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Abstract: Autism spectrum disorder (ASD) is a multifaceted developmental condition that first ap-
pears in infancy. The condition is characterized by recurrent patterns in behavior and impairments in
social and vocalization abilities. Methylmercury is a toxic environmental pollutant, and its derivatives
are the major source of organic mercury to human beings. Inorganic mercury, which is released
from a variety of pollutants into oceans, rivers, and streams, is transformed into methylmercury by
bacteria and plankton in the water, which later builds up in fish and shellfish, and then enters humans
through the consumption of fish and shellfish and increases the risk of developing ASD by disturbing
the oxidant–antioxidant balance. However, there has been no prior research to determine the effect
of juvenile exposure of methylmercury chloride on adult BTBR mice. Therefore, the current study
evaluated the effect of methylmercury chloride administered during the juvenile stage on autism-like
behavior (three-chambered sociability, marble burying, self-grooming tests) and oxidant–antioxidant
balance (specifically Nrf2, HO-1, SOD-1, NF-kB, iNOS, MPO, and 3-nitrotyrosine) in the peripheral
neutrophils and cortex of adult BTBR and C57BL/6 (B6) mice. Our results show that exposure to
methylmercury chloride at a juvenile stage results in autism-like symptoms in adult BTBR mice which
are related to a lack of upregulation of the Nrf2 signaling pathway as demonstrated by no significant
changes in the expression of Nrf2, HO-1, and SOD-1 in the periphery and cortex. On the other
hand, methylmercury chloride administration at a juvenile stage increased oxidative inflammation
as depicted by a significant increase in the levels of NF-kB, iNOS, MPO, and 3-nitrotyrosine in the
periphery and cortex of adult BTBR mice. This study suggests that juvenile exposure to methylmer-
cury chloride contributes to the worsening of autism-like behavior in adult BTBR mice through the
disruption of the oxidant–antioxidant balance in the peripheral compartment and CNS. Strategies
that elevate Nrf2 signaling may be useful to counteract toxicant-mediated worsening of ASD and
may improve quality of life.

Keywords: antioxidants; autism spectrum disorder; methylmercury chloride; Nrf2 signaling;
oxidative stress; neutrophils

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder which is associated
with immune dysfunction. The common repercussions of the disease include difficulty in
social communication, lack of interest, and deviations in normal behavior which makes this
quite challenging in terms of the burden on society and country [1]. Since 1996, prevalence
studies have been conducted in more than 15 countries to determine the increasing number
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of patients with autism spectrum disorder. The results showed that there were 4.1 subjects
with ASD for every 10,000 people in the UK in 1966 whereas it increased to 13 subjects
with ASD for every 10,000 people in 2014, and this figure is expected to rise substantially
in the future [2,3]. Compared to females, ASD affects males more with a ratio of 1:3, and
this disorder is quite prevalent in developed as well as low- and middle-income nations [4].
Numerous studies reported that the United States, Sweden, and Denmark are the leading
countries with the highest prevalence of autism and the highest incidence of ASD [5,6]. The
continuous increase in patients with autism will automatically increase the global autism
mortality index, which will have an adverse economic and health burden on the USA
(USD 268 billion in 2015), and this figure is expected to rise by USD 460 billion by 2050 [7].
The global increase in the autism index suggests the need to seek therapeutic treatment
for the management of the disease. Although many investigations have been conducted
worldwide to find out the cellular and molecular mechanisms of the disease, the exact
mechanism leading to the development/progression of ASD remains elusive.

Mercury is considered one of the major environmental pollutants whose exposure is
found to be toxic in humans [8,9]. Mercury is present in three chemical forms i.e., HgO, or-
ganic, and inorganic mercury. Methylmercury, an organic mercury compound, causes dele-
terious effects in humans and animals, including neurological behavioral disorders [9,10].
Previous studies have shown that the effects of exposure to mercury compounds during
prenatal/postnatal/adulthood stage cause the development of autism-like symptoms in
mice through various mechanisms that include the expression of pro-inflammatory cy-
tokines and altered transcription factor signaling in CNS [11–13]. However, the effect of
juvenile exposure of methylmercury chloride on autism-like behavior in adult BTBR and
B6 mice remains to be explored, especially with respect to oxidant–antioxidant balance.

Reactive oxygen species (ROS), a major cause of cell damage, are known to result
from metal oxidation as well as other sources. The presence of high levels of unsaturated
lipids and the rapid rate of oxidative metabolism increases the risk of oxidative damage
in the brain [14]. The mechanism of action of mercury and its analogs in promoting
oxidative stress in the brain and other tissue has been extensively studied over the past
years. For instance, a study showed that the administration of mercury chloride at a dose
of 0.375 mg for 45 consecutive days promoted the development of neurodegenerative
disorders by attenuating the level of antioxidant enzymes and increasing lipid peroxidation
in the motor cortex of adult rats [15]. Another study showed that exposure to mercury
vapor (1 mg) in adult female Sprague-Dawley rat for 11 consecutive days (2 h each day)
aided in the elevation of oxidative stress in the cortex region of the brain followed by the
deposition of mercury in the brain and kidney tissues [16]. In another study, the depletion
of antioxidants led to an increase in oxidative enzymes such as NADPH oxidase/iNOS
and lipid peroxidation in periphery/CNS which was linked to an increase in autism-like
symptoms in BTBR mice [17]. However, the role of juvenile exposure of methylmercury
chloride on Nrf2 signaling and oxidative stress in the peripheral neutrophils and cortex in
adult BTBR and B6 mice needs to be elucidated.

Master redox transcription factor known as nuclear factor erythroid-2 related factor
(Nrf2) plays an important function against oxidative stress by regulating the cellular
defense mechanisms. Dysregulation in Nrf2 signaling is mainly oxidative stress-associated
immune and neurological disorders including ASD [17,18]. For instance, several studies
have shown that ASD subjects and animals with autism-like behavior display a decrease in
Nrf2 expression [19–21]. In this study, we intended to examine the effect of methylmercury
chloride on Nrf2-mediated signaling in the cortex of BTBR and B6 mice. To our knowledge,
this is the first study to look at how exposure to methylmercury chloride at a juvenile stage
affects the autism-like behavior and oxidant–antioxidant balance in the periphery and brain
of adult BTBR and B6 mice. Our findings highlight that the exposure to methylmercury
chloride during the juvenile stage aggravated autism-like behavior in adult BTBR mice
probably through a lack of Nrf2-mediated antioxidant protection in the periphery and CNS.
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2. Materials and Methods
2.1. Animal Model

The male C57BL/6 (B6) and BTBR T+ Itpr3tf/J (BTBR) mice were obtained from
Jackson Laboratory in Bar Harbor, ME, USA. The mice were bred in the department’s
animal care facility and were kept in specific pathogen-free and proper hygienic conditions
and a controlled environment of temperature/humidity, and a 12 h light–dark cycle. Mice
had unrestricted access to food and water. The Animal Care and Research Committee of the
College of Pharmacy, King Saud University, approved all animal experiments. BTBR mice
are well known for showing autism-like behavior spontaneously which has been studied
in detail by multiple investigators in the past. BTBR mice show socialization defects, and
stereotypical repetitive behavioral patterns similar to human ASD subjects which can be
studied through a battery of behavioral tests as described below [17,19,21].

2.2. Drug Administration

To examine the impact of the environmental contaminant methylmercury chloride
(MeHgCl) on autism-like symptoms in BTBR mice, they were administered with MeHgCl
at a dose of 0.3 ppm in their drinking water for a duration of three weeks, starting at the
age of 3 weeks [22]. At the age of 6 weeks, the mice were switched to normal tap water
for a period of 4 weeks followed by behavioral tests in week 10. The mice were allocated
randomly to four groups: (1) B6 mice treated with a vehicle (control group), (2) B6 mice
treated with MeHgCl, (3) BTBR mice treated with a vehicle, and (4) BTBR mice treated
with MeHgCl. The vehicle in this study is normal drinking water which was provided
to either B6 mice (group 1) or BTBR mice (group 3) throughout the study. Behavioral
assessments, including the marble-burying test, self-grooming test, and three-chambered
social interaction test, were conducted in week 10 (Figure 1).
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Figure 1. Experimental design.

2.3. Marble Burying Test

The marble-burying behavior test, as described earlier, was used to assess autism-like
behavior [17,23]. Mice were placed on top of unperfumed bedding containing 20 marbles ar-
ranged in a 4× 5 grid. After 30 min of free exploration, an independent researcher, unaware
of the experimental conditions, counted the number of marbles buried by each mouse. If
greater than 50% area of the marble was covered by the bedding, it was considered buried.

2.4. Self-Grooming Test

The spontaneous self-grooming test, described in previous studies, was conducted to
measure autism-like behavior [17,23,24]. Mice were placed in an empty cage
(dimension of 27 × 17 × 13 cm) for a 10 min habituation period, followed by a 10 min
observation period. An independent observer, blinded to the experimental conditions,
recorded the total time spent by each mouse engaged in self-grooming behavior which
included head washing, body/tail/genital grooming, and paw and leg licking.
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2.5. Three-Chambered Sociability Test

The three-chambered sociability test, as described in earlier studies, was used to assess
social behavior [17,23]. Mice were habituated to a three-chambered rectangular acrylic box
(22 cm × 60 cm × 22 cm) and allowed to explore for 10 min. After acclimatization to the
test surroundings, the test mouse was placed again in the acrylic test box for exploration
of all three chambers for a period of 10 min. Social interaction time was defined as the
time spent by the test mouse in interactions/the vicinity with a novel mouse and it was
observed and recorded by two independent scientists blinded to the treatment conditions.

Following the completion of the behavioral tests, the mice were euthanized for further
biochemical and molecular analyses. Tissue samples (spleen/brain) were collected for
subsequent molecular/biochemical analyses.

2.6. Flow Cytometry

A single-cell suspension was created from splenic tissue using established protocols
outlined in previous studies for flow cytometry analysis [17,25]. To label the leukocytes
in the splenic cell suspension, cell surface monoclonal antibodies against GR-1 were used,
which were conjugated to FITC, APC, or APC-Cy7 [Biolegend (San Diego, CA, USA)
and Santa Cruz Biotech (Dallas, TX, USA)]. Subsequently, permeabilization and fixation
procedures were conducted to allow for intracellular staining. Leukocytes were labeled with
specific monoclonal antibodies conjugated to FITC, PE, or APC against intracellular proteins
including SOD1, Nitrotyrosine, Nrf2, p-NFkB, and iNOS [Biolegend (San Diego, CA, USA),
Cell Signaling Tech (Danvers, MA, USA), and Santa Cruz Biotech (Dallas, TX, USA)].
Flow cytometry was then performed, acquiring 10,000 events for each sample, and the
resulting data were analyzed using Cytomics FC500 software from Beckman Coulter
(Brea, CA, USA), following the methodology described in previous reports [26,27].

2.7. Trans-Activation ELISA Assay in the Cortex for Nrf2 Binding with Its Antioxidant
Response Element

To assess the Nrf2 trans-activation binding activity to the antioxidant response element
(ARE) in the cortex, the Trans-AM Nrf2 kit from Active Motif (Carlsbad, CA, USA) was
employed, following the methodology outlined in the previous study [25]. The assay
aimed to determine the binding activity of Nrf2 to its specific ARE sequence, which is
5′-GTCACAGTACTCAGCAGAATCTG-3′. The binding activity was quantified by mea-
suring the generation of a colored product at 450 nm, which is indicative of the specific
Nrf2 activity in the nuclear extracts. The data obtained from the assay were presented
as fold differences, representing the relative change in Nrf2 binding activity compared
to the control.

2.8. Real-Time PCR

To evaluate mRNA expression in the cortex, the High-Capacity cDNA Archive Kit
from Applied Biosystems (Waltham, MA, USA) was utilized for the reverse transcription
of RNA into cDNA, following established protocols described in previous studies [17,27].
Gene expression analysis was performed using the ABI PRISM 7500 Sequence Detec-
tion System from Applied Biosystems. For the real-time PCR analysis of specific genes,
iNOS, NFkBp65, SOD1, HO-1, Nrf2, and GAPDH primers were used (GenScript primers,
Piscataway, NJ, USA). The relative gene expression levels in different cortical brain samples
were determined using the comparative delta-delta Ct method, enabling the calculation of
fold changes in gene expression compared to the control sample.

2.9. Lipid Peroxides Measurement in Brain

The assessment of lipid peroxides in cortical brain samples followed an established
protocol outlined in the study [17]. The concentration of lipid peroxides was measured and
presented in nmol/mg protein.
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2.10. Myeloperoxidase (MPO) Activity Measurement in Brain

To evaluate myeloperoxidase (MPO) activity in the cortex samples as an indicator of
neutrophil inflammation, a method described earlier was employed [25]. The supernatants
obtained from the cortex samples were mixed with MPO substrate buffer containing
O-dianisidine (0.167 mg/mL) and H2O2 (0.0005%) in 50 mM potassium phosphate buffer.
Following a 20 min incubation at 25 ◦C, the MPO activity was determined by measuring
the absorbance at 450 nm using a microplate reader.

2.11. Data Analysis

The data were presented as mean ± SEM, and statistical values were considered
significant at p < 0.05. The statistical analysis was performed using GraphPad Prism 9
software (GraphPad Software, San Diego, CA, USA). A two-way ANOVA was conducted
followed by Tukey’s post-hoc test for multiple comparisons to assess the differences and
interactions among different groups.

3. Results
3.1. Effect of Methylmercury Chloride Administration during Juvenile Stage on Autism-like
Behavior in Adult BTBR and B6 Mice

Our study investigated the potential long-term effects of juvenile exposure to methylmer-
cury chloride (MeHgCl) on adult mice, specifically in relation to autism-like behavioral
parameters. To assess this, we examined several behavioral parameters such as the time
spent near a novel mouse, the number of marbles buried, and self-grooming behavior in
both B6 (a social strain) and BTBR (an asocial strain) mice. Our results show that exposure to
methylmercury chloride during the juvenile period aggravated autism-like behavioral distur-
bances in adult BTBR mice. Briefly, the effect of methylmercury chloride on the autism-like
behavioral tests in B6 and BTBR mice was investigated using a variety of experiments such as
three-chambered sociability, marble bury test, and self-grooming behavior (Figure 2). Upon re-
ceiving methylmercury chloride treatment in the juvenile stage, BTBR mice in adulthood had
decreased social communication skills (i.e., spent less time in the vicinity of the novel mouse)
than vehicle-treated BTBR mice during the same juvenile period (Figure 2A). Furthermore,
methylmercury chloride-treated BTBR mice displayed increased marble-burying behav-
ior as compared to methylmercury chloride-treated B6 mice with a statistically significant
p-value < 0.005 (Figure 2B). In addition, methylmercury chloride-treated BTBR mice spent
more time in self-grooming behaviors as compared to methylmercury chloride-treated B6
mice, indicating the exacerbation of autism-like behavior in methylmercury chloride-treated
BTBR mice (Figure 2C). However, B6 mice receiving methylmercury chloride during the
juvenile period also displayed minor symptoms of autism-like behavioral disturbances than
vehicle-treated B6 mice; however, these effects were not significant in social communication,
marble burying, and self-grooming tests (Figure 2A–C). These findings together depict that
juvenile exposure to methylmercury chloride may increase autism-like behavior in adult
BTBR mice.

3.2. Effect of Methylmercury Chloride during Juvenile Stage on Nrf2-Mediated Signaling in
Peripheral Neutrophils of Adult BTBR and B6 Mice

After studying the effect of juvenile exposure to methylmercury chloride on autism-like
symptoms, the effect on Nrf2 and antioxidant enzymes was examined in the peripheral neu-
trophils (Gr-1+ cells) of B6 and BTBR mice. Our results indicate that exposure to methylmer-
cury chloride during their juvenile stage leads to a lack of Nrf2 upregulation in the neu-
trophils of adult BTBR mice (Figure 3A). On the contrary, methylmercury chloride-treated
B6 mice had upregulated neutrophilic Nrf2 signaling in adulthood as depicted by increased
Nrf2+Gr-1+ cells (Figure 3A,D). In addition, BTBR mice receiving methylmercury chloride
treatment during the juvenile stage did not have elevated heme-oxygenase-1 (HO-1) ex-
pression in Gr-1+ cells, whereas B6 mice exposed to methylmercury chloride treatment had
a higher expression of HO-1 in Gr-1+ cells than their respective control group (Figure 3B).
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Similarly, BTBR mice receiving methylmercury chloride treatment during the juvenile stage
did not have elevated SOD-1 in Gr-1+ cells, whereas B6 mice exposed to methylmercury
chloride treatment had a higher expression of SOD-1 in Gr-1+cells than their respective
control group (Figure 3C). These findings suggested that a lack of Nrf2 upregulation in
peripheral neutrophils may intensify autism-like symptoms in adult BTBR mice subjected
to methylmercury chloride treatment during the juvenile period.
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3.3. Effect of Methylmercury Chloride during Juvenile Stage on NF-kB-Mediated Signaling in
Peripheral Neutrophils of Adult BTBR and B6 Mice

The expression of NF-kB and oxidative stress markers (i.e., iNOS, Nitrotyrosine) was
analyzed in peripheral neutrophils of B6 and BTBR mice subjected to methylmercury
chloride treatment during their juvenile periods. Our data show that there was a marked
increase in the expression of p-NF-kB, iNOS, and nitrotyrosine in the peripheral neu-
trophils of methylmercury chloride-treated BTBR mice, compared to vehicle BTBR mice
treated as shown by an increased percentage of p-NF-kB+, iNOS+, and nitrotyrosine+Gr-1
cells (Figure 4A–C). In addition, methylmercury chloride-treated B6 mice also had a minor
increase in NF-kB and oxidative stress markers (iNOS and Nitrotyrosine) than vehicle-
treated B6 mice; however, it was not significant (Figure 4A–C). These findings together
conclude that the methylmercury chloride treatment during the juvenile period raises the
oxidative potential in the peripheral neutrophils of adult BTBR mice.
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Figure 4. Effect of methylmercury chloride on NFkB-mediated signaling in peripheral neutrophils of
B6 and BTBR mice. (A) % of p-NFkB expression in Gr-1+ cells, (B) % of iNOS expression in Gr-1+ cells,
(C) % of Nitrotyrosine expression in Gr-1+ cells, and (D) Illustrative flow plot for p-NFkB+Gr-1+
double immunostaining. Values are shown as mean ± SEM; n = 6/group. ** p < 0.01; *** p < 0.01;
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3.4. Effect of Methylmercury Chloride during Juvenile Stage on Nrf2-Mediated Signaling in the
Cortex of Adult BTBR and B6 Mice

Next, we sought to see how methylmercury chloride affected the Nrf2 signaling
and antioxidant enzymes in the cortex of B6 and BTBR mice. Our findings reveal that
the Nrf2 mRNA expression increased in both strains after exposure to methylmercury
chloride (Figure 5A). However, only adult B6 mice had an increased Nrf2-ARE bind-
ing activity in the cortex after exposure to methylmercury chloride during the juvenile
stage (Figure 5B). Besides Nrf2-ARE binding activity, a similar increased pattern was
observed in the mRNA expressions of HO-1 and SOD-1 in the cortex of B6 and BTBR
mice (Figure 5C,D). HO-1 and SOD-1 mRNA expression in the cortex of adult B6 mice had
a significant increase after exposure to methylmercury chloride during the juvenile period,
whereas there was no effect on these enzymes in BTBR mice (Figure 5C,D). Altogether,
these results depict that juvenile exposure to methylmercury chloride treatment fails to
augment Nrf2-mediated antioxidant protection in adult BTBR mice.
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Figure 5. Effect of methylmercury chloride on Nrf2-mediated signaling in the cortex of B6 and BTBR
mice. (A) Nrf2 mRNA expression, (B) Nrf2-ARE binding activity, (C) HO-1 mRNA expression, and
(D) SOD-1 mRNA expression. Values are shown as mean ± SEM; n = 6/group. * p < 0.05; ** p < 0.01;
**** p < 0.0001; ns = not significant.

3.5. Effect of Methylmercury Chloride during Juvenile Stage on NF-kB Mediated Signaling in the
Cortex of Adult BTBR and B6 Mice

The effect of methylmercury chloride on NF-kB levels and oxidative stress mark-
ers such as iNOS, lipid peroxidation, and MPO in the cortex of B6 and BTBR mice was
also investigated. Our results showed that the cortex of methylmercury chloride-treated
BTBR mice had increased levels of p-NF-kB as compared to that of vehicle-treated BTBR
mice; however, there was no significant difference in the p-NF-kB levels of the cortex of
the vehicle-treated and methylmercury chloride-treated B6 strain (Figure 6A). In addi-
tion, markers of oxidative stress, i.e., iNOS and lipid peroxidation in the cortex of adult
BTBR mice had a significant increase after exposure to methylmercury chloride during
the juvenile period, whereas there was no significant increase in these parameters in adult
B6 mice (Figure 6B,C). Further, a marker of neutrophilic inflammation, i.e., MPO, was
found to be elevated in the cortex of methylmercury chloride-treated BTBR mice than
vehicle-treated BTBR mice; however, there was no significant difference in the cortical MPO
levels of vehicle-treated and methylmercury chloride-treated B6 mice (Figure 6D). Overall,
these findings reveal that a methylmercury chloride treatment during the juvenile period
causes an exacerbation of the autism-like behavior in adult BTBR mice probably due to an
increase in oxidative inflammation and failure to upregulate the antioxidant protection.
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4. Discussion

ASD is characterized by repetitive behaviors and restricted interests, along with
barriers to social communication [8]. The pathophysiology of ASD has been linked to
dysfunction in several immune cells including neutrophils, microglia, dendritic cells, and
T-lymphocytes. Abnormal neuron development, elevated oxidative stress, and the release
of pro-inflammatory cytokines can cause neuroinflammation and damage the brain tissue
in individuals with autism spectrum disorder [26–29]. Since the condition is a neurolog-
ical problem, it is thought that genetic or environmental factors may play a vital role in
affecting brain functioning [22,30]. For instance, a study showed that environmental factors
account for a 55% probability of having autism spectrum disorder, whereas genetic factors
account for only 37% [31]. Over the years, several studies have been conducted that have
shown that environmental factors cause alterations in the neuronal function and antioxi-
dant defense system that leads to the development of this neurological disorder [32–35].
For instance, a recent study shed light on the mechanism of environmental pollutants
such as Di-(2-ethylhexyl) phthalate (DEHP) in the aggravation of autism-like behavior in
BTBR mice [19]. Therefore, in this study, we aspired to study the effect of another envi-
ronmental toxicant, i.e., methylmercury chloride, on autism-like behavior in BTBR and B6
mice. The results of our study highlighted that the exposure to methylmercury chloride
during the juvenile period displayed exaggerated autism-like behavior in adult BTBR mice.

The activation of peripheral immune cells in various psychiatric disorders including
ASD has been extensively studied [7,10,11]. It has been found that peripheral immune
cells liberate several inflammation-causing mediators at the blood–brain barrier which
impair neural activity via modulating the cellular response in oligodendrocytes, microglia,
and astrocytes [25,33,36]. As these inflammatory mediators are considered to augment
impairment in neuronal and neuroglial functioning, they may have a crucial role in the
pathogenesis of neurodevelopmental impairment linked with ASD [32,36,37]. Previous
studies conducted on ASD have shown that peripheral inflammatory mediators, i.e., ox-
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idants and cytokines, mediate the activation of transcription factors (NFkB/Nrf2) and
protein kinases in the peripheral immune cells of BTBR mice [33,34,38]. The current study
showed that exposure to methylmercury chloride during the juvenile period enhanced
the expression of NF-kB/iNOS in adult BTBR mice without substantially balancing the
antioxidant response in the cortex and peripheral neutrophils, which led to the aggravation
of autism-like symptoms of the BTBR mice. A recent study has also shown that the prenatal
exposure of B6 mice to methylmercury at low doses caused autism-like symptoms such as
a lack of interaction, repetitive interest, and behavioral variations which was probably due
to premature neuronal differentiation [13].

Free radicals are single electronic species that are known to cause oxidative dam-
age to macromolecules such as DNA, proteins, and carbohydrates [28,39,40]. It has
been found that during pathological conditions, the level of oxidative stress increases
which further aggravates the disease by causing harmful consequences, one of which is
the reduction in activity of antioxidant enzymes in the body [41,42]. Furthermore, free
radicals and other reactive oxygen species are known to directly damage lipids when
present in high concentrations [29] The endoplasmic reticulum, plasma membrane, peroxi-
somes, and mitochondria are the main sites where endogenous reactive oxygen species are
produced [28,43]. Several processes contribute to this process, including enzymatic reac-
tions and/or auto-oxidation of various substances [43]. Oxidative lipid breakdown known
as lipid peroxidation generally takes place when free radicals seize electrons from the cell
membrane. On the other hand, the oxidation of proteins can lead to the dysfunction of
enzymes/receptors [29,42,43]. Hydroxyl radicals, peroxynitrite, superoxide, and hydroper-
oxyl are the most abundant reactive oxygen species that can have significant effects on
lipids and proteins. Several oxidation products, such as lipid hydroperoxides, nitrotyrosine,
and malondialdehyde, are generated during protein/lipid oxidation [28,43]. Our study
showed increased lipid/protein oxidative products in the neutrophils and cortex of adult
BTBR mice which were exposed to a methylmercury treatment during the juvenile period.

Over the past years, the association between oxidative stress and ASD has been
intensively studied. For instance, BTBR mice and ASD subjects show upregulation of
NF-kB, iNOS, NADPH oxidase, lipid peroxides, and nitrotyrosine which may exacer-
bate the autism-like symptoms by increasing oxidative damage in the periphery and
brain [18,19,27,44–49]. Past studies showed that BTBR mice and individuals with ASD had
increased lipid peroxidation and other markers of oxidative stress such as nitrotyrosine as
compared to normal controls. These oxidative events may exacerbate the autism-like symp-
toms in mice and human ASD subjects by increasing the oxidative damage in the periphery
and brain [43–45]. A recent study showed that supplementation of a ketogenic diet allevi-
ated oxidative stress by reducing the level of lipid peroxidation in the brain tissue of BTBR
mice which was associated with improvements of autism-like behavior [38]. Other studies
also showed that a reduction in peripheral and CNS oxidative stress resulted in the im-
provement of autism-like symptoms in BTBR mice, whereas an increase in CNS/peripheral
oxidative stress caused the worsening of autism-like symptoms in BTBR mice [26,27]. Fur-
thermore, another study showed that the gestational exposure of pregnant BTBR mice to
the pesticide chlorpyrifos led to an increase in brain oxidative stress in BTBR pups [46].
Therefore, an increase in oxidative parameters after juvenile exposure to methylmercury
may be responsible for the worsening of autism-like symptoms in adult BTBR mice in our
study. Our results are consistent with previously published reports showing an association
between the upregulation of oxidative stress and ASD [21,27,40,45–49].

The Nrf2 signaling pathway mediates the activation of various antioxidant enzymes,
including HO-1 and SOD through the transcriptional regulation of antioxidant response ele-
ments in the DNA [50]. Several studies have revealed that a deficiency of Nrf2 in mice signif-
icantly enhanced the risk of developing toxicity and oxidative stress-related diseases [50,51].
It is well known that antioxidant defense mechanisms are activated with an increase in
oxidative stress, but our results are not consistent with this as adult BTBR mice exposed to
methylmercury chloride during the juvenile stage had oxidative stress parameters without



Toxics 2023, 11, 546 11 of 14

the upregulation of Nrf2 signaling as reflected by a lack of HO-1 and SOD-1 upregulation
in the periphery and CNS. However, adult B6 mice exposed to methylmercury chloride
during the juvenile period showed an upregulation of the Nrf2 signaling pathway and
HO-1/SOD-1 antioxidant enzymes which could be responsible for the lack of development
of autism-like behavior in these mice. A lack of antioxidant upregulation due to dysregula-
tion in Nrf2 signaling in ASD subjects and BTBR mice has been earlier reported [18,19,27,52].
Considered together, our results confirm that a lack of Nrf2 signaling in adult BTBR mice
after exposure to methylmercury during the juvenile stage might be responsible for the
worsening of autism-like behavior. Several Nrf2 activators such as resveratrol, sulforaphane,
curcumin, and naringenin showed improvements in autistic behavior both in human ASD
subjects and mice models of autism which suggests that Nrf2 signaling plays a key role
in the amplification of the antioxidant defenses required to protect against oxidant-stress
induced by various toxicants/pollutants [27,53–56].

Our study showed decreased Nrf2-ARE binding in the vehicle-treated BTBR mice as
compared to vehicle-treated B6 mice, whereas Nrf2 mRNA levels were not significantly
different between the two groups. Nrf2 mRNA levels increased in both groups after
methylmercury exposure, which did not translate into increased Nrf2-ARE binding in
the BTBR group. It is well known that the translation of an mRNA transcript into a
protein might be affected by several factors, e.g., inflammation, toxins, and drugs [57,58].
Therefore, it is feasible that Nrf2 mRNA transcripts were modulated differentially by
inflammatory conditions present in the brain of BTBR mice, thereby leading to reduced
Nrf2 protein expression and its translocation to the nucleus as reflected by the strong
interaction between the strain and treatment (assessed by a two-way ANOVA) in Nrf2-
related biochemical parameters.

5. Conclusions

In summary, this study provides substantial evidence that the juvenile exposure
to methylmercury chloride causes an enhancement of autism-like symptoms in adult
BTBR mice possibly due to a paucity in antioxidant defenses and concomitant oxidative
damage in the periphery and CNS. Further, it suggests that there is an interaction between
genetic background and toxicant exposure during the juvenile stage which may manifest in
adulthood. A treatment approach that enhances peripheral and neuronal antioxidants may
be a good candidate for preventing environmental toxicant-induced autism-like behaviors
and reducing the global morbidity associated with ASD.
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