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Abstract: ST-segment elevation myocardial infarction (STEMI), one of the primary factors leading to
global mortality, has been shown through epidemiological studies to have a relationship with short-
term exposure to air pollutants; however, the association between air pollutants and the outcome of
STEMI has not been well studied. The aim of this study was to estimate the impact of air pollutants
on the outcomes of STEMI. Data on particulate matter <2.5 µm (PM2.5), <10 µm (PM10), nitrogen
dioxide (NO2), and ozone (O3) at each of the 11 air monitoring stations in Kaohsiung City were
collected between 1 January 2012 and 31 December 2017. Medical records of non-trauma patients
aged > 20 years who had presented to the Emergency Department (ED) with a principal diagnosis of
STEMI were extracted. The primary outcome measure was in-hospital mortality. After adjusting for
potential confounders and meteorological variables, we found that an increase in the interquartile
range (IQR) in NO2 was associated with an elevated risk of in-hospital mortality in patients with
STEMI. Moreover, there was an observed higher risk of in-hospital mortality associated with an
increase in the IQR of NO2 during the warm season, specifically in lag 3 (3 days prior to the onset,
OR = 3.266; 95%CI: 1.203–8.864, p = 0.02). Conversely, an IQR increase in PM10 was associated with an
increased risk of in-hospital mortality in patients with STEMI in lag 3 (OR = 2.792; 95%CI: 1.115–6.993,
p = 0.028) during the cold season. Our study suggests that exposure to NO2 (during the warm season)
and PM10 (during the cold season) may contribute to a higher risk of poor prognosis in patients
with STEMI.

Keywords: ST-segment elevation myocardial infarction; STEMI; particulate matter; nitrogen dioxide;
emergency department; air pollution

1. Introduction

Growing evidence indicates the health effects of air pollution, particularly on the res-
piratory and cardiovascular systems [1,2]. Epidemiological studies have demonstrated that
short-term exposure to air pollutants, including particulate matter <2.5 µm (PM2.5), <10 µm
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(PM10), and nitrogen dioxide (NO2), is strongly correlated with the risk of myocardial
infarction (MI) events, emergency department (ED) visits, and stroke [3–5]. Toxicological
investigations have also unveiled that both short- and long-term exposure to air pollution
may result in vascular dysfunction [6,7], lung inflammation [8], and even disturbances in
blood pressure regulation [9].

According to the American Heart Association, a sudden decrease in blood flow in
the coronary arteries is the primary trigger for ST-segment elevation myocardial infarction
(STEMI), resulting in a significant contribution to the overall mortality rates worldwide [10].
Recent studies have shown a direct link between short-term exposure to air pollution, ED
visits, hospitalization, and related mortality risks for STEMI [11,12]. However, lack of
evidence focused on the impact of air pollution exposure on the prognosis of STEMI.

The impacts on health due to air pollution exhibit seasonal variations. For instance,
Ishii et al. found a positive correlation between exposure to PM2.5, and the risk of MI,
with the risk being more pronounced in the spring season [13], and children were more
susceptible to NO2 on pneumonia during warm days [14]. Despite growing evidence on the
impact of air pollution on health outcomes, its specific effects on the short-term outcomes
of STEMI and potential seasonal effects remain unclear. Therefore, the objective of this
study was to investigate the association between air pollution, weather conditions, and
short-term outcomes of STEMI to better understand the impact of air pollution on STEMI
prognosis and its potential seasonal effect.

2. Materials and Methods
2.1. Study Population

This retrospective observational study was performed at an urban tertiary medical
center in Kaohsiung, Taiwan, with an annual average of 72,000 ED visits and 2500 beds,
spanning from 1 January 2012 to 31 December 2017. For this study, medical records of non-
trauma adult patients who were over 20 years of age and visited the emergency department
with a primary diagnosis of STEMI (International Classification of Diseases, Ninth Revision
[ICD-9]: 410; ICD-10: I21.0–I21.3), and subsequently underwent percutaneous coronary
intervention (PCI), were enrolled. Both the ED physicians and cardiologists confirmed
the diagnosis of STEMI. Patient information, including age, sex, and STEMI predictive
variables such as hypertension, diabetes, current smoking status, Killip classification, body
mass index, and clinical outcomes, were obtained from their medical records.

2.2. Pollutant and Meteorological Data

This study used air pollution data and weather conditions collected from 11 air-quality
monitoring stations established in Kaohsiung City. These monitoring stations were set up
by the Taiwanese Environmental Protection Administration in 1994, as shown in Figure 1.
Kaohsiung is a city with a tropical climate and is situated in southern Taiwan at an ele-
vation of approximately 9 m above sea level. Air pollutants were measured as described
previously [15]. Briefly, the monitoring stations employed commercial monitoring instru-
ments manufactured by Thermo Environmental Instruments, Inc. (Franklin, MA, USA)
and designated by the United States Environmental Protection Agency (US EPA). The mon-
itoring stations utilized full automation and monitored “criteria” pollutants on an hourly
basis, which included particulate matter, PM10, PM2.5 (measured by beta-ray absorption),
nitrogen dioxide (NO2) (measured by ultraviolet fluorescence), and ozone (O3) (measured
by ultraviolet photometry).

The addresses of the patients were gathered from their medical files, and the 24 h
average levels of these pollutants, along with the temperature and mean humidity from the
monitoring station in closest proximity, were documented. The air pollutant concentration
and meteorological data recorded on the same day as the patient’s ED visit were identified
as a lag of 0. The values recorded on the day prior to the patient’s ED visit were identified
as lag 1, and so forth. The mean concentration from lags 0 to 3 was categorized as lag 0–3.
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the Taiwan map outline was adapted from https://webvectormaps.com/taiwan-map-outline-free-
blank-vector-map/ (accessed on 29 May 2023), which was licensed under the Creative Commons 
Attribution 4.0 International License. 
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2.3. Variables and Outcome Measures

Data on age, sex, triage status, and prognostic factors for STEMI, including comor-
bidities such as hypertension, dyslipidemia, diabetes, and coronary artery disease, were
collected from medical records. The outcome measurement in this study was in-hospital
mortality, defined as death occurring during the current hospitalization and attributable
to the STEMI episode. Each episode of STEMI was considered an individual event in
this study.

This study was approved by the Institutional Review Board of the Chang Gung
Memorial Hospital (number: 202101652B0C503) and was conducted in accordance with the
Code of Ethics of the World Medical Association (Declaration of Helsinki).

2.4. Statistical Analyses

The independent variables were analyzed descriptively and presented as percentages
or means ± standard deviations (SDs). The relationships between the independent variables
and admission were evaluated using χ2, Mann–Whitney U, and Student t tests. We utilized
logistic regression analysis to examine the statistical significance of the association between
air pollutants, comorbidities, and the outcome of STEMI, and to calculate the odds ratio
(OR), 95% confidence interval (CI), and p value. In order to assess whether there is a dose-
dependent effect of air pollution on the prognosis of STEMI, we categorized air pollutants
into different quartiles and performed logistic regression analysis to calculate the impact of
STEMI prognosis at different concentrations of air pollutants. Statistical significance was
set at p < 0.05. All statistical analyses were conducted utilizing SPSS version 25.0 (IBM
Corp., Armonk, NY, USA).

3. Results

Over the course of the six-year study period, 1153 events met the inclusion criteria, of
which 132 patients were excluded because their addresses were not in Kaohsiung City, and
18 patients were omitted due to being transferred to other hospitals or being discharged
against medical advice. The final study population consisted of 1003 STEMI episodes.
Among the 1003 STEMI events included in the study, four of them were repeat episodes.
The demographic characteristics and air pollution conditions are presented in Table 1.
Of the 1003 patients included in this study, 56 (5.6%) died during hospitalization. Most
patients who survived until hospital discharge were current smokers (p < 0.001), had a
higher frequency of dyslipidemia (p = 0.008), and had lower Killip classification levels
(p < 0.001). Patients who died during hospitalization had higher NO2 exposures in lags 2
(p = 0.017), 3 (p = 0.005), and lag 0–3 (p = 0.027).

https://webvectormaps.com/taiwan-map-outline-free-blank-vector-map/
https://webvectormaps.com/taiwan-map-outline-free-blank-vector-map/
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Table 1. Demographic characteristics, Killip classification, and air pollution conditions (mean ± stan-
dard deviation, SD) of 1003 patients with ST-segment elevation myocardial infarction (STEMI).

Survival to
Discharge

In-Hospital
Mortality

Characteristics N = 947 N = 56 p

Male 789 46 0.819
Age 60.3 ± 12.7 60.1 ± 12.9 0.652
Diabetes 359 24 0.459
Hypertension 595 34 0.75
Current smoker 531 17 <0.001 ***
Dyslipidemia 696 32 0.008 **
Killip III to IV 193 38 <0.001 ***
Body mass index 25.4 ± 3.7 24.6 ± 5.1 0.192
History of coronary artery disease 53 4 0.627
PM2.5, µg/m3

lag 0 34.3 ± 19.6 31.9 ± 18.3 0.363
lag 1 33.9 ± 19.7 34.1 ± 17.7 0.954
lag 2 33.6 ± 19.2 36.6 ± 19.6 0.261
lag 3 33.7 ± 19.0 36.2 ± 21.3 0.345
lag 0–3 33.8 ± 17.7 34.7 ± 17.7 0.724
PM10, µg/m3

lag 0 65.3 ± 29.8 63.1 ± 28.5 0.595
lag 1 65.0 ± 30.1 66.2 ± 26.7 0.766
lag 2 64.8 ± 29.3 69.8 ± 30.3 0.217
lag 3 64.8 ± 29.2 70.7 ± 32.9 0.145
lag 0–3 65.2 ± 26.9 67.9 ± 26.9 0.456
NO2, ppb
lag 0 17.7 ± 6.5 18.7 ± 7.3 0.252
lag 1 17.6 ± 6.6 19.3 ± 7.1 0.075
lag 2 17.6 ± 6.7 19.9 ± 7.9 0.017 *
lag 3 17.8 ± 6.7 20.4 ± 7.8 0.005 **
lag 0–3 17.7 ± 6.1 19.6 ± 7.0 0.027 *
O3, ppb
lag 0 28.5 ± 12.2 28.3 ± 12.2 0.883
lag 1 28.6 ± 12.7 27.9 ± 14.8 0.677
lag 2 28.2 ± 12.5 27.1 ± 11.8 0.5
lag 3 28.3 ± 12.7 26.8 ± 11.4 0.403
lag 0–3 28.4 ± 10.7 27.5 ± 10.4 0.543

* p < 0.05, ** p < 0.01. *** p < 0.001.

3.1. Air Pollutants and Meteorological Results

Table 2 summarizes the meteorological factors, daily mean concentrations of air pollu-
tants, and weather variables in Kaohsiung during the study period. The average concentra-
tions of PM2.5, PM10, NO2, and O3 during the study period were 31.3 µg/m3, 63.5 µg/m3,
17.1 ppb, and 29.0 ppb, respectively. Seasonal variations in the concentrations of air pollu-
tants were observed between the cold season (October to March) and warm season (April
to September). Statistical analysis revealed that PM2.5, PM10, NO2, SO2, and O3 levels
were significantly higher during the cold season (p < 0.001). Conversely, temperature and
humidity levels were significantly lower during the cold season (p < 0.001).
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Table 2. Summary statistics for air pollution and meteorology in Kaohsiung, 2012–2017.

Minimum
Percentiles

Maximum Mean
Warm Season
(Mean ± SD)

Cold Season
(Mean ± SD)

p
25% 50% 75%

PM2.5 µg/m3 1.6 16.1 29.9 44.1 120.8 31.3 ± 17.8 16.9 ± 11.9 42.9 ± 14.9 <0.001
PM10 µg/m3 16.1 37.0 61.0 84.7 181.0 63.5 ± 28.8 43.1 ± 17.0 84.0 ± 23.2 <0.001

NO2 (ppb) 4.8 11.6 16.4 21.9 35.0 17.1 ± 7.4 12.6 ± 6.6 21.7 ± 5.0 <0.001
O3 (ppb) 3.5 18.6 27.1 36.6 61.7 28.4 ± 12.4 23.2 ± 13.2 30.7 ± 11.2 <0.001

Temperature (◦C) 7.1 22.5 26.5 29.0 32.1 25.5 ± 4.2 28.5 ± 1.9 22.5 ± 3.6 <0.001
Humidity (%) 35.3 70.4 73.8 77.4 94.4 74.0 ± 6.6 75.4 ± 6.4 72.5 ± 6.6 <0.001

3.2. Association between Air Pollutants Exposure and In-Hospital Mortality for STEMI

A binary logistic regression model was employed to investigate the relationship
between air pollutant exposure and the risk of in-hospital mortality due to STEMI. As
shown in Figure 2, after adjusting for current smoker, dyslipidemia, Killip classification,
and meteorological factors such as temperature and humidity, the interquartile range (IQR)
increments of NO2 were significantly associated with the risk of in-hospital mortality in lag
2 (OR: 1.824, 95%CI: 1.142–2.313, p = 0.012), lag 3 (OR:2.093, 95%CI: 1.299–3.371, p = 0.002),
and lag 0–3 (OR: 1.670, 95%CI: 1.054–2.646, p = 0.029).
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To clarify the seasonal effect of each air pollutant on STEMI outcome, a binary logistic
regression model was conducted according to the warm season (April to September) and
cold season (October to March). As shown in Figure 3, during the warm season, NO2 was
significantly associated with the risk of in-hospital mortality in lag 3 (OR: 3.266, 95%CI:
1.203–8.864, p = 0.02); however, the effect of NO2 was not statistically significant during the
cold season. During the cold season, PM10 demonstrated a significant correlation with the
risk of in-hospital mortality in lag 3 (OR:2.792, 95%CI:1.115–6.993, p = 0.028); however, the
effect of PM10 was not statistically significant during the warm season.
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The exposure–response relationship between NO2 levels and the risk of STEMI was
calculated to explore the potential threshold. Figure 4 shows that decreased levels of NO2
were significantly associated with a decreased risk of in-hospital mortality compared to
higher levels of NO2 (Q4, >21.9 ppb). Compared to Q4 level NO2, exposure to Q1 level
(NO2 < 11.6 ppb), Q2 level (NO2 16.4–16.4 ppb), and Q3 level (NO2 16.421.9 ppb) were
significantly associated with a decreased risk for in-hospital mortality, and the ORs (95%CIs)
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were 0.280 (0.093–0.842, p = 0.023), 0.355 (0.140–0.898, p = 0.029), and 0.386 (0.164–0.906,
p = 0.029), respectively.
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4. Discussion

In the present study, we estimated the effect of air pollution on the short-term prognosis
of STEMI in Kaohsiung, Taiwan. Among all air pollutant exposures examined in this
analysis, higher NO2 exposure levels were linked to an elevated risk of in-hospital mortality
in patients with STEMI, especially during the warm season. In contrast, higher PM10
exposure levels were linked to an elevated risk of in-hospital mortality in patients with
STEMI during the cold season.

Several epidemiological studies have revealed the detrimental effects of air pollu-
tion on MI. Bañeras et al. conducted a population-based study that included all STEMIs
in Barcelona and found that PM2.5, PM10, and NO2 were positively associated with the
incidence of STEMI [2]. In contrast, a separate study that investigated the relationship
between air pollution and acute coronary syndrome found that NO2 exposure was posi-
tively associated with STEMI incidence, whereas the association between PM2.5 and PM10
exposure and STEMI did not reach statistical significance [16]. A recent article reviewed
56 studies and concluded that PM2.5, PM10, and NO2 were related to an increased risk of
hypertension and subsequent MI [5]. Nevertheless, limited attention has been given to
the relationship between short-term outcomes of STEMI and air pollution. In the current
study, NO2 was positively associated with the risk of in-hospital mortality in patients with
STEMI, especially during the warm season, and PM10 exposure levels were associated with
an increased risk of in-hospital mortality in patients with STEMI during the cold season.
Numerous toxicological studies have attempted to elucidate the mechanisms underlying
health hazards caused by air pollution. In terms of pulmonary toxicity, cell-based studies
have shown that exposure to PM activates the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and triggers the NF-κB-mediated inflammatory response, leading
to an increase in inflammatory cytokines, including interleukin (IL)-6, IL-8, and IL-1β in
human tracheal epithelial cells [17], while animal experiments have demonstrated that
exposure to PM causes infiltration of inflammatory cells in the lungs, thickening of the
tracheal epithelium, and alveolar rupture [8]. These inflammatory substances include
cytokines, activated immune cells, and factors that induce vascular activity, such as endo-
toxins, histamine, and microparticles, which are involved in the inflammatory response



Toxics 2023, 11, 541 8 of 11

and enter extrapulmonary organs through the bloodstream [18,19]. In addition, exposure
to NO2 has also been found to increase the levels of inflammation markers in the blood,
including C-reactive protein (CRP), tumor necrosis factor-α, IL-6, and coagulation-related
factors such as fibrinogen, as well as tissue repair marker hepatocyte growth factor [20].
These inflammatory cytokines and coagulation-related factors may cause vasoconstriction
and affect clot formation in vascular endothelial cells [21]. In contrast, ultrafine particles
(UFP) and certain components of PM, such as organic compounds and heavy metals, may
directly penetrate the alveolar and capillary barriers of the lungs, enter the systemic circula-
tion, and induce vascular injury [22,23]. Furthermore, while causing inflammation in the
lungs, the interaction between air pollutants and lung receptors can lead to reflex responses
in the autonomic nervous system, resulting in an increased heart rate, vasoconstriction,
and other reactions [24,25]. Increased heart rate, vasoconstriction, disturbances in vascular
endothelial clot formation, and coagulation biomarkers may affect the outcomes of MI.
Animal studies have shown that exposure to NO2 can interfere with the regulation of en-
dothelial nitric oxide synthase and intercellular adhesion molecule 1 in vascular endothelial
cells, whereas exposure to PM2.5 has been found to interfere with the regulation of the
renin–angiotensin system, which regulates blood pressure, possibly leading to increased
blood pressure and enhanced coagulation responses [26,27].

The effects of air pollution on human health seemed to vary seasonally. For example,
Hsu et al. found a positive correlation between PM2.5, concentration, and hospitalization
for cardiovascular diseases, especially during the winter season [28], while Huang et al.
found a correlation between elemental carbon in PM2.5 and the risk of chronic obstructive
pulmonary disease (COPD) ED visits, especially during the warm season [29]. This can be
attributed to several factors. First, the sources and composition of PM pollution particles
vary across seasons, which may result in different health hazards. For example, PM2.5,
measured at roadside locations, contains high levels of metal components, such as copper,
zinc, iron, and calcium, from vehicle emissions and road dust, which are more than twice
the levels found in urban background locations [30]. On the other hand, in Beijing, the
concentration of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) is higher during
the winter season compared to the summer season [31]. The total amount of PAHs during
winter may be up to three times higher than in summer [32]. This difference is likely
due to increased coal combustion for heating purposes during the winter. Furthermore,
there are variations in the composition of metal components in PM2.5 during different
seasons. Qi et al. conducted an analysis of PM2.5 collected in Suburban Nanjing and found
that Aluminum and Cadmium exhibited higher concentrations during the summer, while
Chromium, Nickel, and Arsenic showed higher concentrations during the winter [33]. PM
is composed of particles of different sizes and chemical characteristics, and its health effects
may differ depending on the composition of the components. Altemose et al. collected
PM2.5 data before, during, and after the 2008 Beijing Olympics and measured coagulation-
related biomarkers in the plasma of 128 volunteers as well as oxidative stress indicators in
their exhaled breath. The results showed that PM2.5, generated by automobiles, factories,
and biomass burning, is positively associated with lung inflammation-related biomarkers.
The increase in oxidative stress was related to emissions from factories and vehicles, while
coagulation-related biomarkers, such as the von Willebrand Factor (vWF), were positively
associated with the combustion of fossil fuels [34]. Hwang et al. obtained data from Tai-
wan’s National Health Insurance program and found that PM2.5 was positively associated
with asthma ED visits, especially for nitrate (NO3

−) of PM2.5 [35]. Toxicological evidence
also suggests that exposure to water-soluble extracts of PM2.5 could cause a proliferative
response in the livers of mice, while insoluble particles can cause an inflammatory response
and an increase in apoptosis regulation in the livers of mice [36]. Secondly, different PM
components in particulate matter may interact with gaseous pollutants, resulting in dif-
ferent health risks. For instance, the interaction between sulfate and nitrate in PM2.5 and
ozone (O3) may increase the risk of pediatric pneumonia emergency department visits [37].
Third, changes in temperature may have an additive effect on health hazards caused by
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air pollution. For instance, Imaizumi et al. reported a positive association between expo-
sure to PM2.5 and morning hypertension and noted that this effect was strengthened by
low temperatures [38]. Epidemiological studies have also found that exposure to PM2.5
increases the risk of asthma attacks in children, particularly on cold days [1]. Hsu et al.
analyzed climate and air pollution data in New York State and examined their impact on
cardiovascular hospitalization risk. The results revealed that PM2.5 increases the risk of
cardiovascular hospitalization, especially in colder temperatures [28].

Limitations

Several limitations were identified in this study. First, it was conducted at a single
hospital, and the sample size was limited. Second, this study was conducted in tropical
areas, which may limit the generalizability of the results to other areas with different ethnic
and meteorological characteristics. Additionally, personal exposure may be influenced
by factors such as air-conditioning usage and time spent outdoors, which may impact
the observed associations compared to other geographical locations. Lastly, our study
only included patients who sought hospital treatment for STEMI. Some patients may
experience STEMI as an out-of-hospital cardiac arrest (OHCA) and would not be captured
in our database.

5. Conclusions

The present study collected data on STEMI patients and air pollution, as well as
climate information, spanning a period of six years. The aim was to analyze the impact of
air pollution exposure on the prognosis of STEMI. To summarize, our study indicates that
exposure to NO2 and PM10 may increase the risk of poor prognosis in patients with STEMI.
It is worth noting that the effects of NO2 were more pronounced during the warm season,
while the effects of PM10 were more significant during the cold season. The findings may
suggest the need for continued efforts in reducing air pollution and stricter regulation of
air quality.
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