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Abstract: Soils contaminated with polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofu-
rans (PCDFs), and dioxin-like (dl) polychlorinated biphenyls (PCBs), known as persistent organic
pollutants (POPs), have garnered global attention because of their toxicity and persistence in the
environment. The standard method for target analytes has been used; however, it is an obstacle in
large-scale sample analysis due to the comprehensive sample preparation and high-cost instrumental
analysis. Thus, analytical development of inexpensive methods with lower barriers to determine
PCDDs/Fs and dl-PCBs in soil is needed. In this study, a one-step cleanup method was developed
and validated by combining a multilayer silica gel column and Florisil micro-column followed by
gas chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS). To optimize
the separation and quantification of 17 PCDDs/Fs and 12 dl-PCBs in soils, the sample cleanup and
instrumental conditions were investigated. For quantification method validation, spiking experi-
ments were conducted to determine the linearity of the calibration, recovery, and method detection
limit of PCDDs/Fs and dl-PCBs using isotopic dilution GC-QqQ-MS/MS. The applicability of the
simultaneous determination of PCDDs/Fs and dl-PCBs was confirmed by the recovery of native
target congeners and labeled surrogate congeners spiked into the quality-control and actual soil
samples. The results were in good agreement with the requirements imposed by standard methods.
The findings in this work demonstrated the high accessibility of the sample cleanup and analysis
methods for the efficient determination of PCDDs/Fs and dl-PCBs in contaminated soils.

Keywords: polychlorodibenzo-p-dioxins (PCDDs); polychlorodibenzofurans (PCDFs); dioxin-like
polychlorinated biphenyls (dl-PCBs); persistent organic pollutants (POPs); one-step cleanup; gas
chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS); soils

1. Introduction

Polychlorodibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)
are a group of chemical compounds that are persistent organic pollutants (POPs). Moreover,
a group of polychlorinated biphenyls (PCBs), referred to as dioxin-like (dl) PCBs or coplanar
PCBs, are treated as less potent versions of PCDDs/Fs due to their similar molecular
structures and properties. Coplanar PCBs, including four non-ortho-substituted (PCB 77,
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81, 126, and 169) and eight mono-ortho-substituted (PCB 105, 114, 118, 123, 156, 157, 167,
and 189) congeners, are particularly toxic [1]. From the perspective of human exposure,
17 PCDDs/Fs and 12 dl-PCBs are considered as toxicologically concerning materials by the
World Health Organization (WHO) (Table S1).

PCDDs/Fs and dl-PCBs are mainly produced through various sources, such as indus-
trial processes, incomplete combustion of fuels, and waste incineration [2–4]. These com-
pounds are considerably stable during environmental and biological degradation, resulting
in their persistence in the environment and bioaccumulation in the food chain. Moreover,
they cause various biological toxicities in humans, plants, and soil [5–7]. The most toxic con-
gener, 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD), exhibits severe toxicological effects,
such as damage to the immune system, teratogenesis, and tumor promotion [8–10].

In 2004, the Stockholm Convention on POPs emphasized the control and reduction
of environmental exposure to POPs, of which PCDDs/Fs and dl-PCBs are considered as
representative substances. Furthermore, numerous countries have started regulating them
at both the screening and action levels, as well as prohibiting their industrial discharge
under Clean Water Act Effluent Guidelines [11,12]. Therefore, new analytical methods are
being developed to monitor the toxicity of PCDDs/Fs and dl-PCBs in different matrices,
such as water, food, soil, and air, for large-scale sample analysis.

Most studies have focused on the direct exposure of the human body to POPs through
food, animal feeds, and air; however, few studies have considered the contamination and
toxicity of POPs in soil. The POP concentration in soil varies depending on the type of soil;
the PCDD/F and dl-PCB concentrations in soil around industrial parks and incinerators
are higher than in other environmental matrices [13–16].

In Korea, the maximum residue level (MRL) for PCDDs/Fs in soil has recently been
established and emission standards for dl-PCBs are being prepared [17]. The sample prepa-
ration and analytical methods for the contaminant groups, PCDDs/Fs and dl-PCBs, have
already been published by authorized organizations, such as the United States Environ-
mental Protection Agency (USEPA) [18–21]. However, these methods have limitations
with respect to monitoring numerous samples from the perspective of sample cleanup and
instrumental analysis. From the perspective of sample cleanup, the open-column cleanup
procedure is labor-intensive and time-consuming. Moreover, this procedure requires a
large space for sample preparation as well as large amounts of hazardous solvents. An
automated PCDDs/Fs cleanup system overcomes the drawbacks of the manual method in
terms of time and labor. However, the costs of installation (approximately $100,000) and
maintenance are high. The aforementioned factors have spurred the development of more
simplified, small-scale, and time-saving methods with reasonable cost, such as contami-
nated soil remediation technology [22–25]. For instance, the micro-column sample cleanup
procedure takes a shorter time, and simplifies and reduces laboratory work when compared
with the traditional manual methods, such as the USEPA method 1613 [26–28]. The methods
proposed in this study are semiautomatic methods that can overcome the disadvantages of
both traditional and automatic preparation methods. Moreover, the developed methods
require a minimum workspace and reasonable cost. A gas chromatograph–high-resolution
mass spectrometer (GC-HR/MS), which is mainly used for quantifying PCDDs/Fs and
dl-PCBs, has excellent advantages and high sensitivity; however, methods based on GC-
HR/MS incur high initial-investment and maintenance costs and require skilled operators.
Furthermore, GC-HR/MS exhibits easy contamination after a high-concentration analysis,
thereby requiring extreme care during the analytical procedure. Therefore, sample inspec-
tions are expensive, i.e., approximately $2000 per sample in South Korea and $500–$2500
per sample in other countries, depending on the urgency [29]. Thus, efforts are being made
toward the development of alternative analytical methods.

In a previous study, gas chromatography with triple quadrupole mass spectrometry
(GC-QqQ-MS/MS) has been successfully used as an alternative and cost-effective analytical
method for determining 17 PCDDs/Fs in contaminated soil [30]. This study aims to develop
an analytical procedure combining a fast, miniaturized sample cleanup method and cost-
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effective GC-QqQ-MS/MS analysis for quantification of 17 PCDDs/Fs and 12 dl-PCBs
in contaminated soil. To our knowledge, no attempt has been made to combine a fast,
miniaturized sample cleanup with a GC-QqQ-MS/MS analysis technique. A simultaneous,
simple, and eco-friendly cleanup method was employed using one-step cleanup columns
for effectively separating POP congeners. For the GC-QqQ-MS/MS analysis, the analytical
conditions were optimized for separating and quantifying PCDDs/Fs and dl-PCBs. For
validating the quantitative method, spiking experiments were conducted to determine the
linearity, recovery, and method detection limit (MDL) of PCDDs/Fs and dl-PCBs. The
developed method could be applied for the inspection of 17 PCDDs/Fs and 12 dl-PCBs in
contaminated soil, and is also expected to be used in various detection methods, such as
MRL monitoring.

2. Materials and Methods
2.1. Chemical and Reagents

Standard solutions of PCDDs/Fs and PCBs congeners, namely, EPA-1613 STOCK
(Native Stock Solution), EPA-1613 LCS (13C12-labeled compound stock solution), EPA-1613
ISS (internal standard solution), and EPA-1613 CVS (calibration and verification solutions,
CS1–CS4) for PCDDs/Fs, and WP-STOCK, WP-LCS, WP-ISS, and WP-CVS (CS1–CS6) for
dl-PCBs, were purchased from Wellington Laboratories Inc. (Guelph, ON, Canada). The
organic solvents n-hexane and DCM and ethyl ether for pesticide residue analysis (all
of analytical grade) were purchased from J.T. Baker (Phillipsburg, NJ, USA). Anhydrous
sodium sulfate (Na2SO4) from FUJI-FILM Wako Chemicals USA Corporation (Richmond,
VA, USA) and 95% sulfuric acid from Merck (Darmstadt, Germany) were used. The
multilayer silica gel column packed in a glass tube (O.D. 6.35 mm × length 35 cm) was
purchased from Supelco (Bellefonte, PA, USA). This column was composed of 3 g 10% Ag-
NO3/silica gel, 0.9 g silica gel, 22% H2SO4/silica gel, 4.5 g 44% H2SO4/silica gel, 0.9 g silica
gel, 3 g 2% KOH/silica gel, and 0.9 g silica gel. Florisil with a mesh size of 60–100 mesh
purchased from Merck was used.

2.2. Extraction of PCDDs/Fs and dl-PCBs from Soil Samples

To perform the quality assurance and quality control (QA/QC), a pooling sample of
diatomaceous earth purchased from Duksan Science (Seoul, Republic of Korea) was used as
the blank and control samples without target analytes. For the actual sample analysis, the
samples excavated from areas near industrial complexes with suspected soil contamination
were used. The details of the soil sampling have been described in a previous study [30].

For method validation, 0.025–250 ng of native standards of PCDDs/Fs and dl-PCBs
were spiked into accurately weighed soil (20 g). Subsequently, 1 ng of EPA-1613 LCS and
0.5 ng of WP-LCS were added to the soil samples, and 20 g of anhydrous Na2SO4 was
homogenously mixed to avoid moisture. The soil samples were then sonicated for 30 min
with 100 mL of acetone:n-hexane (1:1, v/v) in an ultrasonic bath (frequency = 531 kHz).
The organic solvent layer was filtered through 5 g of anhydrous Na2SO4 using qualitative
filter paper (Advantec®, Tokyo, Japan). The extract (300 mL) was collected by repeating the
sonication and filtration processes thrice. The spiked extract was evaporated (Eyela, Tokyo,
Japan) to remove acetone, dissolved in 100 mL n-hexane, and transferred into a separate
funnel. The extracts were cleaned via sulfuric acid treatment before multilayer column
chromatography to avoid clogging the column with sample residues because soil matrices
usually have high contents of natural organic compounds, such as humic substances, lipids,
pigments, and fulvic acids [31]. The extracted n-hexane layer was repeatedly treated with
concentrated sulfuric acid until a colorless sample was obtained. The sample was then
washed with 100 mL of deionized distilled water. The solvent of the extract was evaporated
and concentrated under N2 flow and dissolved with 50 µL of nonane. Ultrasonic extraction,
filtration, and concentration were similarly applied to the extraction of the actual sample
performed during the validation test.
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2.3. Sample Cleanup

To separate PCDDs/Fs and dl-PCBs from the samples, a Florisil column was used.
Supelco Dioxin Prep System–Florisil Version is a manual system that consists of a multilayer
silica column coupled in series with a Florisil micro-column. Florisil was preactivated
overnight at 130 ◦C. The micro-column was filled with 0.2 g of Na2SO4 (upper layer) and
1 g of preactivated Florisil (lower layer); considerable skill is required for conducting this
step. Before cleanup, the multilayer silica column was conditioned with 150 mL of n-hexane
and the Florisil micro-column was conditioned by adding 10 mL of DCM, followed by
100 mL of n-hexane.

The multilayer silica gel column was then coupled over the Florisil micro-column. The
concentrated extract was loaded to the top surface of the silica gel column. The first 25 mL
of eluate (F1) was discarded. Consequently, 175 mL of n-hexane (F2–F8) and 25 mL of 2%
DCM/n-hexane (2:98, v/v, F9) were collected from the connected columns for the dl-PCB
fraction. For the PCDD/F fraction, 75 mL of DCM (F10–F12) was sequentially collected.
Each fraction was concentrated via N2 gas purging and spiked with 1 ng of EPA-1613 ISS
and 0.5 ng of WP-ISS. The final volume of the sample was adjusted to 50 µL using nonane
and used for analysis.

2.4. Instrumental Analysis

GC–QqQ-MS/MS was performed using a system with a 7890B gas chromatograph
coupled with a 7010 triple quadrupole mass spectrometer (Agilent Technologies, USA). The
analytes were separated using a DB-5MS UI capillary column (5% diphenyl, 95% dimethyl
siloxane phase, and 60 m × 0.25 mm × 0.25 µm) from J&W Scientific (Folsom, CA, USA).
A 2 µL sample was injected in the splitless mode at 280 ◦C and 310 ◦C for dl-PCBs and
PCDDs/Fs, respectively. A liner with a capacity of 990 µL, an inner diameter of 4 mm, and
a length of 78 mm was used. For the dl-PCB analysis, the GC oven was programmed to
an initial temperature of 150 ◦C and held at this temperature for 1 min. Thereafter, the
oven was sequentially heated up to 200 ◦C, 260 ◦C, and 300 ◦C at 20, 2, and 10 ◦C/min,
respectively, and held at these temperatures for 1, 4, and 10 min, respectively. For the
PCDD/F analysis, the GC oven was programmed to an initial temperature of 160 ◦C and
held at this temperature for 1 min. Subsequently, the oven was sequentially heated up to
200 ◦C, 220 ◦C, 235 ◦C, and 310 ◦C at 5, 5, 5, and 5 ◦C/min, respectively, and held at these
temperatures for 2, 15, 5, and 20 min, respectively. High-purity helium (99.999%) was used
as the carrier gas at a flow rate of 1 mL/min. The aforementioned measurements were
conducted in the electron impact ionization (EI) mode. The electron emission energy was
set to 70 eV, and the temperature of the ion source was 230 ◦C. The analytical conditions
and each specification of the instruments are summarized in Table S2.

Each analyte was detected by selecting two specific ions (M and M+2 or M+2 and M+4)
and was qualitatively analyzed by comparing the ion abundance ratio and retention time
of the selected ions [32]. The quantification of the analytes was conducted using an isotopic
dilution method under the dynamic MRM (dMRM) mode; this method is a good alternative
for the simultaneous analysis of multicomponent samples and exhibits higher sensitivity
and specificity than those of MRM [33,34]. The MRM transitions for the quantifier and
qualifier utilized the two most predominant fragments for each analyte. Four individual
collision energies (5, 15, 30, and 50 eV) were tested for each MRM transition. The optimized
conditions for the dMRM for dl-PCBs and PCDDs/Fs are listed in Table 1.
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Table 1. Dynamic multiple-reaction monitoring (dMRM) conditions of (a) dioxin-like (dl) polychlorinated biphenyls (PCBs) and (b) polychlorodibenzo-p-dioxin
(PCDD) and polychlorinated dibenzofuran (PCDF) congeners using gas chromatography with triple quadrupole mass spectrometry (GC-QqQ-MS/MS).

Congener

Qualifier Quantifier
Congener
(Labeled)

Qualifier Quantifier

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

(a) dl-PCBs
PCB 81 290.0→ 220.1 30 292.0→ 222.0 30 PCB 81L 302.0→ 232.1 30 304.0→ 234.0 30
PCB 77 290.0→ 219.9 30 292.0→ 222.0 30 PCB 77L 302.0→ 232.1 30 304.0→ 234.0 30

PCB 123 328.0→ 257.9 30 326.0→ 255.9 30 PCB 123L 340.0→ 270.0 30 338.0→ 267.8 30
PCB 118 328.0→ 257.9 30 326.0→ 255.9 30 PCB 118L 340.0→ 270.0 30 338.0→ 267.8 30
PCB 114 328.0→ 257.9 30 326.0→ 255.9 15 PCB 114L 340.0→ 270.0 30 338.0→ 267.8 30
PCB 105 328.0→ 257.9 30 326.0→ 255.9 30 PCB 105L 340.0→ 270.0 30 338.0→ 267.8 30
PCB 126 328.0→ 257.9 30 326.0→ 255.7 30 PCB 126L 340.0→ 269.9 30 338.0→ 267.9 30
PCB 167 362.0→ 291.9 30 360.0→ 289.8 30 PCB 167L 374.0→ 303.9 30 372.0→ 301.9 30
PCB 156 362.0→ 291.9 30 360.0→ 290.0 30 PCB 156L 374.0→ 303.8 15 372.0→ 301.8 30
PCB 157 362.0→ 291.9 15 360.0→ 290.0 30 PCB 157L 374.0→ 303.8 30 372.0→ 301.8 30
PCB 169 362.0→ 291.9 30 360.0→ 289.7 30 PCB 169L 374.0→ 303.8 30 372.0→ 302.0 30
PCB 189 396.0→ 325.9 30 394.0→ 324.1 30 PCB 189L 408.0→ 338.0 30 406.0→ 336.0 30

PCB 70L 302.0→ 232.0 30 304.0→ 233.9 30
PCB 111L 340.0→ 269.8 30 338.0→ 267.8 30
PCB 138L 374.0→ 303.9 30 372.0→ 301.9 15
PCB 170L 408.0→ 338.0 30 406.0→ 336.0 30

(b) PCDDs/Fs
2,3,7,8-TCDF 304.0→ 241.0 30 306.0→ 242.9 30 13C-2,3,7,8-TCDF 316.0→ 252.3 30 318.0→ 253.9 50
2,3,7,8-TCDD 320.0→ 256.8 50 322.0→ 193.9 50 13C-2,3,7,8-TCDD 332.0→ 268.1 15 334.0→ 269.8 15

1,2,3,7,8-PeCDF 342.0→ 278.8 30 340.0→ 276.9 30 13C-1,2,3,7,8-PeCDF 354.0→ 290.2 15 352.0→ 287.9 30
2,3,4,7,8-PeCDF 342.0→ 278.9 30 340.0→ 276.9 30 13C-2,3,4,7,8-PeCDF 354.0→ 289.7 30 352.0→ 287.9 30
1,2,3,7,8-PeCDD 358.0→ 294.9 30 356.0→ 229.9 50 13C-1,2,3,7,8-PeCDD 370.0→ 306.1 15 368.0→ 303.9 15

1,2,3,4,7,8-HxCDF 376.0→ 313.0 30 374.0→ 311.0 30 13C-1,2,3,4,7,8-HxCDF 388.0→ 324.1 15 386.0→ 321.9 30
1,2,3,6,7,8-HxCDF 376.0→ 313.0 30 374.0→ 311.0 30 13C-1,2,3,6,7,8-HxCDF 388.0→ 324.2 15 386.0→ 321.9 15
2,3,4,6,7,8-HxCDF 376.0→ 312.9 30 374.0→ 311.0 30 13C-2,3,4,6,7,8-HxCDF 388.0→ 324.0 30 386.0→ 321.9 30
1,2,3,4,7,8-HxCDD 392.0→ 329.0 15 390.0→ 264.0 50 13C-1,2,3,4,7,8-HxCDD 404.0→ 276.0 30 402.0→ 273.9 50
1,2,3,6,7,8-HxCDD 392.0→ 329.0 15 390.0→ 264.0 50 13C-1,2,3,6,7,8-HxCDD 404.0→ 276.1 30 402.0→ 273.9 50
1,2,3,7,8,9-HxCDD 392.0→ 329.0 15 390.0→ 264.0 50 13C-1,2,3,7,8,9-HxCDF 388.0→ 323.8 15 386.0→ 321.8 30
1,2,3,7,8,9-HxCDF 376.0→ 312.9 30 374.0→ 310.9 30 13C-1,2,3,7,8,9-HxCDF 388.0→ 323.8 15 386.0→ 321.8 30

1,2,3,4,6,7,8-HpCDF 410.0→ 347.0 30 408.0→ 344.9 30 13C-1,2,3,4,6,7,8-HpCDF 422.0→ 357.8 50 420.0→ 356.1 30
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Table 1. Cont.

Congener

Qualifier Quantifier
Congener
(Labeled)

Qualifier Quantifier

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

Transitions
(m/z)

Collision
Energy (eV)

1,2,3,4,6,7,8-HpCDD 426.0→ 361.0 30 424.0→ 363.0 30 13C-1,2,3,4,6,7,8-HpCDD 438.0→ 373.9 30 436.0→ 372.0 30
1,2,3,4,7,8,9-HpCDF 410.0→ 346.9 30 408.0→ 345.0 30 13C-1,2,3,4,7,8,9-HpCDF 422.0→ 358.1 30 420.0→ 356.0 30

OCDD 458.0→ 395.0 30 460.0→ 397.0 15 13C-OCDD 470.0→ 406.1 30 472.0→ 408.2 30
OCDF 442.0→ 378.9 30 444.0→ 381.0 30 13C-OCDD 470.0→ 406.1 30 472.0→ 408.2 30

13C-1,2,3,4-TCDD 332.0→ 267.9 15 334.0→ 269.8 15
13C-1,2,3,7,8,9-HxCDD 404.0→ 276.1 30 402.0→ 273.9 50
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2.5. Quality Assurance and Quality Control (QA/QC)

QA/QC procedures were performed to evaluate whether the developed analytical
method meets the requirements of EPA 1613B and EPA 1668C methods in this study [35].
Linearity, MDL, limit of quantitation (LOQ) and recovery experiments of the calibration
curve were performed to evaluate the QA/QC of the assay method. Peaks detected at a
signal-to-noise ratio greater than 3 were used for the analysis. The average relative response
factor (RRF) for the individual isomers was calculated at each concentration and averaged.
The RSD of the average RRF value was <15%, which satisfies the EPA criterion. The linearity
of the calibration curve was evaluated based on the determination coefficient (R2).

To assess the instrument performance and calibration during the continuous analysis,
a recovery (%) test was performed by analyzing the native and 13C-labeled congeners with
the mid-standard solution of the calibration curve for every 10 sample batches. The results
showed that the recovery of the native and 13C-labeled PCDDs/Fs and dl-PCBs congeners
satisfies the criteria of the EPA 1613B [18] and EPA 1668C [19] methods (Figure S1). Thus,
GC-QqQ-MS/MS remained stable during the aforementioned analysis.

3. Results and Discussion
3.1. Optimization of the Cleanup Procedure

In the USEPA method, two columns (multilayer silica gel column and alumina column)
are separately prepared in parallel, and the eluate obtained from the first column (silica
gel) is concentrated. Subsequently, the eluate is newly loaded in the second column
(alumina) for separation and elution. The adopted cleanup method is a one-step method
that connects two columns (multilayer silica gel and Florisil column, Figure S2). Moreover,
it can separate and elute PCDDs/Fs and dl-PCBs simultaneously with one loading. In this
study, operational conditions such as the amount and speed of elution and the ratio of the
solvent were optimized for this purpose.

Soil contamination by PCDDs/Fs and dl-PCBs are attributed to accidental spillage
during the manufacture, transport, storage, and use of various chlorinated compounds in
the industry as well as their disposal in unregulated landfills [36]. The concentrations of
other interferences are considerably higher than those of the target analytes in contaminated
soil; therefore, sample cleanup is required to remove the interferences prior to analysis and
quantification. Among the sample cleanup methods, open-column absorption chromatog-
raphy is commonly used for sorbents, such as silica, alumina, and Florisil [13,37,38]. In this
study, a combination of multilayer silica gel and Florisil micro-columns was employed after
sulfuric acid treatment. The multilayer silica gel column is used to remove interferences,
including acidic and basic compounds as well as hydrolyzed fats. Furthermore, the Florisil
column, which is effective in terms of recovery and resolution of dl-PCBs [39], is used for
separating PCDDs/Fs and dl-PCBs with different retentions [40]. The conditions of the
combined cleanup columns, namely, the specific elution solvent and flow rate, should be
adjusted to the enable separation of two contaminant groups (PCDDs/Fs and dl-PCBs) in
one step.

The elution properties of dl-PCBs and PCDDs/Fs with respect to the multilayer silica
gel column were investigated to determine the amounts of n-hexane required to elute all
congeners from the silica gel column and transfer them to the coupled Florisil micro-column
(Figure S3). Because higher-chlorinated biphenyl (CB) has lower polarity, hepta-CB was
eluted first with n-hexane, a non-polar solvent, and tetra-CBs were eluted last from the
silica gel column. For the same reason, OCDD and OCDF were eluted first and TCDD and
TCDF were eluted last with n-hexane [41,42]. It was found that 25 mL of n-hexane was to
be discarded and 175 mL of n-hexane was required to elute all of the congeners of dl-PCBs
and PCDDs/Fs from the silica gel column.

When congeners are fractionated using the combined columns, the elution profile
(Figure 1a) shows that the non-ortho-substituted PCBs (PCB 77, 81, 126, and 169) tend to
have structurally higher retention in Florisil than the mono-ortho-substituted PCBs (PCB
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105, 114, 118, 123, 156, 157, 167, and 189) because of their planar conformation [43]. Penta-,
hexa-, and hepta-CBs were eluted from F2 to F4 with n-hexane, and tetra-CBs are eluted
from F5 to the next elution with 25 mL of 2% dichloromethane (DCM) in n-hexane (F9). The
elution of most hexa- and penta-CBs was not observed in more than 100 mL of n-hexane
(Figure S4). To elute the remaining congeners, DCM/n-hexane (2:98 and 5:95, v/v) and
ethyl ether/n-hexane (6:94, v/v) were considered, based on previous studies [44–46], as
shown in Table S3. There is no considerable difference in the recovery of dl-PCBs according
to the solvent composition in the Florisil micro-column; however, the highest recoveries
of 92.1%–102.9% for all congeners were noted when DCM/n-hexane (2:98, v/v) was used.
Figure 1b shows the elution profile of PCDDs/Fs for the Florisil micro-column with DCM
after eluting dl-PCBs. As shown in Figure 1b, 75 mL of DCM (F10–F12) was required to
elute all the congeners of PCDDs/Fs.
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Figure 1. Elution profiles of (a) dl-PCBs and (b) PCDDs/Fs using the combined columns (multilayer
silica gel and Florisil micro-column). The shaded part of the graph represents the elution volumes for
dl-PCB fraction eluted by 175 mL of n-hexane and 25 mL of 2% dichloromethane (DCM) in n-hexane
and PCDD/F fraction eluted by 75 mL of DCM.

The elution rate of DCM/n-hexane (2:98, v/v) in the Florisil micro-column is a key factor
for separately collecting dl-PCB and PCDDs/Fs fractions. Table 2 shows the recoveries
of dl-PCBs and PCDDs/Fs when DCM/n-hexane (2:98, v/v) was eluted at a rate of 1, 5,
and 10 mL/min in the Florisil micro-column. The recoveries of the dl-PCBs congeners are
similar at the three different elution rates, except for PCB 169 (75.1% at a rate of 10 mL/min).
Non-ortho-substituted PCBs (PCB 77, 81, 126, and 169) were coeluted with the PCDDs/Fs
congeners at elution rates of 5 and 10 mL/min. The recoveries of the PCDDs/Fs congeners
noticeably decreased with increasing elution rate from 1 and 5 mL/min to 10 mL/min.
Therefore, 1 mL/min DCM/n-hexane (2:98, v/v) and DCM in the Florisil micro-column
were considered the most appropriate conditions for the complete separation of the fractions
of dl-PCBs and PCDDs/Fs. The specific details of each step are presented in Figure S2.
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Table 2. Recoveries a (%) of dl-PCBs and PCDDs/Fs congeners based on the elution rate (mL/min)
in the Florisil micro-column.

Congener
1 mL/min 5 mL/min 10 mL/min

dl-PCB
Fraction b

PCDD/F
Fraction c

dl-PCB
Fraction

PCDD/F
Fraction

dl-PCB
Fraction

PCDD/F
Fraction

dl-PCBs
PCB 81 100.0 ND d 99.8 0.2 98.9 1.1
PCB 77 100.0 ND 99.6 0.4 95.8 4.2
PCB 123 100.0 ND 99.9 0.1 100.0 ND
PCB 118 100.0 ND 99.9 0.1 100.0 ND
PCB 114 100.0 ND 100.0 ND 100.0 ND
PCB 105 100.0 ND 99.6 0.4 99.8 0.2
PCB 126 100.0 ND 99.4 0.6 92.8 7.2
PCB 167 100.0 ND 99.9 0.1 100.0 ND
PCB 156 100.0 ND 99.9 0.1 100.0 ND
PCB 157 100.0 ND 99.9 0.1 100.0 ND
PCB 169 100.0 ND 97.9 2.1 75.1 24.9
PCB 189 100.0 ND 99.9 0.1 100.0 ND
PCDDs

2,3,7,8-TCDD ND 87.2 ND 77.8 ND 30.6
1,2,3,7,8-PeCDD ND 98.2 ND 86.1 ND 28.1

1,2,3,4,7,8-HxCDD ND 106.0 ND 110.7 ND 31.2
1,2,3,6,7,8-HxCDD ND 97.2 ND 98.6 ND 26.8
1,2,3,7,8,9-HxCDD ND 101.6 ND 115.0 ND 26.7

1,2,3,4,6,7,8-HpCDD ND 107.4 ND 107.7 ND 31.4
OCDD ND 98.1 ND 88.2 ND 26.3
PCDFs

2,3,7,8-TCDF ND 89.0 ND 84.1 ND 35.8
1,2,3,7,8-PeCDF ND 101.4 ND 83.2 ND 30.6
2,3,4,7,8-PeCDF ND 111.5 ND 100.2 ND 31.6

1,2,3,4,7,8-HxCDF ND 90.8 ND 83.7 ND 23.5
1,2,3,6,7,8-HxCDF ND 109.4 ND 94.8 ND 32.0
2,3,4,6,7,8-HxCDF ND 107.4 ND 100.5 ND 27.1

1,2,3,4,6,7,8-HpCDF ND 105.4 ND 100.4 ND 30.1
1,2,3,4,7,8,9-HpCDF ND 116.5 ND 97.4 ND 30.7

OCDF ND 99.3 ND 92.9 ND 27.3
a Recovery of dl-PCBs means the amount recovered from each fraction (dl-PCB and PCDD/F fractions) when the
total amount of all fractions was 100% recovery. Recovery of PCDDs/Fs means the percentage of a measured
concentration relative to the spiked concentration. b dl-PCB fraction: F2-F9 as shown in Figure S4. c PCDD/F
fraction: F10–F12 as shown in Figure S4. d ND: Not detected.

3.2. Method Validation

The entire analytical procedure from the sample preparation to the final analysis
was validated in accordance with the linearity of calibration, MDL, LOQ, and recovery.
Calibration curves of the 17 PCDDs/Fs and 12 dl-PCBs were plotted using the isotope
dilution method with 13C-labeled standards. The determination coefficient (R2) exhibits
good linearity of more than 0.9999 over the 0.05–200 pg/µL range for 12 dl-PCBs. For the
PCDDs/Fs, the R2 values were in the range of 0.9992–1 for different congener concentra-
tions, as shown in Table 3. The MDL was measured by analyzing seven replicate samples
spiked with 12.5 pg of dl-PCBs and 10–50 pg of PCDDs/Fs per 20 g control sample, which
is considered free of the target analytes. MDL is defined as the lowest concentration of
the dl-PCBs and PCDDs/Fs congeners, resulting in a confidence of >99% when the entire
analytical procedure was conducted [47]. LOQ is defined as 10 times the standard deviation
(SD) obtained using MDL. Although not the same conditions, MDL obtained through
comparable previous studies were summarized and compared (Table S4). Since different
approaches were used to obtain MDLs by these previous studies, comparisons with this
study along the same lines are limited. Among them, MDLs for PCDDs/Fs in fly ash
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measured by Fan et al. (2017) using the same approach were similar to those measured in
this study [48]. Even though the sample matrix and the methods of extraction and cleanup
are different, it is noteworthy that the analytical instrument used by Fan et al. (2017) was
an expensive and highly specialized HRGC-HRMS, rather than GC-QqQ-MS/MS used in
this study. Therefore, it was found that the developed analytical method is an effective
alternative method in terms of cost effectiveness for the analysis of dl-PCBs and PCDDs/Fs.

The accuracy and precision values were assessed by recovery experiments using tripli-
cate QC samples spiked with low, medium, and high concentrations of native
17 PCDDs/Fs and 12 dl-PCBs in this study. The analytical results of the samples used
for recovery that were spiked with designated concentrations are shown in Table 3. The
overall recoveries ranged from 87.1%~109.0% for 17 PCDDs/Fs, and 83.5%~106.5% for
12 dl-PCBs. The precisions of dl-PCBs and PCDDs/Fs were determined as the relative
standard deviation (%RSD), which was calculated from the average and the standard
deviation of the replicate analysis. Both the accuracy and RSD imposed by the QA/QC
guidelines were satisfied.

As shown in Figure 2, the precision and accuracy of the targeted individual PCDDs/Fs
and dl-PCBs in this study are in good agreement with the QC acceptance limits imposed by
the USEPA method [49].
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stances. Moreover, for PCDDs/Fs, 2.88 pg/g 2,3,4,6,7,8-HxCDF and 0.65 pg/g 1,2,3,7,8,9-
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sample.  

Figure 2. Precision and accuracy of native (a) dl-PCBs and (b) PCDDs/Fs under the optimum
conditions of sample preparation obtained by the recovery assays. The bars represent the mean
recoveries of the native congeners spiked into the control samples (n = 9). The error bars indicate the
relative standard deviation (RSD). The red dots represent the upper and lower QC limits imposed by
EPA 1668C and EPA 1613B methods.

3.3. Application to Actual Soil Samples

The developed analytical method combined with the one-step cleanup for the separa-
tion and quantification of 17 PCDDs/Fs and 12 dl-PCBs based on GC-QqQ-MS/MS was
applied to the actual soil samples. Figure 3 shows a typical overlaid MRM chromatogram to
compare the signals of dl-PCBs and PCDDs/Fs detected in the soil samples excavated near
industrial complexes (red color) with the blank (black color) and the signal at the lowest
quantifiable concentration (MDL, green color). Although dl-PCBs (1.59 pg/g for PCB 118
and 0.50 pg/g for PCB 114) are detected at extremely low concentrations, both native
and label congeners are not affected by the baseline separation and interfering substances.
Moreover, for PCDDs/Fs, 2.88 pg/g 2,3,4,6,7,8-HxCDF and 0.65 pg/g 1,2,3,7,8,9-HxCDF
are successfully separated from any interferences at the baseline level of the actual sample.
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Table 3. Calibration, method detection limit (MDL), limit of quantification (LOQ) and recoveries of target (a) dl-PCBs and (b) PCDDs/Fs.

Congener

Calibration
Avg.
RRF

MDL a

(pg/g)
LOQ b

(pg/g)

Low Conc.
QC Sample Medium Conc. QC Sample High Conc. QC Sample

Conc. Range
(pg/µL) R2 Conc.

(pg/g) Recovery ± RSD (%) Conc.
(pg/g) Recovery ± RSD (%) Conc.

(pg/g) Recovery ± RSD (%)

(a) dl-PCBs
PCB 81 0.05–200 0.9999 1.0706 0.258 0.823 1.25 86.4 ± 12.8 125 83.5 ± 3.2 1250 88.9 ± 3.2
PCB 77 0.05–200 0.9999 1.0809 0.161 0.513 1.25 92.0 ± 11.4 125 86.7 ± 2.6 1250 85.4 ± 3.1
PCB 123 0.05–200 0.9999 1.0281 0.222 0.708 1.25 96.5 ± 4.4 125 86.9 ± 0.8 1250 90.1 ± 3.0
PCB 118 0.05–200 0.9999 1.1090 0.233 0.741 1.25 104.3 ± 4.5 125 88.8 ± 1.6 1250 85.2 ± 3.6
PCB 114 0.05–200 0.9999 0.9170 0.211 0.671 1.25 93.1 ± 7.9 125 86.3 ± 1.3 1250 93.8 ± 3.1
PCB 105 0.05–200 0.9999 0.8921 0.375 1.195 1.25 106.5 ± 9.7 125 94.9 ± 6.7 1250 90.7 ± 3.3
PCB 126 0.05–200 0.9999 1.0234 0.229 0.729 1.25 94.1 ± 4.3 125 86.3 ± 1.1 1250 92.6 ± 2.9
PCB 167 0.05–200 0.9999 0.9669 0.218 0.694 1.25 105.2 ± 6.7 125 85.8 ± 2.8 1250 87.6 ± 3.2
PCB 156 0.05–200 0.9999 1.0720 0.331 1.054 1.25 104.2 ± 11.5 125 88.7 ± 3.6 1250 97.8 ± 2.9
PCB 157 0.05–200 0.9999 1.0565 0.289 0.920 1.25 99.1 ± 6.1 125 84.9 ± 0.4 1250 93.7 ± 3.0
PCB 169 0.05–200 0.9999 0.8749 0.313 0.996 1.25 90.9 ± 6.7 125 93.5 ± 5.6 1250 95.3 ± 3.7

(b) PCDDs/Fs
2,3,7,8-TCDF 0.05–40 1.0000 2.1009 0.228 0.727 12.5 88.6 ± 1.8 125 90.4 ± 3.2 1250 87.6 ± 0.2
2,3,7,8-TCDD 0.1–40 0.9998 0.5316 0.322 1.026 1.25 109.0 ± 0.8 12.5 97.3 ± 1.9 125 90.1 ± 4.9

1,2,3,7,8-PeCDF 0.25–200 1.0000 0.9809 0.215 0.684 62.5 95.4 ± 1.0 125 89.9 ± 0.2 1250 88.3 ± 0.4
2,3,4,7,8-PeCDF 0.25–200 1.0000 1.1026 1.016 3.236 12.5 92.6 ± 1.7 625 89.8 ± 1.2 6250 101.1 ± 4.4
1,2,3,7,8-PeCDD 0.25–200 0.9999 1.1355 0.273 0.868 62.5 94.5 ± 1.8 625 89.7 ± 0.8 1250 91.3 ± 3.4

1,2,3,4,7,8-HxCDF 0.25–200 0.9998 1.3921 0.761 2.425 62.5 93.8 ± 1.0 625 91.0 ± 0.9 6250 101.5 ± 3.8
1,2,3,6,7,8-HxCDF 0.25–200 1.0000 1.3647 0.849 2.704 62.5 98.2 ± 2.3 625 95.6 ± 1.3 6250 99.2 ± 3.8
2,3,4,6,7,8-HxCDF 0.25–200 0.9998 1.2599 1.071 3.41 62.5 92.8 ± 2.4 625 89.8 ± 1.3 6250 102.1 ± 4.5
1,2,3,4,7,8-HxCDD 0.25–200 0.9999 1.0625 0.251 0.799 12.5 90.8 ± 2.9 125 90.0 ± 1.1 1250 91.4 ± 2.7
1,2,3,6,7,8-HxCDD 2.5–200 1.0000 0.9712 0.862 2.744 12.5 89.3 ± 2.7 125 89.4 ± 6.9 1250 87.1 ± 2.0
1,2,3,7,8,9-HxCDD 0.25–200 0.9992 1.8255 1.045 3.327 12.5 95.7 ± 7.4 125 103.3 ± 4.3 1250 94.3 ± 2.5
1,2,3,7,8,9-HxCDF 0.25–200 1.0000 0.8419 0.527 1.678 12.5 91.2 ± 4.0 125 96.3 ± 1.6 1250 88.5 ± 3.3

1,2,3,4,6,7,8-HpCDF 0.25–200 1.0000 0.9889 1.112 3.543 125 92.9 ± 1.1 1250 91.3 ± 1.1 12,500 105.3 ± 2.9
1,2,3,4,6,7,8-HpCDD 0.25–200 0.9999 0.9120 1.423 4.531 125 92.9 ± 1.7 1250 91.3 ± 0.9 12,500 94.2 ± 4.7
1,2,3,4,7,8,9-HpCDF 0.25–200 0.9997 0.8585 0.626 1.993 12.5 93.2 ± 2.6 125 90.8 ± 1.8 1250 87.8 ± 4.3

OCDD 0.5–400 0.9999 1.0493 0.571 1.819 125 97.2 ± 2.8 1250 92.2 ± 0.7 12,500 90.2 ± 2.5
OCDF 0.5–400 0.9992 1.1692 0.853 2.718 125 101.0 ± 3.0 1250 95.3 ± 1.9 12,500 100.8 ± 4.9

a MDL = SD × t (n−1, 1−α = 0.99), t (6, 0.99) = 3.14 (n = 7). b LOQ = SD × 10.
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(HxCDF) and its 13C labeled standard, and (b) 0.65 pg/g 1,2,3,7,8,9-HxCDF and its 13C labeled stand-
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Figure 3. Overlay signals of the MRM chromatograms obtained by a blank, experimental MDL, and
positive soil sample; (A) dl-PCB Chromatogram (a) 1.59 pg/g 2,3′,4,4′,5-pentachlorobiphenyl (PCB
118) and its 13C labeled standard, and (b) 0.50 pg/g 2,3,4,4′,5-pentachlorobiphenyl (PCB 114) and its
13C labeled standard, (B) PCDD/F Chromatogram (a) 2.88 pg/g 2,3,4,6,7,8-hexachlorodibenzofuran
(HxCDF) and its 13C labeled standard, and (b) 0.65 pg/g 1,2,3,7,8,9-HxCDF and its 13C
labeled standard.

Figure 4 shows the average recoveries of the spiked 13C-labeled surrogates of dl-PCBs
and PCDDs/Fs before the sample preparation for sample analysis. The average recoveries
of the labeled standards are in the range of 54.2%–90.0% with an RSD of 15% for 12 13C-dl-
PCBs and 46.1%–69.9% with an RSD of 20% for 15 13C-PCDDs/Fs. These results satisfy the
QC criteria of the EN 16190:2018 method (50%–130% for tetrachlorinated to hexachlorinated
congeners and 40%–130% for heptachlorinated and octachlorinated congeners) [50–52].
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The sample cleanup and instrumental analysis were confirmed to be performed under the
appropriate cleanup efficiency and quantitative conditions.
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Figure 4. Average recoveries of 13C labeled (a) dl-PCBs and (b) PCDDs/Fs congeners.

To determine the residue levels of PCDDs/Fs in the environmental media for regula-
tion purposes, the total toxic equivalent (TEQ) value based on the WHO toxicity equivalence
factor (TEF) rather than the concentration of a single congener is commonly used. The total
TEQ concentration value is the sum of the values obtained by multiplying the concentration
of each congener by its assigned WHO-TEF. The analytical results of the representative
sample with the most diverse dl-PCBs and PCDDs/Fs congeners are determined among
the samples, as presented in Table S5.

More than 90% of human exposure to PCDDs/Fs and dl-PCBs originates from food,
which has the lowest governmental regulatory concentration restriction among different
media [53,54]. In the case of soil, the regulation level differs depending on the country or
land use. In Korea, an acceptable standard of 100 pg TEQ/g has been set for PCDDs/Fs.
Considering various references, the analytical method developed in this study is sufficiently
applicable because the exposure limits of PCDDs/Fs and dl-PCBs in soil are in the ranges
of 2.48–39,300 [55–58] and 0.05–8.8 pg TEQ/g [36,59,60], respectively.

QC samples prepared by spiking dl-PCBs and PCDDs/Fs in the middle calibration
range were analyzed during sample analysis. The QC charts used to validate the analytical
results obtained for every batch during sample analysis are shown in Figure 5.

Based on their degree of chlorination, 12 dl-PCBs and 17 PCDDs/Fs were categorized
into homologue groups. The recoveries for each homologue group were calculated from the
total concentrations of their corresponding congeners. The QC charts were constructed from
the measured mean recoveries and SD of each homologue group of dl-PCBs and PCDDs/Fs
for seven QC samples during sample analysis. The confidence intervals of 95% and 99%
were established based on the SD values of mean ± 2SD and ±3SD, respectively [61].
Although several homologues of the PCDDs/Fs were outside the 99% confidence interval,
all results were within the 95% confidence interval.
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same degree of chlorination. The dotted lines represent 95% and 99% confidence intervals (±2SD and
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4. Conclusions

A simple and cost-effective GC-QqQ-MS/MS combined with a one-step cleanup
method was optimized and evaluated for the simultaneous determination of 17 PCDDs/Fs
and 12 dl-PCBs in contaminated soils. For the cleanup and separation of PCDDs/Fs and
dl-PCBs, the elution conditions, such as solvent composition and elution flow rate, of the
multilayer silica gel column connected with a Florisil micro-column were optimized. For
optimizing the quantitative analysis with GC-QqQ-MS/MS, the dMRM mode was used to
obtain improved separation and sensitivity than MRM. To evaluate the entire analytical
procedure, the linearity of the calibration curve, MDL, and recovery for the target dl-PCBs
and PCDDs/Fs were validated. Results proved the validity of the proposed method, which
satisfies the requirements of standard official methods. The proposed method is expected
to increase the accessibility of PCDDs/Fs and dl-PCBs analyses at the laboratory scale,
thereby promoting the active monitoring for their regulation and broadening the scope of
related research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11090738/s1, Table S1. Physicochemical properties and toxic
equivalent factors of target dl-PCBs and PCDDs/Fs; Table S2. Instrumental conditions for the
quantification of dl-PCBs and PCDDs/Fs; Table S3. Recoveries (%) of dl-PCB congeners according
to different elution solvent compositions; Table S4. Comparison of MDLs obtained by different
extraction, cleanup, and detection methods in the previous studies with the ones in this study;
Table S5. Total WHO-TEQ concentrations of dl-PCBs and PCDDs/Fs for the representative soil
samples excavated near industrial complexes; Figure S1. Verification charts of (a) dl-PCBs and (b)
PCDDs/Fs obtained during sample analysis to monitor the instrumental performance (GC-QqQ-
MS/MS); Figure S2. Schematic of the one-step cleanup procedure; Figure S3. Elution profiles of
(a) dl-PCBs and (b) PCDDs/Fs on the multilayer silica gel column; Figure S4. Chromatograms of
congeners of dl-PCBs and PCDDs/Fs obtained during fractionation. References [62–68] are cited in
the Supplementary Materials.
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