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Abstract: The escalating global anthropogenic activities associated with industrial development have
led to the increased introduction of heavy metals (HMs) into marine environments through effluents.
This study aimed to assess the toxicity of three HMs (Cr, Cu, and Cd) on organisms spanning different
trophic levels: Phaeodactylum tricornutum (a primary producer), Artemia salina (a primary consumer),
and Aurelia aurita (a secondary consumer). The EC50 values obtained revealed varying relative
toxicities for the tested organisms. Phaeodactylum tricornutum exhibited the highest sensitivity to Cu,
followed by Cd and Cr, while Artemia salina displayed the highest sensitivity to Cr, followed by Cu
and Cd. A. aurita, on the other hand, demonstrated the highest sensitivity to Cu, followed by Cr
and Cd. This experimental investigation further supported previous studies that have suggested A.
aurita as a suitable model organism for ecotoxicity testing. Our experiments encompassed sublethal
endpoints, such as pulsation frequency, acute effects, and mortality, highlighting different levels of
sensitivity among the organisms.

Keywords: Phaeodactylum tricornutum; Artemia salina; Aurelia aurita; chromium; copper; cadmium

1. Introduction

Nowadays, thousands of pollutants reach the marine environment and exert different
types of stress and damage on organisms, resulting in negative changes in water quality
and ecosystems [1]. Most of them are discharged in the marine environment as a result of
countless anthropogenic activities affecting the environment [2,3]. These waste types can be
different in nature and include, among others, heavy metals (HMs), detergents, microfibers,
or (micro)plastics, which all contribute to the current aquatic pollution problems [4].

In this sense, marine ecosystems are one of the systems most affected by pollution
because humans have used them as a dumping ground for their waste, disregarding their
complexity and dynamics. Among the pollutants, the accumulation of HMs in marine
ecosystems is of vital importance because they can have devastating effects on the ecological
balance of the environment and biodiversity [5,6]. It would be beneficial to clarify that,
among the metals, some are essential elements that play biological roles but can be toxic
at high concentrations, while others are non-essential and do not have known biological
functions. It is well-known that chronic HM exposure can have serious long-term health
effects [5,7,8].

Aquatic pollution by HMs is related to high levels of Cd, Cr, Cu, Hg, Ni, Pb, and Zn,
among others. Of these HMs, Cd, Cu, Hg, and Zn, jointly the metalloid As, are the five
elements with the strongest potential impact because of their high toxicity and persistence
in all aquatic ecosystems. High concentrations of these pollutants enter the environment
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through storm water and wastewater discharges as a consequence of agriculture and
industrial activity [9,10]. When considering the source of these important HMs, Zn and
Cu are present in fertilizers, while Cd and Hg are components of some fungicides and
algaecides [11].

HMs’ ecological significance lies in their persistent presence, leading to accumulation
in water reservoirs, integration into the food chain, and subsequent ecological harm [12,13].
Ecotoxicology, the science that examines the impact of substances on ecosystems, is closely
linked to the vital need for monitoring pollution to effectively curb aquatic harm [14,15].

Pollution of aquatic areas by HMs, often called trace metals, can be detected by water
and sediment analyses or by employing bioindicator organisms [16]. Some authors [17]
believe that responses of biological origin can be considered more representative than the
data provided by chemical or physical detectors because they are spatially and temporally
more extensive. Moreover, they allow estimations to be made of both pollutant levels and
impacts on biological receptors. For this, biomonitoring can directly provide data on the
potential effects and integrated toxicities of pollutants to reflect the corresponding degree
of deleteriousness in the environment [15].

The release of pollutant HMs into aquatic environments can lead to direct toxic effects
on sensitive species through sublethal or lethal impacts. Additionally, certain HMs may
transform into persistent, more toxic metal compounds that bioaccumulate in organisms
and magnify within the trophic web [15]. When several of them (e.g., Hg, Cr, Cd, Ni, Cu,
and Pb) enter water systems, they can prove extremely toxic to aquatic organisms and can
cause disruptions at several trophic levels [14]. Among the pollutants, those composed of
Cd, Cu, and Cr are not considered the most toxic metals, but rather among the most toxic
metals for marine ecosystems. However, it is highlighted that copper in trace amounts is
essential to all organisms for a variety of biological processes, but cnidarians like A. aurita
may be more susceptible to damage by copper than their symbiotic algae [18].

Thus, the main objective of this work is to assess how their presence in a marine
environment can affect organisms like cnidarians and their potential preys.

The environmental Cd hazard has been assessed in freshwater as well as in marine
and terrestrial ecosystems [19,20]. This HM can be found naturally in water and soil at
low concentrations, not only owing to natural processes like volcanic eruptions and crustal
erosion, but also to anthropogenic activities, such as mining and smelting, and shifts to
aquatic systems via runoff [21]. It subsequently ends up in saline water environments. In
industry, Cd is used to manufacture batteries, PVC plastics, and paint pigments. It can
also be found in soil given the use of insecticides, fungicides, sludge, and commercial
fertilizers by agriculture [14]. This non-essential metal is often toxic even at relatively low
concentrations and can cause adverse effects given its high bioaccumulation potential. Cd
toxicity for aquatic organisms significantly varies and depends mainly on the concentration
of its free ionic form rather than on the concentration of total dissolved Cd [22,23].

Chrome is one of the HMs to which most toxicological importance is attached today.
It is present in rocks, plants, soils, animals, fumes, and volcanic gases. Its various effects on
organisms’ lives are related to the physico-chemical forms in which it occurs [24].

Its derived compounds are mainly chromates and dichromates, which are used in
pigments and dyes, leather tanning, and wood treatment. Industrial effluents containing
Cr can eventually reach oceans in different chemical forms influenced by organic matter
(OM). If OM is present in large quantities, Cr6+ will be reduced to Cr3+, which can either be
adsorbed in particles or form insoluble complexes [14,25].

The effect of Cu on marine biota largely depends on the amount of free Cu (Cu2+) that
accumulates in receiving waters. This is determined by the flux of total Cu, its relative
solubility, and the concentration of Cu-binding ligands [26]. Of all the natural Cu sources
arriving at oceans, wind-blown mineral dust is the largest component to provide seasonal
micronutrient pulses to regions that are often limited by such resources [27–29]. Emissions
resulting from natural fires rank second in non-anthropogenic Cu aerosol production and
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largely depend on location, with some biomes showing negligible Cu release and others
being major regional sources [30].

To assess the toxicity of HMs, common approaches involve utilizing bio-monitoring
methods with bio-indicators. These indicators, encompassing species, species groups, or
biological communities, offer insights into contamination through real ecosystem obser-
vations. Alternatively, laboratory toxicity tests provide an indirect means of inferring
environmental quality.

Selecting the right model organism for toxicity tests is critical in applying the bio-
indicator model, given that certain organisms are more suitable than others for specific
tests, as seen in toxicological impact studies on marine organisms like sea urchins [20,31].
Sea urchin gamete models offer advantages a priori, such as their wide geographical distri-
bution, abundance, and easy collection and maintenance [32]. Sea urchin bio-indicators
present challenges, including the requirement of a sufficient number of individuals to ensure
both male and female specimens with viable gametes, preventing unintended spawning
due to temperature changes during transport, and necessitating a fertilization success rate
of at least 90% to proceed with the process [31,32], being impractical for toxicity tests.

To gain a comprehensive understanding of HMs’ toxicity, Phaeodactylum tricornutum
and the crustacean Artemia salina serve as established model organisms, representing
primary producers and consumers, respectively. While these models offer valuable insights,
there is a lack of secondary consumer models. Addressing this gap, recent research has
spotlighted cnidarians as potential indicators of marine environmental conditions owing
to their unique sensitivity to stress and swift responsiveness to disturbances [33]. These
organisms form part of the gelatinous zooplankton, which includes approximately 2000
widely recognized species [34] as key members of ocean ecosystems. They also play
an important role in the organization of marine food webs [35–37] as an energy source
in both pelagic and deep-sea food webs by supporting C trophic transfer from surface
waters to euphotic environments [38,39]. These gelatinous organisms are also active
predators that forage on a wide range of prey, from mesozooplankton and ichthyoplankton
to microplankton [40–42], gelatinous species, and emergent zooplankton [43]. Therefore,
jellyfish exert both the top-down and bottom-up control of zooplankton and, indirectly, of
phytoplankton communities by cascading effects [44].

Of cnidarians, the jellyfish Aurelia aurita is a promising model organism in the ecotoxi-
cology field because it can be used to predict the effects of chemicals and other stressors
on the marine environment, such as oil organic chemicals and HMs [45–48]. It is one of
the most abundant and commonest gelatinous zooplankton species in the world. It is an
epipelagic scyphozoan with a cosmopolitan distribution that is located in the waters along
the neritic zone [47]. Its biological cycle is complex because it combines a sessile asexual
polyp phase and a free-living sexual medusa phase [49]. Worldwide A. aurita populations
are defined by their high diversity, characteristic life cycle, abundance, growth, strobilation
timing and periodicity, time and size upon sexual maturation, and jellyfish longevity [50].
In nature, strobilation, the process by which the free-living phase is generated, is a seasonal
process that starts in winter or early in spring [50,51]. In winter, water temperature lowers
and acts as an environmental signal, which is perceived by polyps. A single colony of
polyps can asexually produce genetically identical male or female jellyfish [52,53], which is
a huge advantage when conducting studies because it avoids intra- and interpopulation
variation problems [54].

Of all mentioned above, A. aurita stands out as a valuable model organism thanks to
its ease of laboratory handling, with the ability to readily produce ephyrae from polyps
through a simple heat shock method involving controlled temperature changes over a brief
period, alongside uncomplicated maintenance requirements.

Therefore, to broaden our knowledge about the effects of Cd, Cu, and Cr pollution at
different marine trophic levels and specifically in organisms for which their effects have
not yet been tested, such as A. aurita, the present study poses the following hypotheses:
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(a) the toxicity of elements is different at the trophic levels they affect; (b) toxicants cause
damage during acute exposure.

This work also attempts to support the ephyra of the scyphomedusa A. aurita as a
model for marine ecotoxicological assays to make progress in the study of substances
introduced into the natural environment and to understand the consequences of this.

2. Materials and Methods

In order to study organisms’ resilience to the introduction of pollutants, three bioassays
were performed based on aquatic organisms’ reaction to a wide range of pollutants [55].

The toxic reference salts selected to study the effects of Cd, Cu, and Cr were cad-
mium nitrate Cd(NO3)2, copper nitrate Cu(NO3)2, and potassium dichromate K2Cr2O7,
respectively. All salts (analytical grade) were supplied by Sigma-Aldrich™ (Darmstadt,
Germany). This study was carried out with three marine species used as bioindicators of
marine toxicity of HMs. The test protocol carried out on each is provided below.

2.1. Toxicity Test with Phaeodactylum tricornutum

The microalgae test was carried out according to standardized protocol Algaltoxkit M™
(Marine Toxicity Test with Microalgae) developed by Microbiotests Inc. (Gent, Belgium).
The kit follows Standard ISO 10253:2017. This is an algal growth inhibition test performed
in vials with the marine diatom Phaeodactylum tricornutum. The concentrations were 0.01,
0.03, 0.06, 0.12, and 0.25 mg/L and they were incubated for 3 days at 20 ◦C (±2 ◦C) with
constant and uniform lighting provided by cool white fluorescent lamps. Lighting was
10,000 lux for the side of the long cell or 3000–4000 lux for the bottom lighting. Growth was
monitored by optical density (OD) measurements in a spectrophotometer equipped with a
670 nm filter and a 10 cm cell holder. ODs were converted into algal numbers with the help
of the “Optical Density/Number of Algae” (OD/N) sheet included in each Algaltoxkit
M™. After culturing, microalgae growth measurements were monitored for 24 h, 48 h, and
72 h. For each treated concentration and all of the used toxicants (cadmium nitrate, copper
nitrate, and potassium dichromate), tests were independently conducted in triplicate.

2.2. Toxicity Test with Artemia salina

The toxicity test was carried out according to standardized protocol Artoxkit M™
(Artemia Toxicity Screening Test for Estuarine and Marine Waters) developed by
Microbiotests Inc. (Gent, Belgium). Cysts were allowed to hatch during incubation under
aerated conditions with constant light (light source of 3000–4000 lux) at 25 ◦C in standard
seawater. Hatching started after about 18–20 h. After 30 h, most larvae had moulted
in the instar II–III stage. Briefly, 2 mL of filtered seawater and 10 Artemia larvae were
added to each well. The mixture concentrations were 6.25, 12.5, 25, 50, and 100 mg/L for
each employed toxicant. After the 24 h and 48 h treatments at each metal concentration,
the numbers of living and dead Artemia nauplii were counted. Dead individuals were
determined if no movement of appendages was observed within 10 s. For every treated
concentration, and for all of the employed toxicants (cadmium nitrate, copper nitrate, and
potassium dichromate), tests were conducted in four replicates.

2.3. Toxicity Test with Aurelia aurita

This assay followed the guidelines of the test previously carried out by Faimali et al. [48].
Toxicity tests were prepared using the A. aurita ephyra collected immediately after strobila-
tion (0 days of age). The ephyra used in these experiments were obtained directly from the
polyps reared in the Oceanogràfic de València laboratories (València, Spain).

Two end-points were evaluated: one was frequency of pulsation, defined as the
number of pulsations performed by ephyra within a defined time unit (30 s), measured as
the % alteration of pulsations (compared with the control). The second end-point was to
measure the % mortality of ephyra for each concentration (compared with the control).
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Ephyra were placed three by three in a multiwell plate containing 10 mL of solution.
The applied concentrations were 1.9, 3.75, 7.5, 15, and 30 mg/L for each utilized salt
(the corresponding Cd, Cu, and Cr concentrations found in each salt appear in Table 1).
Plates were sealed and left in the thermostatic room at 20 ◦C in the dark. After 24 h and
48 h, the beats per minute of all of the ephyra and % mortality were evaluated. For each
treated concentration, and for all the used toxicants (cadmium nitrate, copper nitrate, and
potassium dichromate), tests were conducted in five replicates.

Table 1. Equivalent concentration values of Cu, Cr, and Cd, all values are given in mg/L.

Organism Salt Concentration 1 Cu Cr Cd

P. tricornutum 0.03 0.062 0.109 0.001
0.06 0.068 0.119 0.009
0.12 0.08 0.139 0.027
0.25 0.107 0.182 0.065

A. salina 6.25 1.322 2.174 1.81
12.5 2.587 4.249 3.627
25 5.119 8.399 7.262
50 10.181 16.699 14.532
100 20.306 33.299 29.072

A. aurita 1.9 0.441 0.73 0.545
3.75 0.813 1.344 1.083
7.5 1.575 2.589 2.173

2.173 3.094 5.079 4.354
30 6.131 10.059 8.716

1 corresponding to all of their salt concentration ranges of (Cu(NO3)2, K2Cr2O7, and Cd(NO3)2, respectively).

2.4. Statistical Analysis

For the three organisms used in the tests, EC50 (half maximal effective concentra-
tion) was obtained using a Probit analysis using the SPSS™ S statistical package (v20,
IBM). EC50 was calculated after 24 h and 48 h for A. salina and A. aurita and after 72 h for
P. tricornutum. For the three tested organisms, the statistical significance of the differences
between means and groups (p < 0.05) was estimated based on a one-way ANOVA and a Stu-
dent’s t-test using SPSS™ (v20, IBM, Armonk, NY, USA) and MS Excel™
(v17.0. Microsoft Inc., Redmond, WA, USA).

3. Results
3.1. Phaeodactylum tricornutum (Primary Producer Model)

In order to observe the effect of Cu, Cr, and Cd on P. tricornutum growth, algae were
exposed to several concentrations of salts and their growth rate was assessed (Figure 1). The
P. tricornutum samples received 0.03, 0.06, 0.12, 0.25, and 0.5 mg/L of each salt (Cd(NO3)2,
Cu(NO3)2, and K2Cr2O7). Growth was determined after 72 h (the corresponding Cd, Cu,
and Cr concentrations on each salt are shown in Table 1). The results of the study revealed
significant inhibitory effects of different concentrations of cadmium nitrate, potassium
dichromate, and copper nitrate on the growth of the algae. When compared with the control
group, a concentration of 0.03 of cadmium nitrate exhibited a growth inhibition of 1.22%,
while the concentration of 0.03 of potassium dichromate showed an inhibition of 5.3%.
Notably, the inhibition increased with higher concentrations, with the concentration of 0.06
of cadmium nitrate resulting in a growth inhibition of 17% and the concentration of 0.06 of
potassium dichromate showing an inhibition of 7.54%. Moreover, the concentration of 0.25
of cadmium nitrate exhibited a substantial inhibition of 34.5%, whereas the concentration
of 0.25 of potassium dichromate displayed a remarkable inhibition of 50.6%. The highest
inhibitory effects were observed at the concentration of 0.5, with cadmium nitrate inhibiting
growth by 49.7% and potassium dichromate showing an inhibition of 64.6%. Comparatively,
copper nitrate exhibited relatively lower inhibitory effects, with the concentration of 0.03
resulting in a growth inhibition of 2.05% and the concentration of 0.06 showing an inhibition
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of 2.18%. However, as the concentration increased, so did the inhibitory effects, with the
concentration of 0.12 resulting in a growth inhibition of 5.39%, the concentration of 0.25
exhibiting an inhibition of 13.59%, and the concentration of 0.5 demonstrating the highest
inhibition of 91.62%. These findings indicate that, among the three substances tested,
cadmium nitrate and potassium dichromate exerted stronger inhibitory effects on growth
compared with copper nitrate Therefore, among the three HMs tested, the most toxic HMs
for P. tricornutum were Cr and Cd followed by Cu at 72 h and the highest concentration.
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Figure 1. Effect of Cu(NO3)2, K2Cr2O7, and Cd(NO3)2 on Phaeodactylum tricornutum growth at several
concentrations measured at 72 h (t-test, p < 0.05). Data are for P. tricornutum algae (means ± standard
error, n = 3).

The results of the study revealed the EC50 values for the algae P. tricornutum, indicating
the concentration at which 50% inhibition of growth occurred. EC50 for potassium dichro-
mate was determined to be 15.3 mg/L. In contrast, cadmium nitrate exhibited a lower
EC50 value of 2.49 mg/L, suggesting a higher toxicity to the algae. Similarly, copper nitrate
demonstrated a relatively lower EC50 value of 1.205 mg/L, indicating a strong inhibitory
effect on the growth of P. tricornutum. These findings highlight the varying toxicities of
the tested compounds, with cadmium nitrate and copper nitrate showing lower toxicity
compared with potassium dichromate towards P. tricornutum (Table 2).
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Table 2. The EC50 values of P. tricornutum at 72 h and the EC50 values of Artemia larvae and A. aurita
ephyra at 24 h and 48 h for each toxicant.

Organism Toxicant Exposure Time (h) EC50 (mg/L) (Mean ± SD)

Phaeodactylum tricornutum K2Cr2O7 72 15.378 ± 7.081

Cd(NO3)2 72 2.494 ± 2.494

Cu(NO3)2 72 1.205 ± 0.322

Artemia salina K2Cr2O7 24 91.359 ± 6.746
48 23.554 ± 2.383

Cd(NO3)2 24 150.167 ± 27.496
48 153.840 ± 65.674

Cu(NO3)2 24 95.773 ± 28.284
48 37.201 ± 1.872

Aurelia aurita K2Cr2O7 24 16.571 ± 4.246
48 6.726 ± 2.004

Cd(NO3)2 24 19.880 ± 5.519
48 12.343 ± 2.588

Cu(NO3)2 24 0.283 ± 0
48 0.283 ± 0

3.2. Artemia salina (Primary Consumer Model)

To investigate the impact of Cu, Cr, and Cd on the mortality of A. salina, the crustaceans
were exposed to different concentrations of these HM salts, and their mortality rates were
assessed (Figure 2). The concentrations of each salt used for the larvae ranged from 6.25 to
100 mg/L. Mortality was evaluated after 24 h and 48 h of exposure.
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Based on the results obtained after 24 h, Artemia larvae showed low sensitivity to Cr
and Cd concentrations up to 25 mg/L, as well as to Cu concentrations up to 12.5 mg/L.
The highest mortality rate during de first 24 h was 60% for K2Cr2O7, followed by 37.5%
for Cu(NO3)2 and 27.5% for Cd(NO3)2 (t-test, p < 0.05). The calculated EC50 values for
Cu(NO3)2, K2Cr2O7, and Cd(NO3)2 after 24 h were 95.773, 91.359, and 150.167 mg/L,
respectively (Table 2).

After 48 h of exposure, significant increases in Artemia mortality were observed at
concentrations as low as 6.25 mg/L for Cr and 12.5 mg/L for the other two toxicants.
The mortality rate for Cd(NO3)2 remained consistent at both exposure times. The highest
mortality rate (100%) was recorded for A. salina, indicating that Cr was the most toxic metal,
followed by 67.5% for Cu and 30% for Cd (t-test, p < 0.05). The calculated EC50 values
for Cu(NO3)2, K2Cr2O7, and Cd(NO3)2 after 48 h were 37.201, 23.554, and 153.840 mg/L,
respectively (Table 2).
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3.3. Aurelia aurita (Secondary Consumer Model)

In order to note the effect of Cu, Cr, and Cd on A. aurita mortality, ephyras were treated
with five concentrations of the studied toxicants, and their mortality rate was assessed
(Figure 3). For the A. aurita ephyra, the ranges of concentrations of each toxicant were 1.9,
3.75, 7.5, 15, and 30 mg/L. After that, the results at 24 h revealed that the ephyras were
not affected by K2Cr2O7 and Cd(NO3)2 at concentrations up to 7.5 mg/L, but mortality
was 100% at the lowest concentration (1.9 mg/L) with Cu(NO3)2. At the highest exposure
concentration, 100% mortality was caused by Cu and Cd, followed by 93.33% mortality
by Cr (t-test, p < 0.05). The calculated EC50 values of Cu(NO3)2, K2Cr2O7, and Cd(NO3)2
at 24 h were 0.283, 16.571, and 19.880 mg/L, respectively (Table 2). The results at 48 h of
exposure showed that the A. aurita ephyras exposed to Cu(NO3)2 followed the same pattern
as the measurements taken at 24 h with 100% mortality at all concentrations. With K2Cr2O7,
mortality started to significantly increase from 3.75 mg/L, and from 7.5 mg/L for Cd(NO3)2.
Mortality at 48 h for the highest concentration was 100% for all three studied toxicants
(t-test, p < 0.05). The EC50 values calculated for Cu(NO3)2, K2Cr2O7, and Cd(NO3)2 at 48 h
were 0.283, 6.726, and 12.343 mg/L, respectively (Table 2).
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Figure 3. The effect of Cu(NO3)2, K2Cr2O7, and Cd(NO3)2 on Aurelia aurita mortality at sev-
eral concentrations measured at 24 h and 48 h (t-test, p < 0.05). Data are for A. aurita ephyra
(means ± standard error, n = 5).

This study also involved toxicity screening with the three different reference toxic
substances. Two end-points were considered: frequency of pulsation (Fp) and mortality
(M); the percentage of alteration to Fp (%Fp) and the percentage of mortality (%M) were
calculated at the 24 h and 48 h exposure times, and were compared to the untreated
control. The results obtained for exposing the 0-day-old ephyra to different concentrations
of potassium dichromate are reported in Figure 4. This compound had a significant effect
on both end-points. %Fp for both 24 h and 48 h showed an inverse correlation with a rising
toxicant concentration, and was 0% at the highest concentration (30 mg/L). Mortality at
24 h was 93.33%, with 100%M at 48 h for the high concentration. Regarding the values
obtained for %M at 24 h, the LOEC (lowest observed effect concentration) was 15 mg/L.
For %M at 48 h, an incongruent value was observed because the LOEC was 0 mg/L in
the untreated control. The same percentage of mortality as the control was obtained at
the lowest K2Cr2O7 concentration, and only 1 ephyra of the 15 exposed ones was death.
No mortality took place at a concentration of 3.75 mg/L, but at the next concentration
(7.5 mg/L), mortality was 100% compared with 0%M at the same concentration after 24 h.
M% at 48 h at the remaining concentrations (15 mg/L and 30 mg/L) was 80% and 100%,
respectively. In this assay, Fp was the most sensitive end-point (in magnitude of response
and data reliability terms) compared with mortality.
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Figure 4. Alteration of frequency of pulsation (%Fp) and mortality (%M) of A. aurita ephyra after
the 24 h and 48 h exposures to increasing potassium dichromate concentrations (one-way ANOVA,
p < 0.05). Data are for A. aurita ephyra (means ± standard error, n = 5).

The results of exposing ephyra to different cadmium nitrate concentrations are shown
in Figure 5. Like Cr, this compound also had a significant effect on both end-points. %Fp at
both 24 h and 48 h lowered when the toxicant concentration rose, and was 100% at 0 mg/L
and 0% at 30 mg/L. This also implies, as we mentioned above, an inverse correlation between
%Fp and %M, which was observed at 15 mg/L and at both 24 h and 48 h. Mortality increased
and, therefore, %Fp decreased (24 h: 33.33%M and 44.79%Fp; 48 h: 86.66%M and 6.17%Fp).
Regarding the LOEC value for %M, it is 15 mg/L at both exposure times, with 33.33%M and
86.66%M at 24 h and 48 h, respectively. At 30 mg/L, mortality was 100% at both exposure
times. The results obtained for exposing ephyra to different copper nitrate concentrations
are shown in Figure 6. This graph depicts a different situation to those previously described.
For Fp, the values were 100% at 24 h in the untreated control and 0% at the five different
reference toxic concentrations chosen for the test. In mortality terms, the mortality of the
exposed A. aurita ephyras was 0% in the control, but 100% at the different toxic concentrations.
The obtained results showed that Cu significantly affected ephyras from the lowest tested
Cu(NO3)2 concentration (1.9 mg/L) to the highest one (30 mg/L).
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Figure 5. Alteration of frequency of pulsation (%Fp) and mortality (% M) of A. aurita ephyra after the
24 h and 48 h exposures to increasing cadmium nitrate concentrations (one-way ANOVA, p < 0.05).
Data are for A. aurita ephyra (means ± standard error, n = 5).
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Figure 6. Alteration of frequency of pulsation (%Fp) and mortality (% M) of A. aurita ephyra after
the 24 h and 48 h exposures to increasing copper nitrate concentrations (one-way ANOVA, p < 0.05).
Data are for A. aurita ephyra (means ± standard error, n = 5).

4. Discussion

Regarding Cr toxicity for the marine algae, our results (Table 2) showed an
EC50 ± SD of 15.378 ± 7.081 mg/L for potassium dichromate at 72 h. However, other
authors report different values (see Figure 7). In the study of Uba [56], K2Cr2O7 obtained an
EC50 value of 8.07 ± 0.03 mg/L, while the R2 value was 0.99. Other authors have studied
how species’ sensitiveness to the same chemicals can vastly vary [57]. They characterized
the non-standardized diatom Chaetoceros tenuissimus by growth inhibition, biochemical,
and infrared-spectroscopy (FT-IR) tests to compare the results to the standardized diatom
Phaeodactylum tricornutum. The two species were exposed for 72 h to four chemicals:
nanoparticles (n-TiO2, n-ZnO), potassium dichromate, and surfactant (polyethylene gly-
col, PEG). The obtained EC50 ± SD (mg/L) for P. tricornutum and C. tenuissimus were
22.97 ± 1.34 and 19.84 ± 1.45, respectively [57]. Other authors have evaluated the impacts
of 16 different leachates of plastic-made packaging on marine species from different trophic
levels (bacteria, algae, and echinoderms) [58]. The results obtained in that study evidenced
that the tested doses were unable to significantly affect bacteria (Vibrio fischeri) and algae
(P. tricornutum). Algae responses were measured by K2Cr2O7 (EC50 = 16.21 ± 1.72 mg/L).
Another ecotoxicity test [59] has studied the toxicity of metal aqueous suspensions to
microcrustaceans Daphnia magna (72 h exposure), algae P. tricornutum (72 h growth inhibi-
tion), and rotifer Brachionus plicatilis (48 h exposure). EC50 calculated for algae at 72 h was
8.11 mg/L. Pastorino et al. [57] has demonstrated that EC50 for P. tricornutum after 72 h of
exposure to K2Cr2O7 fell within the 16.76–20.84 mg/L interval. According to our results,
EC50 obtained for K2Cr2O7 came quite close to the reference values of other papers, which
indicates that this alga resisted Cr more than other HMs.

On Cd toxicity for the marine algae, our results for cadmium nitrate indicated an
EC50 ± SD (mg/L) of 2.494 ± 2.494 at 72 h (Table 2). Some authors reported that, at 72 h,
the Cd EC50 value for P. tricornutum was as high as 22.39 mg/L, which reveals its excellent
tolerance to Cd. Compared with other microalgae species, they reported lower EC50 values:
1.87 µg/L of Cd for Scenedesmus quadricauda, 2.13 µg/L for Aulacoseira granulate, and
1.8 mg/L for Teraselmis gracilis [60,61]. According to our results, EC50 for Cd(NO3)2 was far-
removed from the reference values of the aforementioned papers. Hence, further research
into exposing P. tricornutum to Cd must be conducted.
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Figure 7. Comparison of the EC50 values (mg/L) of Phaeodactylum tricornutum from other studies
to the present study: (a) the EC50 values of potassium dichromate at 72 h; (b) the Cu values at 72 h;
(c) the Cd values at 72 h [56–64].

On Cu toxicity for the marine algae P. tricornutum, we obtained an EC50 ± SD (mg/L)
of 1.205 ± 0.322 at 72 h for Cu(NO3)2 (Table 2). Population growth started to be affected at
a concentration of 0.06 mg/L (Figure 1). Wang and Zheng [62] observed that, at the Cu2+

concentration of 0.32 µg/mL, P. tricornutum cell density was significantly lower than that
in the control (t-test, p > 0.05). EC50 for Cu2+ at 72 h for this alga was calculated using
a regression analysis and was 0.565 µg/mL. In that study, Cu at lower concentrations
(<0.2 µg/mL) did not have any obvious adverse effect on P. tricornutum population repro-
duction, but Cu significantly inhibited this diatom’s reproduction at >0.32 µg/mL. This
finding indicates that >0.32 µg/mL Cu2+ concentrations exceed the safety concentration
level for this alga. In previous studies, Jung et al. [63] exposed marine algae Nitzschia
pungens to several antifouling biocides, including copper pyrithione. EC50 (µg/L) of this
compound recorded at 96 h was 0.319 ± 0.016. Franklin et al. [64] studied Cu toxicity in
P. tricornutum. The EC50 values at 48 h and 72 h were 142 ± 47 and 158 ± 63 nmol/L,
respectively, and complete growth inhibition occurred at 11.8 µmol/L. The cell light scatter
properties of P. tricornutum depended on cell size and intracellular granularity. Franklin et al. [64]
noted how Cu brought about an increase in cell size after 24 h of exposure, with 50% of cells
being larger than the controls at 3.15 µmol/L, and similar increases in cell size observed
after 48 h and 72 h at 157.5 nmol/L and an EC50 value of 126 ± 47 nmol /L. Similar changes
in cell size and granularity were also reflected in side-angle light scatter changes, with
an EC50 value of 189 nmol/L after 48 h and 72 h of Cu exposure [65]. In line with our
EC50 results, these values differ from other studies (Figure 7). Hence, more research is
required to collect more reliable data. Therefore, according to our EC50 results for each salt
(Table 2) and the corresponding concentration of each metal on its respective salt (Table 1),
we conclude that the relative toxicity for P. tricornutum is Cu > Cd > Cr.

The brine shrimp A. salina is a suggested organism for bioassays because it functions
like other zooplankton crustaceans, which accumulate trace elements and then transfer
them to a higher trophic level [66]. Artemia has been used to study metal toxicity in other
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studies [67], some of which have demonstrated that brine shrimp is moderately sensitive to
a wide range of metals [31,68–70].

On Cr toxicity for the crustacean A. salina, our results for K2Cr2O7 showed an
EC50 ± SD (mg/L) of 91.359 ± 6.746 at 24 h and a value of 23.554 ± 2.383 at 48 h
(Table 2). Kalčíková et al. [71] tested A. nauplii immediately after hatching, called the
first instar, and the mean 24 h EC50 of K2Cr2O7 was 39.7 mg/L (n = 8) with SD = 10.2 mg/L.
For the second and third instars, which were tested 24 h after hatching, the mean 24 h EC50
of K2Cr2O7 was lower (27.9 mg/L (n = 8)) and SD was 5.1 mg/L, which revealed the test’s
lower variability.

The test using the second and third Artemia instars was assessed because, the greater
the sensitivity, the lower the variability. It was, therefore, used for other toxicity testing. In
another study carried out in 2012 by Umarani et al. [72], acute Cr toxicity at 96 h to adult
and subadult Artemia exposed to different salinity conditions was tested: at 40, 60, and
80 ppt salinity, the EC50 values for subadult Artemia were 0.519, 0.784, and 1.192 mg/L,
respectively, while the EC50 values for adult Artemia were 1.031, 0.413, and 0.887 mg/L,
respectively. In another study, Eduardo et al. [73] determined that EC50 was variable in
different development stages. In the first 24 h after hatching, EC50 was one of the highest
found in that study (21 µg/mL); it then decreased to 15 µg/mL in the 2nd stage and
remained unchanged until the 5th stage. There were no significant differences. In the 6th
and 7th stages, EC50 increased to 21 µg/mL, with a further rise to 25 µg/mL in the 8th stage,
which represented the peak EC50 value in that study. A lowering EC50 trend occurred in the
10th and 11th stages, with values of 21 µg/mL and 16 µg/mL, respectively. From the 12th
to the 15th stage, the EC50 values did not significantly differ from one another. In another
paper, acute K2Cr2O7 toxicity in A. salina larvae was studied as an alternative method to be
applied to ecotoxicology. In this versatile method, 24 h nauplii were exposed to different
concentrations of the compound, and EC50 was 12.5 mg/L [26]. According to the published
papers on Artemia toxicity to K2Cr2O7, the EC50 values moderately differed from those
obtained herein (Figure 7). However, they all showed the toxicity of this compound for
Artemia larvae.

On Cd toxicity for the crustacean, our results for Cd(NO3)2 gave an EC50 ± SD (mg/L)
of 150.167 ± 27.496 at 24 h and a value of 153.840 ± 65.674 at 48 h (Table 2). Previous
studies showed that Artemia was among those crustaceans that were most tolerant to Cd
toxicity, as shown by the 24 h EC50 values corresponding to the different studied species
and populations. They ranged from 98 mg/L to 286 mg/L compared with the 48 h EC50
(0.5–17 mg/L) reported for other crustaceans [70,74]. This tolerance can be partly explained
by the marked effectiveness of Cd for metallothionein induction in Artemia [70]. Hadjispy-
rou et al. [24] reported that the EC50 value for cadmium chloride to cause 50%M in Artemia
was 155.5 mg/L at 24 h, with a 95% confidence interval (95% CI) of 148.8–162.5 mg/L.
According to the bibliography and the obtained EC50 values (Figure 8), we determined that
A. salina was well tolerant to cadmium nitrate because the EC50 value was over 98 mg/L in
all cases.

On Cu toxicity for A. salina, our Cu(NO3)2 results gave an EC50 ± SD (mg/L) of
95.773 ± 28.284 at 24 h and a value of 37.201 ± 1.872 at 48 h (Table 2). Madhav et al. [75]
carried out a study in 2017 and chose a range of concentrations from 25 to 800 mg/L to
run toxicity experiments with adult Artemia. The EC50 value was 61.4 mg/L (95% CI of
47.4–83.4 mg/L) and 35.75 mg/L (95% CI of 30–42 mg/L) at 24 h and 48 h, respectively.
Our results showed that Artemia quite well tolerated copper nitrate up to concentrations of
around 60 mg/L (Figure 8). Therefore, according to our EC50 results for each salt (Table 2)
and the corresponding concentration of each metal on its respective salt (Table 1), we
conclude that the relative toxicity for A. salina is Cr > Cu > Cd.
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Regarding Cd toxicity for the A. aurita ephyra, our results for Cd(NO3)2 gave an
EC50 ± SD (mg/L) of 19.880 ± 5.519 at 24 h and a value of 12.343 ± 2.588 at 48 h (Table 2).
According to the Fp results (Figure 5), at both 24 h and 48 h, when mortality increased,
%Fp dropped (24 h: 33.33%M and 44.79%Fp; 48 h: 86.66%M and 6.17% Fp). The LOEC
value for %M is 15 mg/L at both exposure times. In the study conducted by Faimali
et al. [48], after 24 h of exposure, cadmium nitrate had an effect on both end-points (acute
and sublethal), as evidenced by the 0.5 mg/L concentration for immobilization and that
of 0.1 mg/L for Fp. After 48 h, the same effects were caused by the lower concentration
of 0.05 mg/L for both end-points. It should be highlighted that both end-points showed
100% response at 1 mg/L after 24 h of exposure. From the obtained data (EC50) on the
effect of cadmium nitrate on A. aurita, we obtained 0.07 mg/L at 24 h and 0.13 mg/L
at 48 h. The comparison of EC50 with A. aurita showed that the new biological model
appeared to be the most sensitive of the considered model organisms [48]. Costa et al. [45]
exposed Aurelia sp. ephyras to different 1–4 µm microplastics (MPs). A relatively and
slightly significant difference in effect terms (immobility, Fp) in treatments was observed.
A difference in sensitivity in the end-points for LOEC, Fp, and EC50 after 24 h was noted.
These results showed that the behavioral end-point (Fp) was more sensitive than the
acute one (immobility) (LOEC Fpn = 0.01 mg/L versus LOEC immobility = 0.1 mg/L) for
all of the exposure conditions. Conversely, after 48 h, MPs had significantly affected
(p < 0.05) both end-points at the lowest tested concentration. A toxic effect was also
observed, but only for immobility in EC50 terms at both exposure times and independently
of the exposure conditions. The EC50 values at 24 h for immobility and Fp were 0.40
and 0.13 mg/L, respectively. Overall, the behavioral end-point (Fp) was very sensitive
because a significant effect was noted at the lowest tested concentration (0.01 mg/L) [44].
In another study, Gambardella et al. [32] investigated the potential toxicity of Ag-NPs
(silver nanoparticles) for the marine ecosystem by analyzing effects on several organisms
belonging to different trophic levels. Algae (Dunaliella tertiolecta and Skeletonema costatum),
cnidaria (A. aurita jellyfish), crustaceans (Amphibalanus amphitrite and Artemia salina), and
echinoderms (Paracentrotus lividus) were exposed to Ag-NPs and different end-points were
evaluated. The results showed that all of the end-points were able to underline a dose-
dependent effect. Jellyfish were the most sensitive species, followed by barnacles, sea
urchins, green algae, diatoms, and brine shrimps. The comparison of EC50 to the selected
species highlighted that jellyfish appeared to be the most sensitive model organisms of all
of those investigated: EC50 was 0.09 with 0.15 mg/L of cadmium nitrate at 24 h and 48 h,
respectively. When considering previous ephyra studies [48], we find that the EC50 and
LOEC values for the mortality and Fp of A. aurita are lower than those obtained herein
(Figure 9). However, a correlation appeared between the mortality and Fp end-points, and
ephyra responded efficiently to the selected range of toxicant concentrations.
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Figure 9. Comparison of the EC50 values (mg/L) of Artemia salina from other studies to those of the
present study: (a) the EC50 values of Cr at 24 h; (b) the Cu values at 24 h. [32,45,48,76].

On Cu toxicity for the A. aurita ephyra, our results for Cu(NO3)2 gave an
EC50 ± SD (mg/L) of 0.283 ± 0 t 24 h and a value of 0.283 ± 0 at 48 h (Table 2). In mortality
terms, the exposed A. aurita ephyras presented 0%M in the control, but 100%M at the dif-
ferent toxic concentrations (Figure 6). Lucas and Horton [76] studied the short-term effects
of HMs (including Cu) on the polyps of the common jellyfish A. aurita. They examined
the independent effects of Cu on polyp condition aspects, including budding, strobilation,
deformities, and mortality. The results showed that 200 µg Cu/L exceeded polyps’ toler-
ance to this metal and rapidly led to mortality. For all of the treatments with a high Cu
concentration (200 µg/L), polyp mortality was 89.5 ± 8.3% by day 4, reaching 100%M by
day 17. In another study, Karntanut and Pascoe [77] examined the comparative sensitivity
of three Hydra species to three important metal pollutants: Cu, Cd, and Zn. The selected
species were Hydra vulgaris, Hydra viridissima, and Hydra oligactis. The acute toxicity data
indicated a similar response of all of the species to each metal, with Cu being the most toxic
and Zn being the least toxic. The range of 96 h EC50 for Cu, Cd, and Zn for all of the Hydra
species was 0.025–0.084 mg/L, 0.16–0.52 mg/L, and 11–14 mg/L, respectively. According
to our data and the data observed in the above-cited studies (Figure 9), the conclusion is
that Cu, and thus Cu(NO3)2, is highly toxic for cnidarians at very low concentrations.

As for Cr toxicity for the A. aurita ephyra, our results for K2Cr2O7 showed an
EC50 ± SD (mg/L) of 16.571 ± 4.246 at 24 h and a value of 6.726 ± 2.004 at 48 h
(Table 2). %Fp at both 24 h and 48 h showed an inverse correlation with an increas-
ing toxicant concentration, with 0% at the highest concentration (30 mg/L), 93.33%M at
24 h, and 100%M at 48 h. According to the values obtained for %M at 24 h, the LOEC was
15 mg/L. For %M at 48 h, an incongruent value was observed because the LOEC was
0 mg/L in the untreated control. Unfortunately, we did not find any paper in which cnidar-
ians were exposed to Cr to compare them. However, we noted that %M and %Fp followed
a similar pattern to that of Cd(NO3)2 (Figure 8), which demonstrates that A. aurita is very
sensitive to these metals. Therefore, according to our EC50 results for each salt (Table 2)
and the corresponding concentration of every metal on its respective salt (Table 2), it can be
concluded that the relative toxicity for A. aurita is Cu > Cr > Cd.

5. Conclusions

The global increase in anthropogenic activities in relation to industrial development
implies that ever-growing quantities of HMs enter the marine environment through efflu-
ents. This calls for continuous monitoring to control or limit their emission levels. For this
purpose, the toxicity of and impact on different marine trophic levels need to be consid-
ered and deduced. The present study is a good start in the risk assessment and marine
environmental conservation quest. This experimental work also allowed us to support
other studies that have proposed A. aurita as a model for ecotoxicity tests, because our
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experiments enabled us to identify two end-points (sublethal and acute) with different
sensitivity levels. The comparison of the EC50 values obtained herein for the three reference
toxicants indicates that jellyfish are a very promising model organism for ecotoxicological
research purposes. Given the hypotheses posed in this study, and having performed the
ecotoxicological test for three organisms, it can be assumed that the toxicity of the three
elements is different at the trophic levels they affect and all of the toxicants cause damage
during acute exposure. However, algae together with A. aurita ephyra have a lower EC50.
Thus, they could support the jellyfish as a proper model for marine ecotoxicological assays
in order to better evaluate the toxicity in higher trophic levels.
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