. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are two PFAS that are commonly found at high concentrations in aquatic environments. Both chemicals have previously been shown to be toxic to fish, as well as having complex and largely uncharacterized mixture effects. However, limited information is available on marine and estuarine species. In this study, embryonic and larval sheepshead minnows (Cyprinodon variegatus) were exposed to several PFAS mixtures to assess lethal and sublethal effects. PFOS alone was acutely toxic to larvae, with a 96 h LC50 of 1.97 mg/L (1.64–2.16). PFOS + PFOA resulted in a larval LC50 of 3.10 (2.62–3.79) mg/L, suggesting an antagonistic effect. These observations were supported by significant reductions in malondialdehyde (105% ± 3.25) and increases in reduced glutathione concentrations (43.8% ± 1.78) in PFOS + PFOA exposures compared to PFOS-only treatments, indicating reduced oxidative stress. While PFOA reduced PFOS-induced mortality (97.0% ± 3.03), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) did not. PFOS alone did not affect expression of peroxisome proliferator-activated receptor alpha (pparα) but significantly upregulated apolipoprotein A4 (apoa4) (112.4% ± 17.8), a downstream product of pparα, while none of the other individually tested PFAS affected apoa4 expression. These findings suggest that there are antagonistic interactions between PFOA and PFOS that may reduce mixture toxicity in larval sheepshead minnows through reduced oxidative stress. Elucidating mechanisms of toxicity and interactions between PFAS will aid environmental regulation and management of these ubiquitous pollutants. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism)
Show Figures

Graphical abstract

11 pages, 662 KiB  
Article
Teeth as an Indicator of the Environmental Exposure of Silesia Province’s Inhabitants in Poland to Metallic Trace Elements
by Joanna Domagalska, Małgorzata Ćwieląg-Drabek, Grzegorz Dziubanek, Natalia Ulatowska, Sylwia Bortlik and Agata Piekut
Toxics 2024, 12(1), 90; https://doi.org/10.3390/toxics12010090 - 20 Jan 2024
Viewed by 834
Abstract
(1) Background: The elemental composition of teeth can provide an estimate of environmental exposure to heavy metals. The aim of this study was to analyze the possibility of using teeth in the biomonitoring of environmental exposure to heavy metals as an indicator of [...] Read more.
(1) Background: The elemental composition of teeth can provide an estimate of environmental exposure to heavy metals. The aim of this study was to analyze the possibility of using teeth in the biomonitoring of environmental exposure to heavy metals as an indicator of contaminants present in the human residential environment. (2) Methods: The research materials were 110 samples of extracted teeth. The samples were taken from people living in three areas in the province of Silesia. The concentrations of cadmium, lead, and mercury in the samples were determined. (3) Results: The results of the chemical analysis of the collected samples showed a significant variation in the concentrations of heavy metals (Cd, Pb, and Hg) in the analyzed teeth. Furthermore, the mean concentrations of the analyzed heavy metals in the teeth varied according to the patient’s place of residence, the type of tooth analyzed, the presence of caries in the patient, and the smoking or non-smoking status of the patient. (4) Conclusions: The results of the chemical analysis of the teeth of inhabitants of three cities in the most polluted region of Poland indicate that they can be used as an indicator of environmental exposure to cadmium, lead, and mercury. Full article
(This article belongs to the Special Issue Ambient Air Pollution Exposure and Human Health)
Show Figures

Figure 1

51 pages, 4118 KiB  
Review
Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes
by Zahid Hassan and Hans V. Westerhoff
Toxics 2024, 12(1), 89; https://doi.org/10.3390/toxics12010089 - 19 Jan 2024
Viewed by 1134
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in [...] Read more.
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity. Full article
Show Figures

Figure 1

19 pages, 3941 KiB  
Article
Efficient Removal of Hazardous P-Nitroaniline from Wastewater by Using Surface-Activated and Modified Multiwalled Carbon Nanotubes with Mesostructure
by Tzong-Horng Liou and Jyun-Jie Huang
Toxics 2024, 12(1), 88; https://doi.org/10.3390/toxics12010088 - 19 Jan 2024
Viewed by 810
Abstract
P-nitroaniline (PNA) is an aniline compound with high toxicity and can cause serious harm to aquatic animals and plants. Multiwalled carbon nanotubes (MWCNTs) are a multifunctional carbon-based material that can be applied in energy storage and biochemistry applications and semiconductors as well as [...] Read more.
P-nitroaniline (PNA) is an aniline compound with high toxicity and can cause serious harm to aquatic animals and plants. Multiwalled carbon nanotubes (MWCNTs) are a multifunctional carbon-based material that can be applied in energy storage and biochemistry applications and semiconductors as well as for various environmental purposes. In the present study, MWCNTs (CO2–MWCNTs and KOH–MWCNTs) were obtained through CO2 and KOH activation. ACID–MWCNTs were obtained through surface treatment with an H2SO4–HNO3 mixture. Herein, we report, for the first time, the various MWCNTs that were employed as nanoadsorbents to remove PNA from aqueous solution. The MWCNTs had nanowire-like features and different tube lengths. The nanotubular structures were not destroyed after being activated. The KOH–MWCNTs, CO2–MWCNTs, and ACID–MWCNTs had surface areas of 487, 484, and 80 m2/g, respectively, and pore volumes of 1.432, 1.321, and 0.871 cm3/g, respectively. The activated MWCNTs contained C–O functional groups, which facilitate PNA adsorption. To determine the maximum adsorption capacity of the MWCNTs, the influences of several adsorption factors—contact time, solution pH, stirring speed, and amount of adsorbent—on PNA adsorption were investigated. The KOH–MWCNTs had the highest adsorption capacity, followed by the CO2–MWCNTs, pristine MWCNTs, and ACID–MWCNTs. The KOH–MWCNTs exhibited rapid PNA adsorption (>85% within the first 5 min) and high adsorption capacity (171.3 mg/g). Adsorption isotherms and kinetics models were employed to investigate the adsorption mechanism. The results of reutilization experiments revealed that the MWCNTs retained high adsorption capacity after five cycles. The surface-activated and modified MWCNTs synthesized in this study can effectively remove hazardous pollutants from wastewater and may have additional uses. Full article
(This article belongs to the Special Issue Novel Adsorbents and Adsorption Methods for Pollutants Removal Ⅱ)
Show Figures

Figure 1

21 pages, 3448 KiB  
Article
Artificial Intelligence and Machine Learning Methods to Evaluate Cardiotoxicity following the Adverse Outcome Pathway Frameworks
by Edoardo Luca Viganò, Davide Ballabio and Alessandra Roncaglioni
Toxics 2024, 12(1), 87; https://doi.org/10.3390/toxics12010087 - 19 Jan 2024
Viewed by 1266
Abstract
Cardiovascular disease is a leading global cause of mortality. The potential cardiotoxic effects of chemicals from different classes, such as environmental contaminants, pesticides, and drugs can significantly contribute to effects on health. The same chemical can induce cardiotoxicity in different ways, following various [...] Read more.
Cardiovascular disease is a leading global cause of mortality. The potential cardiotoxic effects of chemicals from different classes, such as environmental contaminants, pesticides, and drugs can significantly contribute to effects on health. The same chemical can induce cardiotoxicity in different ways, following various Adverse Outcome Pathways (AOPs). In addition, the potential synergistic effects between chemicals further complicate the issue. In silico methods have become essential for tackling the problem from different perspectives, reducing the need for traditional in vivo testing, and saving valuable resources in terms of time and money. Artificial intelligence (AI) and machine learning (ML) are among today’s advanced approaches for evaluating chemical hazards. They can serve, for instance, as a first-tier component of Integrated Approaches to Testing and Assessment (IATA). This study employed ML and AI to assess interactions between chemicals and specific biological targets within the AOP networks for cardiotoxicity, starting with molecular initiating events (MIEs) and progressing through key events (KEs). We explored methods to encode chemical information in a suitable way for ML and AI. We started with commonly used approaches in Quantitative Structure–Activity Relationship (QSAR) methods, such as molecular descriptors and different types of fingerprint. We then increased the complexity of encoders, incorporating graph-based methods, auto-encoders, and character embeddings employed in neural language processing. We also developed a multimodal neural network architecture, capable of considering the complementary nature of different chemical representations simultaneously. The potential of this approach, compared to more conventional architectures designed to handle a single encoder, becomes apparent when the amount of data increases. Full article
Show Figures

Figure 1

21 pages, 2678 KiB  
Article
Unveiling the Aftermath: Exploring Residue Profiles of Insecticides, Herbicides, and Fungicides in Rice Straw, Soils, and Air Post-Mixed Pesticide-Contaminated Biomass Burning
by Suteekan Lamnoi, Thirasant Boonupara, Sulak Sumitsawan, Patipat Vongruang, Tippawan Prapamontol, Patchimaporn Udomkun and Puangrat Kajitvichyanukul
Toxics 2024, 12(1), 86; https://doi.org/10.3390/toxics12010086 - 18 Jan 2024
Viewed by 1469
Abstract
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A [...] Read more.
This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health. Full article
Show Figures

Figure 1

16 pages, 3618 KiB  
Article
Distribution Characteristics and Risk Assessment of 57 Pesticides in Farmland Soil and the Surrounding Water
by Weiqing Wang, Donghong Wang, Quanzhen Liu, Lihua Lin, Yongchang Xie and Chuan Du
Toxics 2024, 12(1), 85; https://doi.org/10.3390/toxics12010085 - 18 Jan 2024
Viewed by 975
Abstract
To investigate the effect of pesticide use on surface water, the concentration and distribution characteristics of 57 pesticides and 3 degradation products were analyzed in the farmland soil and surface water in the Xingkai Lake area, including water from paddy fields, drainages and [...] Read more.
To investigate the effect of pesticide use on surface water, the concentration and distribution characteristics of 57 pesticides and 3 degradation products were analyzed in the farmland soil and surface water in the Xingkai Lake area, including water from paddy fields, drainages and the Xingkai Lake, in Heilongjiang Province, China. Forty-three pesticides and three degradation products were detected in farmland soil. In dry field (corn and soybean field) soil, the main detected pesticides were atrazine and acetochlor with mean concentrations of 26.09 ng·g−1 and 49.08 ng·g−1, respectively. In paddy field soil, oxadiazon, mefenacet and chlorpyrifos were the main detected pesticides with mean concentrations of 14.32 ng·g−1, 78.60 ng·g−1 and 20.03 ng·g−1, respectively. In the surrounding water, including water from paddy fields, drainages and Xingkai Lake, the total concentrations of contaminants detected in the water samples ranged from 71.19 ng·L−1 to 10,145.76 ng·L−1. Of the three sampling periods, the mean concentration of contaminants in the water exhibited its peak during the vegetative period. In the analysis of the drainage water, the primary pesticides detected were atrazine, acetochlor and buprofezin with mean concentrations of 354.83 ng·L−1, 109.09 ng·L−1 and 254.56 ng·L−1, respectively. Atrazine, simetryn, buprofezin and isoprothiolane were the main pesticides detected in Xingkai Lake water, with the mean concentrations of 222.35 ng·L−1, 112.76 ng·L−1, 301.87 ng·L−1 and 138.02 ng·L−1, respectively. The concentrations of contaminants could be correlated with drainage, Da Xingkai Lake and Xiao Xingkai Lake water (ρ > 0.8) suggested that the source of these contaminants in drainage and Xingkai Lake water could be the same. The maximum potentially affected fraction (PAF) values of atrazine, chlorpyrifos and prometryn were higher than 5% in Xingkai Lake water, resulting in high ecological risks. Full article
Show Figures

Figure 1

12 pages, 1483 KiB  
Article
Historical Occurrence and Composition of Novel Brominated Flame Retardants and Dechlorane Plus in Sediments from an Electronic Waste Recycling Site in South China
by Chenchen Huang, Yanhong Zeng, Yin-E Liu, Yanting Zhang, Jian Guo, Xiaojun Luo and Bixian Mai
Toxics 2024, 12(1), 84; https://doi.org/10.3390/toxics12010084 - 18 Jan 2024
Viewed by 895
Abstract
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores [...] Read more.
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores were collected from an e-waste-polluted pond located in a typical e-waste recycling site in South China to investigate the historical occurrence and composition of NBFRs and DP. The NBFRs and DP were detected in all layers of the sediment cores with concentration ranges of 5.71~180,895 and 4.95~109,847 ng/g dw, respectively. Except for 2,3,5,6-tetrabromo-p-xylene (pTBX) and 2,3,4,5,6-pentabromoethylbenzene (PBEB), all the NBFR compounds and DP showed a clear increasing trend from the bottom to top layers. These results implied the long-term and severe contamination of NBFRs and DP. Decabromodiphenyl ethane (DBDPE) was the most abundant NBFR with the contribution proportions of 58 ± 15%, 73 ± 15%, and 71 ± 18% in three sediment cores, followed by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) and pentabromobenzene (HBB). The ratios of BTBPE/Octa-BDEs and DBDPE/Deca-BDEs varied from 0.12 to 60 and from 0.03 to 0.49, respectively, which had no clear increase trends with a decrease in sediment depth. As for DP, the fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) in sediment cores ranged from 0.41 to 0.83, almost falling in the range of those in DP technical products, suggesting that DP degradation did not occur in sediment cores. The environmental burdens of DBDPE, BTBPE, HBB, PBT, PBEB, pTBX, and DP were estimated to be 34.0, 5.67, 10.1, 0.02, 0.02, 0.01, and 34.8 kg, respectively. This work provides the first insight into the historical contamination status of NBFRs and DP in the sediments of an e-waste recycling site. Full article
Show Figures

Figure 1

13 pages, 282 KiB  
Article
Positive Association of Urinary Dimethylarsinic Acid (DMAV) with Serum 25(OH)D in Adults Living in an Area of Water-Borne Arsenicosis in Shanxi, China
by Kunyu Zhang, Yunyi Yin, Man Lv, Xin Zhang, Meichen Zhang, Jia Cui, Ziqiao Guan, Xiaona Liu, Yang Liu, Yanhui Gao and Yanmei Yang
Toxics 2024, 12(1), 83; https://doi.org/10.3390/toxics12010083 - 18 Jan 2024
Viewed by 883
Abstract
Limited studies have demonstrated that inorganic arsenic exposure is positively associated with serum vitamin D levels, although the correlation between urinary arsenic species and serum vitamin D has not been investigated in areas of water-borne arsenicosis. A cross-sectional study of 762 participants was [...] Read more.
Limited studies have demonstrated that inorganic arsenic exposure is positively associated with serum vitamin D levels, although the correlation between urinary arsenic species and serum vitamin D has not been investigated in areas of water-borne arsenicosis. A cross-sectional study of 762 participants was conducted in Wenshui Country, Shanxi Province, a water-borne arsenicosis area. The results showed a positive relationship between urinary arsenic species (inorganic arsenic (iAs), methylarsonic acid (MMAV), dimethylarsinic acid (DMAV) and serum 25(OH)D. Log-binomial regression analysis indicated a 0.4% increase in the risk of vitamin D excess for every 1-unit increment in the Box–Cox transformed urinary DMAV after adjustment for covariates. After stratifying populations by inorganic arsenic methylation metabolic capacity, serum 25(OH)D levels in the populations with iAs% above the median and primary methylation index (PMI) below the median increased by 0.064 ng/mL (95% CI: 0.032 to 0.096) for every one-unit increase in the Box–Cox transformed total arsenic (tAs) levels. Serum 25(OH)D levels increased by 0.592 ng/mL (95% CI: 0.041 to 1.143) for every one-unit rise in the Box–Cox transformed iAs levels in people with skin hyperkeratosis. Overall, our findings support a positive relationship between urinary arsenic species and serum 25(OH)D. It was recommended that those residing in regions with water-borne arsenicosis should take moderate vitamin D supplements to avoid vitamin D poisoning. Full article
17 pages, 503 KiB  
Review
Respiratory Toxicology of Graphene-Based Nanomaterials: A Review
by Chunxue Kong, Junwen Chen, Ping Li, Yukang Wu, Guowei Zhang, Bimin Sang, Rui Li, Yuqin Shi, Xiuqing Cui and Ting Zhou
Toxics 2024, 12(1), 82; https://doi.org/10.3390/toxics12010082 - 18 Jan 2024
Viewed by 1164
Abstract
Graphene-based nanomaterials (GBNs) consist of a single or few layers of graphene sheets or modified graphene including pristine graphene, graphene nanosheets (GNS), graphene oxide (GO), reduced graphene oxide (rGO), as well as graphene modified with various functional groups or chemicals (e.g., hydroxyl, carboxyl, [...] Read more.
Graphene-based nanomaterials (GBNs) consist of a single or few layers of graphene sheets or modified graphene including pristine graphene, graphene nanosheets (GNS), graphene oxide (GO), reduced graphene oxide (rGO), as well as graphene modified with various functional groups or chemicals (e.g., hydroxyl, carboxyl, and polyethylene glycol), which are frequently used in industrial and biomedical applications owing to their exceptional physicochemical properties. Given the widespread production and extensive application of GBNs, they can be disseminated in a wide range of environmental mediums, such as air, water, food, and soil. GBNs can enter the human body through various routes such as inhalation, ingestion, dermal penetration, injection, and implantation in biomedical applications, and the majority of GBNs tend to accumulate in the respiratory system. GBNs inhaled and substantially deposited in the human respiratory tract may impair lung defenses and clearance, resulting in the formation of granulomas and pulmonary fibrosis. However, the specific toxicity of the respiratory system caused by different GBNs, their influencing factors, and the underlying mechanisms remain relatively scarce. This review summarizes recent advances in the exposure, metabolism, toxicity and potential mechanisms, current limitations, and future perspectives of various GBNs in the respiratory system. Full article
Show Figures

Figure 1

15 pages, 4974 KiB  
Article
The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China
by Jinting Huang, Aomeng Cai, Weisi Wang, Kuan He, Shuangshuang Zou and Qingxia Ma
Toxics 2024, 12(1), 81; https://doi.org/10.3390/toxics12010081 - 17 Jan 2024
Viewed by 818
Abstract
Despite significant improvements in air quality during and after COVID-19 restrictions, haze continued to occur in Zhengzhou afterwards. This paper compares ionic compositions and sources of PM2.5 before (2019), during (2020), and after (2021) the restrictions to explore the reasons for the [...] Read more.
Despite significant improvements in air quality during and after COVID-19 restrictions, haze continued to occur in Zhengzhou afterwards. This paper compares ionic compositions and sources of PM2.5 before (2019), during (2020), and after (2021) the restrictions to explore the reasons for the haze. The average concentration of PM2.5 decreased by 28.5% in 2020 and 27.9% in 2021, respectively, from 102.49 μg m−3 in 2019. The concentration of secondary inorganic aerosols (SIAs) was 51.87 μg m−3 in 2019, which decreased by 3.1% in 2020 and 12.8% in 2021. In contrast, the contributions of SIAs to PM2.5 increased from 50.61% (2019) to 68.6% (2020) and 61.2% (2021). SIAs contributed significantly to PM2.5 levels in 2020–2021. Despite a 22~62% decline in NOx levels in 2020–2021, the increased O3 caused a similar NO3 concentration (20.69~23.00 μg m−3) in 2020–2021 to that (22.93 μg m−3) in 2019, hindering PM2.5 reduction in Zhengzhou. Six PM2.5 sources, including secondary inorganic aerosols, industrial emissions, coal combustion, biomass burning, soil dust, and traffic emissions, were identified by the positive matrix factorization model in 2019–2021. Compared to 2019, the reduction in PM2.5 from the secondary aerosol source in 2020 and 2021 was small, and the contribution of secondary aerosol to PM2.5 increased by 13.32% in 2020 and 12.94% in 2021. In comparison, the primary emissions, including biomass burning, traffic, and dust, were reduced by 29.71% in 2020 and 27.7% in 2021. The results indicated that the secondary production did not significantly contribute to the PM2.5 decrease during and after the COVID-19 restrictions. Therefore, it is essential to understand the formation of secondary aerosols under high O3 and low precursor gases to mitigate air pollution in the future. Full article
Show Figures

Figure 1

12 pages, 1525 KiB  
Article
Dose-Dependent Effects of a Corn Starch-Based Bioplastic on Basil (Ocimum basilicum L.): Implications for Growth, Biochemical Parameters, and Nutrient Content
by Nazanin Azarnejad, Silvia Celletti, Majid Ghorbani, Riccardo Fedeli and Stefano Loppi
Toxics 2024, 12(1), 80; https://doi.org/10.3390/toxics12010080 - 17 Jan 2024
Viewed by 1448
Abstract
Plastic pollution is a pressing global issue, prompting the exploration of sustainable alternatives such as bioplastics (BPs). In agriculture, BPs have gained relevance as mulching films. This study investigated the effect of the presence in the soil of different concentrations (0–3%, w/ [...] Read more.
Plastic pollution is a pressing global issue, prompting the exploration of sustainable alternatives such as bioplastics (BPs). In agriculture, BPs have gained relevance as mulching films. This study investigated the effect of the presence in the soil of different concentrations (0–3%, w/w) of a corn starch-based bioplastic on basil (Ocimum basilicum L.). The results showed that increasing bioplastic concentration reduced shoot fresh biomass production. Biochemical analyses revealed changes in the shoot in soluble protein content, biomarkers of oxidative and osmotic stress (malondialdehyde and proline, respectively), anti-radical activity, and antioxidant compounds (phenols, flavonoids, and ascorbic acid), which are indicative of plant adaptive mechanisms in response to stress caused by the presence of the different concentrations of bioplastic in the soil. Macro- and micronutrient analysis showed imbalances in nutrient uptake, with a decreased content of potassium, phosphorus, and manganese, and an increased content of magnesium, iron, and copper in the shoot at high BP concentrations. Full article
Show Figures

Figure 1

15 pages, 1725 KiB  
Article
Analyzing COVID-19 and Air Pollution Effects on Pediatric Asthma Emergency Room Visits in Taiwan
by Yan-Lin Chen, Yen-Yue Lin, Pi-Wei Chin, Cheng-Chueh Chen, Chun-Gu Cheng and Chun-An Cheng
Toxics 2024, 12(1), 79; https://doi.org/10.3390/toxics12010079 - 17 Jan 2024
Cited by 1 | Viewed by 1084
Abstract
(1) Background: An asthma exacerbation that is not relieved with medication typically requires an emergency room visit (ERV). The coronavirus disease 2019 (COVID-19) pandemic began in Taiwan in January of 2020. The influence of the COVID-19 pandemic on pediatric ERVs in Taiwan was [...] Read more.
(1) Background: An asthma exacerbation that is not relieved with medication typically requires an emergency room visit (ERV). The coronavirus disease 2019 (COVID-19) pandemic began in Taiwan in January of 2020. The influence of the COVID-19 pandemic on pediatric ERVs in Taiwan was limited. Our aim was to survey pediatric asthma ERVs in the COVID-19 era; (2) Methods: Data were collected from the health quality database of the Taiwanese National Health Insurance Administration from 2019 to 2021. Air pollution and climatic factors in Taipei were used to evaluate these relationships. Changes in the rates of pediatric asthma ERVs were assessed using logistic regression analysis. Poisson regression was used to evaluate the impact of air pollution and climate change; (3) Results: The rate of pediatric asthma ERVs declined in different areas and at different hospital levels including medical centers, regional and local hospitals. Some air pollutants (particulate matter ≤ 2.5 µm, particulate matter ≤ 10 µm, nitrogen dioxide, and carbon monoxide) reduced during the COVID-19 lockdown. Ozone increased the relative risk (RR) of pediatric asthma ERVs during the COVID-19 period by 1.094 (95% CI: 1.095–1.12) per 1 ppb increase; (4) Conclusions: The rate of pediatric asthma ERVs declined during the COVID-19 pandemic and ozone has harmful effects. Based on these results, the government could reduce the number of pediatric asthma ERVs through healthcare programs, thereby promoting children’s health. Full article
Show Figures

Figure 1

17 pages, 4085 KiB  
Article
Preparation and Comprehensive Evaluation of the Efficacy and Safety of Chlorantraniliprole Nanosuspension
by Xiquan Ding, Liang Guo, Qian Du, Tingyu Wang, Zhanghua Zeng, Yan Wang, Haixin Cui, Fei Gao and Bo Cui
Toxics 2024, 12(1), 78; https://doi.org/10.3390/toxics12010078 - 16 Jan 2024
Cited by 1 | Viewed by 1036
Abstract
Chlorantraniliprole is a broad-spectrum insecticide that has been widely used to control pests in rice fields. Limited by its low solubility in both water and organic solvents, the development of highly efficient and environmentally friendly chlorantraniliprole formulations remains challenging. In this study, a [...] Read more.
Chlorantraniliprole is a broad-spectrum insecticide that has been widely used to control pests in rice fields. Limited by its low solubility in both water and organic solvents, the development of highly efficient and environmentally friendly chlorantraniliprole formulations remains challenging. In this study, a low-cost and scalable wet media milling technique was successfully employed to prepare a chlorantraniliprole nanosuspension. The average particle size of the extremely stable nanosuspension was 56 nm. Compared to a commercial suspension concentrate (SC), the nanosuspension exhibited superior dispersibility, as well as superior foliar wetting and retention performances, which further enhanced its bioavailability against Cnaphalocrocis medinalis. The nanosuspension dosage could be reduced by about 40% while maintaining a comparable efficacy to that of the SC. In addition, the chlorantraniliprole nanosuspension showed lower residual properties, a lower toxicity to non-target zebrafish, and a smaller effect on rice quality, which is conducive to improving food safety and the ecological safety of pesticide formulations. In this work, a novel pesticide-reduction strategy is proposed, and theoretical and data-based support is provided for the efficient and safe application of nanopesticides. Full article
Show Figures

Graphical abstract

27 pages, 6497 KiB  
Article
Biogenic Punica granatum Flower Extract Assisted ZnFe2O4 and ZnFe2O4-Cu Composites for Excellent Photocatalytic Degradation of RhB Dye
by Amal Alshehri, Laila Alharbi, Aiyaz Ahmad Wani and Maqsood Ahmad Malik
Toxics 2024, 12(1), 77; https://doi.org/10.3390/toxics12010077 - 16 Jan 2024
Viewed by 1056
Abstract
Globally, the textile industry contributes to pollution through accidental discharges or discharge of contaminated wastewater into waterways, significantly affecting water quality. These pollutants, including dye molecules, are environmental hazards for aquatic and terrestrial life. The field of visible light-mediated photocatalysis has experienced rapid [...] Read more.
Globally, the textile industry contributes to pollution through accidental discharges or discharge of contaminated wastewater into waterways, significantly affecting water quality. These pollutants, including dye molecules, are environmental hazards for aquatic and terrestrial life. The field of visible light-mediated photocatalysis has experienced rapid growth, driven by the utilization of photocatalysts that can absorb low-energy visible light and effectively degrade dyes. In the present study, we report a simple method to controllably synthesize Fe2O3, ZnO, and ZnFe2O4 using the one-pot synthesis method. In the subsequent step, copper (Cu) was deposited on the surface of ZnFe2O4 (forming ZnFe2O4-Cu) using a facile, green, and cost-effective method. The synthesized samples were characterized using various techniques, including XRD, UV-Vis DRS, FT-IR, SEM-EDX, HR-TEM, XPS, PL, and BET analysis. These techniques were employed to investigate the composition, morphology, structure, and photophysical properties of as-prepared samples. The ZnFe2O4-Cu nanocomposite demonstrated efficient photocatalytic activity for degrading RhB dye pollutants under visible light. The photocatalyst was successfully reused for three consecutive cycles without significantly decreasing performance. Furthermore, during the study, the radical scavenging test emphasized the role of different radicals in the degradation of dye pollutants. This research has the potential to enable the efficient production of high-performance photocatalysts that can rapidly eliminate ecologically harmful dyes from aqueous solutions. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Emerging Contaminants)
Show Figures

Figure 1

16 pages, 1133 KiB  
Review
Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis
by Kai Wang, Lei Lei, Ge Li, Yang Lan, Wanzhou Wang, Jiaqi Zhu, Qisijing Liu, Lihua Ren and Shaowei Wu
Toxics 2024, 12(1), 76; https://doi.org/10.3390/toxics12010076 - 15 Jan 2024
Viewed by 1011
Abstract
Background: The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset [...] Read more.
Background: The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. Objectives: To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. Methods: A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. Results: A total of 18 studies were included in this meta-analysis. A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: −4.94%, 5.65%) and E-selectin (3.21%, 95% CI: −0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. Conclusion: Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure. Full article
Show Figures

Figure 1

13 pages, 1244 KiB  
Article
Multiclass Determination of Endocrine-Disrupting Chemicals in Meconium: First Evidence of Perfluoroalkyl Substances in This Biological Compartment
by Aritz Domínguez-Liste, Teresa de Haro-Romero, Raquel Quesada-Jiménez, Ainhoa Pérez-Cantero, Francisco Manuel Peinado, Óscar Ballesteros and Fernando Vela-Soria
Toxics 2024, 12(1), 75; https://doi.org/10.3390/toxics12010075 - 15 Jan 2024
Viewed by 998
Abstract
Major concerns have been raised about human exposure to endocrine-disrupting chemicals (EDCs) during pregnancy. Effective methodologies for the assessment of this exposure are needed to support the implementation of preventive measures and the prediction of negative health effects. Meconium has proven a valuable [...] Read more.
Major concerns have been raised about human exposure to endocrine-disrupting chemicals (EDCs) during pregnancy. Effective methodologies for the assessment of this exposure are needed to support the implementation of preventive measures and the prediction of negative health effects. Meconium has proven a valuable non-invasive matrix for evaluating cumulative exposure to xenobiotics during the last two trimesters of pregnancy. The study objective was to develop a novel method to determine the presence in meconium of perfluoroalkyl substances (PFASs), bisphenols, parabens, and benzophenones, EDCs that are widely used in the manufacture of numerous consumer goods and personal care products, including cosmetics. Ten PFASs, two bisphenols, four parabens, and four benzophenones were measured in meconium samples prepared by using a combination of Captiva Enhanced Matrix Removal (EMR) lipid cartridges with salt-assisted liquid–liquid extraction (SALLE) and dispersive liquid–liquid microextraction (DLLME) before the application of liquid chromatography–tandem mass spectrometry (LC–MS/MS). Experimental parameters were optimized by applying different chemometric techniques. Limits of detection ranged from 0.05 to 0.1 ng g−1, and between-day variabilities (relative standard deviations) ranged from 6.5% to 14.5%. The method was validated by matrix-matched standard calibration followed by a recovery assay with spiked samples, obtaining percentage recoveries of 89.9% to 114.8%. The method was then employed to measure compounds not previously studied in this matrix in 20 meconium samples. The proposed analytical procedure yields information on cumulative in utero exposure to selected EDCs. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

10 pages, 1393 KiB  
Article
Investigating the Impact of Humic Acid on Copper Accumulation in Sinonovacula constricta Using a Toxicokinetic–Toxicodynamic Model
by Mingyi Cai, Tian Ma, Huayong Que, Bo Shi, Xiande Liu and Yizhou Ke
Toxics 2024, 12(1), 74; https://doi.org/10.3390/toxics12010074 - 15 Jan 2024
Viewed by 843
Abstract
In aquatic ecosystems, the interaction between heavy metals and dissolved organic carbon (DOC) plays a pivotal role in modifying the bioavailability of these metals. This study, employing a toxicokinetic–toxicodynamic model, delves into the interactive effects of humic acid (HA), a significant component of [...] Read more.
In aquatic ecosystems, the interaction between heavy metals and dissolved organic carbon (DOC) plays a pivotal role in modifying the bioavailability of these metals. This study, employing a toxicokinetic–toxicodynamic model, delves into the interactive effects of humic acid (HA), a significant component of DOC, on the bioaccumulation and toxicity of copper (Cu) in the estuarine economic bivalve Sinonovacula constricta. Utilizing the stable isotope 65Cu as a tracer, we evaluated Cu uptake in S. constricta under varied DOC concentrations in a controlled laboratory setting. Our findings reveal that at DOC concentrations below 3.05 mg L−1, the bioavailability of Cu is reduced due to shifts in the speciation distribution of Cu, resulting in decreased bioaccumulation within S. constricta. Conversely, at DOC levels exceeding 3.05 mg L−1, the formation of colloidal Cu–HA complexes allows its entry into the bivalves’ digestive system. Moreover, toxicity assays demonstrate an increase in S. constricta survival rates with higher DOC concentrations, suggesting a protective effect of DOC against Cu toxicity. The integration of accumulation and toxicity data infers that Cu–HA complexes, when ingested via the digestive tract, exhibit lower toxicity compared to Cu directly assimilated from the water phase. These findings emphasize the need to consider environmental DOC levels in assessing Cu pollution risks and provide insights for managing heavy metal toxicity in estuarine aquaculture. Full article
Show Figures

Figure 1

11 pages, 1885 KiB  
Article
Ritonavir Has Reproductive Toxicity Depending on Disrupting PI3K/PDK1/AKT Signaling Pathway
by Eun-Ju Jung, Jae-Hwan Jo, Claudine Uwamahoro, Seung-Ik Jang, Woo-Jin Lee, Ju-Mi Hwang, Jeong-Won Bae and Woo-Sung Kwon
Toxics 2024, 12(1), 73; https://doi.org/10.3390/toxics12010073 - 15 Jan 2024
Viewed by 1155
Abstract
Ritonavir (RTV) is an antiviral and a component of COVID-19 treatments. Moreover, RTV demonstrates anti-cancer effects by suppressing AKT. However, RTV has cytotoxicity and suppresses sperm functions by altering AKT activity. Although abnormal AKT activity is known for causing detrimental effects on sperm [...] Read more.
Ritonavir (RTV) is an antiviral and a component of COVID-19 treatments. Moreover, RTV demonstrates anti-cancer effects by suppressing AKT. However, RTV has cytotoxicity and suppresses sperm functions by altering AKT activity. Although abnormal AKT activity is known for causing detrimental effects on sperm functions, how RTV alters AKT signaling in spermatozoa remains unknown. Therefore, this study aimed to investigate reproductive toxicity of RTV in spermatozoa through phosphoinositide 3-kinase/phosphoinositide-dependent protein kinase-1/protein kinase B (PI3K/PDK1/AKT) signaling. Duroc spermatozoa were treated with various concentrations of RTV, and capacitation was induced. Sperm functions (sperm motility, motion kinematics, capacitation status, and cell viability) and expression levels of tyrosine-phosphorylated proteins and PI3K/PDK1/AKT pathway-related proteins were evaluated. In the results, RTV significantly suppressed sperm motility, motion kinematics, capacitation, acrosome reactions, and cell viability. Additionally, RTV significantly increased levels of phospho-tyrosine proteins and PI3K/PDK1/AKT pathway-related proteins except for AKT and PI3K. The expression level of AKT was not significantly altered and that of PI3K was significantly decreased. These results suggest RTV may suppress sperm functions by induced alterations of PI3K/PDK1/AKT pathway through abnormally increased tyrosine phosphorylation. Therefore, we suggest people who use or prescribe RTV need to consider its male reproductive toxicity. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

17 pages, 3354 KiB  
Article
Resourcization of Argillaceous Limestone with Mn3O4 Modification for Efficient Adsorption of Lead, Copper, and Nickel
by Deyun Li, Yongtao Li, Shuran He, Tian Hu, Hanhao Li, Jinjin Wang, Zhen Zhang and Yulong Zhang
Toxics 2024, 12(1), 72; https://doi.org/10.3390/toxics12010072 - 15 Jan 2024
Viewed by 929
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth’s crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4 [...] Read more.
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth’s crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4–AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

15 pages, 1867 KiB  
Article
Ecological and Health Risks Attributed to Rare Earth Elements in Coal Fly Ash
by Latinka Slavković-Beškoski, Ljubiša Ignjatović, Mirjana Ćujić, Jelena Vesković, Katarina Trivunac, Jelena Stojaković, Aleksandra Perić-Grujić and Antonije Onjia
Toxics 2024, 12(1), 71; https://doi.org/10.3390/toxics12010071 - 15 Jan 2024
Cited by 1 | Viewed by 1072
Abstract
The occurrence and distribution of yttrium and rare earth elements (REYs), along with major elements and heavy metal(loid)s (HMs) in coal fly ash (CFA) from five coal-fired power plants (CFPPs), were analyzed, and the REY-associated ecological and health risks were assessed. The individual [...] Read more.
The occurrence and distribution of yttrium and rare earth elements (REYs), along with major elements and heavy metal(loid)s (HMs) in coal fly ash (CFA) from five coal-fired power plants (CFPPs), were analyzed, and the REY-associated ecological and health risks were assessed. The individual REYs in CFA were abundant in the following order: Ce > La > Nd > Y > Pr > Gd > Sm > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The total REY content ranged from 135 to 362 mg/kg, averaging 302 mg/kg. The mean light-to-heavy REY ratio was 4.1, indicating prevalent light REY enrichment in CFA. Significantly positive correlations between the REYs suggested that they coexist and share similar origins in CFA. REYs were estimated to pose low to moderate ecological risks, with risk index (RI) values ranging from 66 to 245. The hazard index (HI) and target cancer risk (TCR) of REYs from CFA, estimated to be higher for children (HIc = 0.15, TCRc = 8.4 × 10−16) than for adults (HIa = 0.017, TCRa = 3.6 × 10−16), were well below the safety limits (HI = 1, TCR = 1.0 × 10−6). However, the danger to human health posed by HMs in the same CFA samples (HIc = 5.74, TCRc = 2.6 × 10−4, TCRa = 1.1 × 10−4) exceeded the safe thresholds (excl. HIa = 0.63). The mean RI and HI attributed to REYs in CFA were 14% and 2.6%, respectively, of the total risks that include HMs. Full article
Show Figures

Figure 1

18 pages, 3937 KiB  
Article
Z-Type Heterojunction MnO2@g-C3N4 Photocatalyst-Activated Peroxymonosulfate for the Removal of Tetracycline Hydrochloride in Water
by Guanglu Lu, Xinjuan Li, Peng Lu, He Guo, Zimo Wang, Qian Zhang, Yuchao Li, Wenbo Sun, Jiutao An and Zijian Zhang
Toxics 2024, 12(1), 70; https://doi.org/10.3390/toxics12010070 - 14 Jan 2024
Viewed by 1111
Abstract
A Z-type heterojunction MnO2@g-C3N4 photocatalyst with excellent performance was synthesized by an easy high-temperature thermal polymerization approach and combined with peroxymonosulfate (PMS) oxidation technology for highly efficient degrading of tetracycline hydrochloride (TC). Analysis of the morphological structural and [...] Read more.
A Z-type heterojunction MnO2@g-C3N4 photocatalyst with excellent performance was synthesized by an easy high-temperature thermal polymerization approach and combined with peroxymonosulfate (PMS) oxidation technology for highly efficient degrading of tetracycline hydrochloride (TC). Analysis of the morphological structural and photoelectric properties of the catalysts was achieved through different characterization approaches, showing that the addition of MnO2 heightened visible light absorption by g-C3N4. The Mn1-CN1/PMS system showed the best degradation of TC wastewater, with a TC degradation efficiency of 96.97% following 180 min of treatment. This was an approximate 38.65% increase over the g-C3N4/PMS system. Additionally, the Mn1-CN1 catalyst exhibited excellent stability and reusability. The active species trapping experiment indicated •OH and SO4•− remained the primary active species to degrade TC in the combined system. TC degradation pathways and intermediate products were determined. The Three-Dimensional Excitation-Emission Matrix (3DEEM) was employed for analyzing changes in the molecular structure in TC photocatalytic degradation. The biological toxicity of TC and its degradation intermediates were investigated via the Toxicity Estimation Software Test (T.E.S.T.). The research offers fresh thinking for water environment pollution treatment. Full article
Show Figures

Figure 1

21 pages, 497 KiB  
Article
Biomonitoring of Oxidative-Stress-Related Genotoxic Damage in Patients with End-Stage Renal Disease
by Yücel Yüzbaşıoğlu, Merve Hazar, Sevtap Aydın Dilsiz, Ciğdem Yücel, Mesudiye Bulut, Serdar Cetinkaya, Onur Erdem and Nursen Basaran
Toxics 2024, 12(1), 69; https://doi.org/10.3390/toxics12010069 - 14 Jan 2024
Viewed by 954
Abstract
Chronic kidney disease (CKD), a common progressive renal failure characterized by the permanent loss of functional nephrons can rapidly progress to end-stage renal disease, which is known to be an irreversible renal failure. In the therapy of ESRD, there are controversial suggestions about [...] Read more.
Chronic kidney disease (CKD), a common progressive renal failure characterized by the permanent loss of functional nephrons can rapidly progress to end-stage renal disease, which is known to be an irreversible renal failure. In the therapy of ESRD, there are controversial suggestions about the use of regular dialysis, since it is claimed to increase oxidative stress, which may increase mortality in patients. In ESRD, oxidative-stress-related DNA damage is expected to occur, along with increased inflammation. Many factors, including heavy metals, have been suggested to exacerbate the damage in kidneys; therefore, it is important to reveal the relationship between these factors in ESRD patients. There are very few studies showing the role of oxidative-stress-related genotoxic events in the progression of ESRD patients. Within the scope of this study, genotoxic damage was evaluated using the comet assay and 8-OHdG measurement in patients with ESRD who were undergoing hemodialysis. The biochemical changes, the levels of heavy metals (aluminum, arsenic, cadmium, lead, and mercury) in the blood, and the oxidative biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were evaluated, and their relationship with genotoxic damages was revealed. Genotoxicity, oxidative stress, and heavy-metal levels, except mercury, increased significantly in all renal patients. DNA damage, 8OHdG, and MDA significantly increased, and GSH significantly decreased in patients undergoing dialysis, compared with those not having dialysis. The duration and the severity of disease was positively correlated with increased aluminum levels and moderate positively correlated with increased DNA damage and cadmium levels. In conclusion, this study revealed that the oxidative-stress-related DNA damage, and also the levels of Al and Cd, increased in ESRD patients. It is assumed that these changes may play an important role in the progression of renal damage. Approaches for reducing oxidative-stress-related DNA damage and heavy-metal load in ESRD patients are recommended. Full article
Show Figures

Figure 1

18 pages, 536 KiB  
Article
Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru
by Angélica Guabloche, Lorena Alvariño, Thiago Machado da Silva Acioly, Diego Carvalho Viana and José Iannacone
Toxics 2024, 12(1), 68; https://doi.org/10.3390/toxics12010068 - 14 Jan 2024
Cited by 1 | Viewed by 1149
Abstract
The lorna drum Sciaena deliciosa is a coastal demersal species and one of the underlying artisanal fisheries in some areas of Peru, and is also a source of protein for Peruvian coastal dwellers. The investigation addresses concern about the environmental impact on this [...] Read more.
The lorna drum Sciaena deliciosa is a coastal demersal species and one of the underlying artisanal fisheries in some areas of Peru, and is also a source of protein for Peruvian coastal dwellers. The investigation addresses concern about the environmental impact on this fish species and the potential risks to human health through the consumption of contaminated seafood. This research endeavors to assess the concentration of potentially toxic and essential elements in the muscle and liver tissues of S. deliciosa, in addition to the presence thereof in water and sediment capture areas on the coast of Callao, Peru. The study revealed that, in water samples, Ag, Ni, and Zn exceed Peruvian standards, but were below international standards, and Ba, P, Se, and Sn exceed international standards. In the sediments, As, Cd, Pb, Fe, and Zn were above international standards. In the fish, S. delicious muscle demonstrated As, Hg, and Pb exceeding at least one international standard. In the liver, As, Hg, Pb, and Cu exceed international standards. The study approach increased accuracy in risk assessments, offering crucial insights into the interplay between heavy metal pollution, water quality, and animal health, informing risk management strategies. Future studies can explore the long-term effects of heavy metal exposure on different organisms and consider their cumulative impact on health. Full article
(This article belongs to the Special Issue Ecotoxicological Effects of Emerging Contaminants on Aquatic Species)
Show Figures

Figure 1

21 pages, 8851 KiB  
Article
Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells
by Xiaojia He, Lillie Marie Barnett, Jennifer Jeon, Qian Zhang, Saeed Alqahtani, Marilyn Black, Jonathan Shannahan and Christa Wright
Toxics 2024, 12(1), 67; https://doi.org/10.3390/toxics12010067 - 13 Jan 2024
Viewed by 1571
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions [...] Read more.
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air–liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes. Full article
(This article belongs to the Special Issue The Latest Advances in Air Pollution and Human Health)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop