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Abstract: Arsenic is a common environmental toxicant. Long-term arsenic exposure can induce
various types of liver injury, but the underlying mechanism remains unclear, so effective prevention
and treatment measures are unknown. This study aims to explore the mechanism of arsenic-induced
rat liver injury based on the histone H3K18 acetylation-dependent antioxidant pathway and to
identify the role of a medicinal and edible resource, Rosa roxburghii Tratt juice, in combating it.
Hepatic steatosis and inflammatory cell infiltration were observed in rats exposed to different doses
of NaAsO2 using histopathological measurement. Increased 8-OHdG and MDA in liver tissue
corroborated hepatic oxidative damage. We further found that a reduction in H3K18ac in the liver
showed a dose–response relationship, with an increase in the NaAsO2 treatment dose, and it was
remarkably associated with increased 8-OHdG and MDA. The results of ChIP-qPCR identified that
the decreased enrichment of H3K18ac in promoters of the Hspa1a and Hspb8 genes culminated
in the inhibition of the genes’ expression, which was found to be involved in the aggravation of
hepatic oxidative damage induced by arsenic. Notably, Rosa roxburghii Tratt juice was found to
reduce 8-OHdG and MDA in the liver, thereby alleviating the histopathological lesions induced by
arsenic, which was modulated by recovering the H3K18ac-dependent transcriptional activation of
the Hspa1a and Hspb8 genes. Taken together, we provide a novel epigenetics insight into clarifying
the mechanism of arsenic-induced liver injury and its rescue by Rosa roxburghii Tratt juice.

Keywords: arsenic; liver injury; oxidative damage; H3K18ac; heat stock protein; Rosa roxburghii
Tratt juice

1. Introduction

Environmental arsenic contamination is one of the major global public health prob-
lems [1]. Contaminated water, food and air are the main routes of arsenic exposure.
Long-term exposure to arsenic can harm multiple organs such as the skin, liver, lung and
nervous system, and it can even induce tumors [2]. The liver, as the main organ of arsenic
metabolism, is also a major target organ for toxicity from arsenic exposure [3]. Epidemi-
ological studies have shown that chronic arsenic exposure can increase the risk of liver
lesions, such as liver dysfunction [4,5], noncirrhotic intrahepatic portal hypertension [6] and
cirrhosis [7]. The animal models demonstrated that arsenic could induce liver inflamma-
tion [8] and liver fibrosis [9]. Reactive oxygen species (ROS) and their mediated oxidative
damage are the common denominators in arsenic pathogenesis and are also considered
as the initial event of arsenic-induced liver injury [10,11]. Hepatocyte inflammation [12]
and hepatic stellate cell activation [13] induced by arsenic can be triggered by superoxide
accumulation. Continuous antioxidant intervention has been reported to be a potential
strategy via which to antagonize arsenic hepatotoxicity [14,15]. Therefore, exploring the
mechanism of arsenic-induced hepatic oxidative damage, as well as identifying available
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antioxidant agents on this basis, is very important for the prevention of arsenic-induced
liver injury.

Emerging evidence suggests that epigenetic modification may be an important reg-
ulator of arsenic-induced oxidative damage. Aberrant epigenetic modifications, such as
DNA methylation [16,17] and miRNAs [18,19], are involved in the oxidation–antioxidant
imbalance induced by arsenic, by dysregulating the expression of oxidative-stress-related
genes (OSR). Additionally, the reversibility of epigenetic modification provides new insight
into disease therapy based on antioxidant strategies. Many natural antioxidants, including
curcumin [20] and resveratrol [21], have been found to attenuate oxidant–antioxidant im-
balance by correcting aberrant epigenetic modifications. Histone modification, one of the
patterns of epigenetic modification, has been reported to regulate oxidative stress in organ
inflammation [22,23]. Histone modifications, such as H4K16ac [24] and H3K79me1 [25],
were revealed to respond to arsenic exposure and be involved in arsenic toxicity. Our previ-
ous study found that H3K18ac might be a reliable epigenetic regulator of arsenic-induced
oxidative damage. The results showed that decreased levels of H3K18ac were significantly
associated with the increased burden of oxidative damage in the arsenic poisoning popula-
tion, and the models of skin and embryonic kidney epithelial cells with arsenic treatment
confirmed that the H3K18ac-dependent transcription activation of OSR genes, including
GCLC, HSP90AA1, NCF2, etc., could act against arsenic-induced oxidative stress [26]. The
results provide a useful target for us to further explore the mechanism of arsenic-induced
oxidative damage in target organs. However, whether and how H3K18ac is involved in
hepatic oxidative damage induced by arsenic is still unclear.

As mentioned above, our previous study suggested that heat shock proteins might
be one of the targets of H3K18ac in the regulation of arsenic-induced oxidative damage.
Heat shock proteins (HSPs) are molecular chaperones, involved in the maintenance of
cellular homeostasis through the initiation of protein folding, or the repair or degradation
of irreparable proteins. HSPs play an important role in the inhibition or neutralization
of excessive ROS and in maintaining oxidation–antioxidant balance by cooperating with
antioxidant enzymes [27]. The redox imbalance caused by the dysregulation of heat shock
protein expression was demonstrated to be one of the critical mechanisms involved in
liver lesions [28,29]. Moreover, heat shock proteins have been found to be involved in the
regulation of oxidative damage induced by environmental pollutants such as cadmium [30]
and arsenic [31]. Therefore, HSPs were targeted to explore the mechanism of H3K18ac in
regulating arsenic-induced hepatic oxidative damage.

Another major goal of this study is to identify effective intervention agents. Rosa
roxburghii Tratt (R. roxburghii) is a medicinal and edible resource. In recent years, R. rox-
burghii has gained attention on account of its numerous beneficial antioxidant, antimutation,
and radioprotection properties, as well as its effects against diseases such as cancer and
dyslipidemia [32]. Our previous study found that R. roxburghii juice could antagonize
arsenic-induced oxidative damage in rat liver and alleviate liver dysfunction [33]. Nev-
ertheless, the role and mechanism of R. roxburghii juice in antagonizing hepatic oxidative
damage and subsequent histopathological lesions are unclear, which could discourage the
application of R. roxburghii in the prevention of liver injury caused by arsenic.

In this study, we constructed a rat liver injury model induced by subchronic arsenic
exposure and explored the mechanism of H3K18ac in arsenic-induced hepatic oxidative
damage by evaluating the role of H3K18ac in the transcription regulation of HSP genes.
Additionally, we performed an intervention with R. roxburghii juice and identified its role
and mechanism in antagonizing arsenic-induced liver injury based on the H3K18ac–HSPs
axis-dependent antioxidant pathway.

2. Materials and Methods
2.1. Animal Model

Forty-eight healthy Wistar rats, with initial weights of 80 g–100 g, were randomly
divided into six groups, with eight rats in each group, half male and half female. Six
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groups were treated with sodium arsenite (NaAsO2) (0.0, 2.5, 5.0, 10.0 mg/kg) (Sigma,
St. Louis, MO, USA), 10 mL/kg of R. roxburghii juice (Sinopharm Group Guizhou Health-
care Industry Development Co., Ltd., Guiyang, China; the health food license num-
ber of National Health Commission of the People’s Republic of China [2002]0004) and
10.0 NaAsO2 mg/kg + 10 mL/kg of R. roxburghii juice by gavage, respectively, once a day
for 16 weeks. All animals were given a standard diet and housed in separate cages with
a temperature of 22–24 ◦C, humidity of 60–70%, and light/dark for 12 h/12 h. The rats
were anesthetized using an intraperitoneal injection of 1% sodium pentobarbital at the end
of the treatment and then sacrificed by cervical dislocation. The liver tissues of the rats
were collected. A portion of the isolated liver was soaked in 4% paraformaldehyde for 48 h,
and then hematoxylin and eosin (HE) staining were performed to assess the pathological
changes. The remaining isolated liver was stored at −80 ◦C for subsequent assays. The
study protocol was reviewed and approved by the Ethics Committee of Guizhou Medical
University (Approval No. 1403059).

2.2. Arsenic Concentration in Liver

The liver tissue of the rats was digested using concentrated nitric acid and hydrogen
peroxide via microwave digestion (Thermo Fisher, Waltham, MA, USA), and then was
redissolved in 2% HNO3. The contents of arsenic in the rat liver samples were analyzed
with inductively coupled plasma mass spectrometry (ICP-MS) (Thermo Fisher, Waltham,
MA, USA). The relative concentration of arsenic in the liver was standardized by the weight
of the digested liver tissue and expressed as µg/g liver.

2.3. Analysis of Liver Oxidative Damage

8-hydroxylated deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were mea-
sured in isolated liver from the rats to assess the hepatic oxidative damage. In total, 50 mg of
liver tissue was ground into a liver homogenate with PBS buffer, and then the supernatant
was separated by centrifuging at 600 g/min for 20 min. A competition enzyme-linked
immunosorbent assay and thiobarbituric acid method were used to measure the contents
of 8-OHDG and MDA in the supernatant, respectively, according to the manufacturer’s in-
structions for the Rat 8-OHdG Elisa Kit and Lipid Peroxidation MDA Assay Kit (Beyotime,
Shanghai, China).

2.4. Analysis of H3K18ac Levels in Liver

Histones were extracted from the isolated liver of rats via acid extraction, and the
level of H3K18ac was measured by using a sandwich enzyme-linked immunosorbent assay
(ELISA). The detailed protocol was as described previously [26]. The antibodies used in
the assay included the coated antibody H3-C (Sigma, St. Louis, MO, USA), the target
primary antibodies H3 and H3K18ac (Abcam, Cambridge, MA, USA), and the anti-rabbit
secondary antibody (Abcam, Cambridge, MA, USA). The relative concentration of H3K18ac
was calculated using the standard curves configurated by recombinant H3K18ac (Active
Motif, Carlsbad, CA, USA), and was standardized by the weight of the liver tissue used for
histone extraction.

2.5. Selection of Representative Heat Shock Proteins

The gene expression profiles (GSE19662) based on the GPL570 platform were down-
loaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/ accessed on 5 June 2019). The data were obtained from 12 samples of rat primary
hepatocytes with 0, 0.1, 0.3, and 1 ppm of NaAsO2 treatment, respectively. The differentially
expressed genes (DEGs) were extracted by comparing the controls and arsenic-exposed
samples with the threshold as a corrected p-value < 0.05. Log fold-changes (FC) ≤ 0.63
or ≥1.1. 9 DEGs were obtained, including Hsp90aa1, Hsp90ab1, Hspa1a, Hspb1, Hspb8,
Hsph1, DNAJB1, DNAJA4, and DNAJC5, which were the representative genes responding
to arsenic exposure.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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To obtain the genes involved in oxidative stress, the keyword “Oxidative stress”
was used to search in the GeneCards database (https://www.genecards.org accessed on
5 June 2019), and 9555 genes were grabbed. In total, 56 HSP genes, which were potentially
the representative genes involved in oxidative stress, were screened from them. Then,
5 overlapping HSP genes were identified from the above two data points of representative
genes using the online Venn analysis tool (https://www.omicstudio.cn/tool/6 accessed
on 5 June 2019), including Hsp90aa1, Hsp90ab1, Hspa1a, Hspb1, and Hspb8, which were
included in the subsequent study as the final representative HSP genes.

2.6. Quantitative Real-Time PCR

Total RNA was isolated from liver tissue. A Prime Script TM RT reagent Kit (Thermo
Fisher, Waltham, MA, USA) and a TBGreen Premix Ex TaqTM II Kit (Takara Bio, Inc., Tokyo,
Japan) were used to perform reverse transcription and real-time PCR, respectively. The
primer sequences are shown in Table S1. The levels of mRNA expression in the HSP genes
were analyzed using the CFX96 Real-time PCR System (Bio-Rad, Hercules, CA, USA) and
were calculated using the Livak method (2−∆∆CT). Gapdh was used as a housekeeping gene
for normalization.

2.7. Chromatin Immunoprecipitation (ChIP) Assay

A ChIP assay was performed using the kit listed in a previous study [26]. Histone–
DNA complexes in liver homogenates were immunoprecipitated using the antibodies
against IgG, H3 and H3K18ac. Among them, IgG and H3 served as negative and positive
controls, respectively. Quantitative real-time PCR was used to measure the gene copy
number of the purified DNA eluted from the complexes. Six pairs of primers were designed
for each HSP gene for ChIP-qPCR to determine the enrichment of H3K18ac in the promoter
regions (−1000 bp upstream and +1000 bp downstream to the transcription start site)
(Table S2).

2.8. Statistical Analysis

Statistical analysis was performed using SPSS version 21.0 (SPSS Inc., Chicago, IL,
USA). Differences between the two groups were analyzed using a t-test (normal variables) or
an independent sample non-parametric test (non-normal variables). Spearman correlation
analysis was used to analyze the association between the liver arsenic and other normal
variables, and the correlations between the normal variables were assessed using Pearson
correlation analysis. Differences were considered statistically significant when p < 0.05.

3. Results
3.1. Arsenic-Exposure-Induced Liver Injury in Rat

The rat model of liver injury induced by arsenic was constructed using 0, 2.5, 5.0 and
10.0 mg/kg of NaAsO2 treatment for 16 weeks. As previously mentioned, the arsenic-
exposed rats exhibited varying degrees of poisoning symptoms, such as fluffy hair, slowed
response and decreased activity. These symptoms were exacerbated in the 10.0 mg/kg of
NaAsO2 treatment group. From the beginning of the twelfth week, the body weight of
the arsenic-exposed rats tended to decrease compared with the control group (The data
are detailed in the citation) [8]. The arsenic concentration in the liver tissue (LA) was
measured to indicate internal exposure. As shown in Figure 1A, the levels of LA rose with
the increase in the NaAsO2 treatment dose. Then, the histopathological characteristics of
the liver tissue were assessed via HE staining. Compared with the control group, different
degrees of hepatic sinusoidal congestion, steatosis and inflammatory cell infiltration were
observed in the arsenic groups (Figure 1B). In addition, our previous study showed that
arsenic exposure decreased the levels of albumin (ALB), albumin/globulin (A/G) and
cholinesterase (CHE), and elevated the level of alanine aminotransferase (ALT) in serum
(The data are detailed in the citation) [8].

https://www.genecards.org
https://www.omicstudio.cn/tool/6
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Figure 1. The liver injury of rats induced by NaAsO2. (A) Arsenic concentration, (B) pathological
changes, and (C,D) the levels of 8-OHdG and MDA in the liver of rats with different doses of NaAsO2

treatment. (E,F) The correlation between the arsenic concentration in the liver (LA) and the levels
of 8-OHdG and MDA. In (A,C,D), a, b and c represent p < 0.05 compared with the group of 0.0, 2.5
and 5.0 mg/kg·bw NaAsO2, respectively. In (B), a and b represent steatosis and inflammatory cell
infiltration, respectively.

To further explore whether arsenic exposure induces hepatic oxidative damage in rats,
we measured the levels of 8-OhdG and MDA in the liver, which are reliable markers of
DNA and lipid peroxidation, respectively. The results showed that the trends of increased
8-OhdG and MDA corresponded to the raised dose of NaAsO2 treatment (Figure 1C,D).
Moreover, a significant positive correlation between the levels of 8-OhdG (r = 0.696),
MDA (r = 0.741) and LA was found in the Spearman analysis (Figure 1E,F). These results
suggest that subchronic exposure to arsenic can induce oxidative damage and subsequent
histopathological lesions in the liver of rats.

3.2. H3K18ac Was Associated with Hepatic Oxidative Damage Induced by Arsenic

Next, we measured the level of H3K18ac in the rat liver using ELISA to assess whether
the modification of H3K18ac is associated with arsenic-induced hepatic oxidative damage.
As shown in Figure 2A, the levels of H3K18ac in the arsenic groups decreased remarkably
compared to the controls, and the trend of reduced H3K18ac responded to the NaAsO2
treatment in a dose-dependent manner. Consistently, the reduction in H3K18ac was asso-
ciated with increased levels of LA (r = −0.655) (Figure 2B). Furthermore, we performed
Pearson correlation analysis to explore the relationship between H3K18ac and hepatic
oxidative damage, and found that the decreased H3K18ac levels were accompanied by the
enhanced 8-OHdG (r= −0.554) and MDA (r= −0.586) levels (Figure 2C,D). Taken together,
these results indicate that H3K18ac is potentially a modifiable epigenetic marker in the liver
in response to arsenic exposure, and the aberrant H3K18ac may be involved in mediating
hepatic oxidative damage induced by arsenic.
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Figure 2. H3K18ac in response to the hepatic oxidative damage of rats induced by NaAsO2. (A) The
levels of H3K18ac in the liver of rats with different doses of NaAsO2 treatment. a, b and c represent
p < 0.05 compared with the group of 0.0, 2.5 and 5.0 mg/kg·bw NaAsO2, respectively. (B) The
correlations between LA and the level of H3K18ac. (C,D) The correlation between H3K18ac and the
levels of 8-OHdG and MDA.

3.3. H3K18ac Might Be Involved in Arsenic-Induced Hepatic Oxidative Damage by Regulating
Expression of Heat Shock Proteins

Heat shock proteins are important scavengers of cellular oxidative damage. In this
study, HSPs were targeted to further define how H3K18ac responds to hepatic oxidative
damage. Firstly, we obtained 9 HSP genes that respond to arsenic exposure by analyzing
gene expression profiles (GSE19662) from the GEO database (Table S3), and 56 HSP genes
related to oxidative stress were captured from the GeneCards database (Table S4). Five
overlapping genes that might be involved in arsenic-induced oxidative damage were
identified via Venn analysis, including Hsp90ab1, Hspa1a, Hspb8, Hsp90aa1 and Hspb1
(Figure 3A). Next, we examined the expressions of these five HSP genes in rat liver. As a
result, three genes, including Hsp90ab1, Hspa1a and Hspb8, responded to NaAsO2 treatment.
Among them, the level of Hsp90ab1 expression increased, while the expression of Hspa1a
and Hspb8a remarkably decreased in a dose-dependent manner (Figure 3B). Similar results
were also obtained in a Spearman correlation analysis between LA and the expression of
HSPs (Table S5). Accordingly, the trends observed in the increased expression of Hsp90ab1
and the reduced expression of Hspa1a and Hspb8 corresponded to the decreasing H3K18ac
modification (Figure 3C). Based on the function of H3K18ac in transcriptional activation,
we speculate that Hspa1a and Hspb8a may be the representative HSP genes involved in
hepatic oxidative damage mediated by H3K18ac modification.
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Figure 3. The association between HSP gene expression and H3K18ac in the liver of rats upon NaAsO2

treatment. (A) Two subsets, for HSP genes either involved in oxidative stress or responding to
arsenic exposure, were obtained from databases. Five representative HSP genes, including Hsp90aa1,
Hsp90ab1, Hspa1a, Hspb1 and Hspb8, which might be involved in hepatic oxidative damage induced
by arsenic, were identified from two subsets via Venn analysis. (B) Dose-dependent induction of the
expression of five representative HSP genes by NaAsO2. a, b, c represents p < 0.05 compared with
the group of 0.0, 2.5 and 5.0 mg/kg·bw NaAsO2, respectively. (C) Aberrant expression of Hsp90ab1,
Hspa1a and Hspb8 corresponded to the change in H3K18ac modification.

Next, a chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was
performed to examine whether H3K18ac plays a role in transcriptional regulation via a
direct interaction with the promoter regions of the Hsp90ab1, Hspa1a and Hspb8 genes.
The quality controls of ChIP-qPCR are shown in Figure S1. The enrichment levels of the
negative control IgG in the promoter regions were less than 1/10 of the enrichment of the
positive control H3 and H3K18ac, and the enrichment levels of the positive control H3 in
the promoter regions were 2%–8% input. The enrichments of H3K18ac were measured in
six DNA fragments for each gene. As shown in Figure 4A, we found that the enrichment
of H3K18ac on two fragments of the promoter regions of Hspa1a and Hspb8 genes created
a decreased response to NaAsO2 treatment in a dose-dependent manner. However, no
obvious changes were observed in other fragments of these two genes or in all fragments
of the Hsp90ab1 genes (Figure S2). Remarkably, matrix correlation analysis was used to
comprehensively demonstrate the relationships between arsenic load, the enrichment
of H3K18ac, the expression of HSP genes, and hepatic oxidative damage. As shown in
Figure 4B, the enrichment of H3K18ac in the Hspa1a and Hspb8 genes tended to be gradually
reduced following accumulated arsenic load in the liver, which corresponded to a reduction
in the gene expressions and the aggravation of hepatic oxidative damage. Taken together,
these observations suggest that the transcriptional inhibition of the Hspa1a and Hspb8
genes was regulated by a reduction in H3K18ac enrichment, which plays a critical role in
arsenic-induced hepatic oxidative damage.
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Figure 4. The enrichment of H3K18ac in HSP genes responded to LA, gene expression, and hepatic
oxidative damage upon NaAsO2 treatment. (A) The amount of enrichment of the H3K18ac modi-
fication in the promoters of Hspa1a and Hspb8 was measured using ChIP-qPCR. “Input%” means
the percent of chromatin precipitated by H3K18ac antibodies relative to the total input of sheared
chromatin. a, b and c represent p < 0.05 compared with the group of 0.0, 2.5 and 5.0 mg/kg·bw
NaAsO2, respectively. (B) Matrix correlation analysis was used to comprehensively demonstrate
the relationships between LA, the enrichment of H3K18ac, the expression of Hspa1a and Hspb8, and
hepatic oxidative damage (8-OHdG and MDA). Blue squares represent negative correlations, whereas
red squares are positive, with darker colors indicating more significant correlations.

3.4. R. roxburghii Could Alleviate Arsenic-Induced Liver Injury by Declining Oxidative Damage

To identify the antagonistic effect of R. roxburghii on arsenic-induced liver injury
in rats, a model of R. roxburghii juice intervention was constructed, including the single
R. roxburghii juice group (10 mL/kg R. roxburghii juice) and the R. roxburghii juice antagonist
group (10.0 NaAsO2 mg/kg + 10 mL/kg R. roxburghii juice) around the same time. As
shown in Figure 5A, steatosis and inflammatory cell infiltration were observed in arsenic
groups, while only slight hepatic sinusoidal dilatation and congestion were found in the
R. roxburghii juice antagonist group. No obvious pathological changes were observed in
the single R. roxburghii juice group and the control group. Although the levels of 8-OHdG
and MDA in the R. roxburghii juice antagonist group were higher than those in the control
group, a remarkable reduction was observed compared to the arsenic group (Figure 5B).
These observations suggest that R. roxburghii juice could alleviate arsenic-induced hepatic
oxidative damage and subsequent histopathological lesions.
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Figure 5. The antagonistic effect of R. roxburghii juice on arsenic-induced liver injury. (A) Patho-
logical changes and (B) the levels of 8-OHdG and MDA in the liver of rats in controls, arsenic
group (10.0 mg/kg·bw NaAsO2), single R. roxburghii juice group (10 mL/kg R. roxburghii juice) and
R. roxburghii juice antagonist group (10.0 mg/kg·bw NaAsO2 + 10 mL/kg R. roxburghii juice). In (A),
a and b represent steatosis and inflammatory cell infiltration, respectively. In (B), a, b and c represent
p < 0.05 compared with the controls, arsenic group and single R. roxburghii juice group, respectively.

3.5. The Antioxidative Effect of R. Roxburghii Might Be Involved in Antagonizing Arsenic-induced
Inhibition of the H3K18ac–HSPs Axis

The results listed above demonstrate that a reduction in H3K18ac enrichment in the
promoters of the Hspa1a and Hspb8 genes could inhibit the genes’ expression, which is
involved in enhanced hepatic oxidative damage induced by arsenic. We attempt to identify
whether the H3K18ac–HSPs axis plays a role in the protective effect of R. roxburghii juice on
arsenic-induced hepatic oxidative damage. The results showed that R. roxburghii juice could
mitigate the arsenic-induced reduction in H3K18ac modification in the liver (Figure 6A).
Consistently, the results of the ChIP-qPCR revealed that the enrichment of H3K18ac in the
promoters of the Hspa1a and Hspb8 genes was restored in the R. roxburghii juice antagonist
group, compared with the arsenic group (Figure 6B). Accordingly, the trends observed
in the increased expression of the Hspa1a and Hspb8 genes corresponded to the restored
enrichment of H3K18ac (Figure 6C). The quality control of the ChIP-qPCR is shown in
Figure S3. Furthermore, we measured the effect of R. roxburghii juice on the expression of
three non-targeted heat shock protein genes (Hsp90ab1, Hsp90aa1, Hspb1) and found that
R. roxburghii juice did not affect the expression of Hsp90aa1 and Hspb1; however, it was able
to increase the Hsp90ab1 expression, while no apparent change in H3K18ac enrichment was
observed in the promoter region of Hsp90ab1, suggesting that the increased expression of
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Hsp90ab1 after R. roxburghii juice treatment might not be the result of H3K18ac regulation
(Figure S4). Taken together, these results confirmed the notion that H3K18ac–HSPs play
a critical role in the response to the hepatic oxidative damage induced by arsenic and
revealed that R. roxburghii juice could antagonize hepatic oxidative damage by alleviating
the burden of arsenic exposure on the H3K18ac–HSPs axis.

Toxics 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

to the restored enrichment of H3K18ac (Figure 6C). The quality control of the ChIP-qPCR 
is shown in Figure S3. Furthermore, we measured the effect of R. roxburghii juice on the 
expression of three non-targeted heat shock protein genes (Hsp90ab1, Hsp90aa1, Hspb1) 
and found that R. roxburghii juice did not affect the expression of Hsp90aa1 and Hspb1; 
however, it was able to increase the Hsp90ab1 expression, while no apparent change in 
H3K18ac enrichment was observed in the promoter region of Hsp90ab1, suggesting that 
the increased expression of Hsp90ab1 after R. roxburghii juice treatment might not be the 
result of H3K18ac regulation (Figure S4). Taken together, these results confirmed the no-
tion that H3K18ac–HSPs play a critical role in the response to the hepatic oxidative dam-
age induced by arsenic and revealed that R. roxburghii juice could antagonize hepatic oxi-
dative damage by alleviating the burden of arsenic exposure on the H3K18ac–HSPs axis. 

 
Figure 6. R. roxburghii juice alleviated the inhibition of the H3K18ac–HSPs axis induced by arsenic. 
(A) Modification of H3K18ac, (B) enrichment of H3K18ac in promoters of Hspa1a and Hspb8 genes 
and (C) expression of Hspa1a and Hspb8 genes in the liver of rats in controls, arsenic group (10.0 
mg/kg·bw NaAsO2), single R. roxburghii juice group (10 mL/kg R. roxburghii juice) and R. roxburghii 
juice antagonist group (10.0 mg/kg·bw NaAsO2 + 10 mL/kg R. roxburghii juice). a, b and c represent 
p < 0.05 compared with controls, arsenic group and single R. roxburghii juice group, respectively. 

Figure 6. R. roxburghii juice alleviated the inhibition of the H3K18ac–HSPs axis induced by arsenic.
(A) Modification of H3K18ac, (B) enrichment of H3K18ac in promoters of Hspa1a and Hspb8 genes and
(C) expression of Hspa1a and Hspb8 genes in the liver of rats in controls, arsenic group (10.0 mg/kg·bw
NaAsO2), single R. roxburghii juice group (10 mL/kg R. roxburghii juice) and R. roxburghii juice
antagonist group (10.0 mg/kg·bw NaAsO2 + 10 mL/kg R. roxburghii juice). a, b and c represent
p < 0.05 compared with controls, arsenic group and single R. roxburghii juice group, respectively.

4. Discussion

Liver injury and its subsequent irreversible progression are some of the major health
threats of environmental arsenic exposure. Oxidative damage is a critical event in triggering
arsenic-induced liver diseases. In this study, the rat model of liver injury induced by arsenic
was used to reveal that H3K18ac might be a critical epigenetic regulator of arsenic-induced
hepatic oxidative damage. Furthermore, a novel mechanism was uncovered, showing that
a reduction in H3K18ac was involved in arsenic-induced hepatic oxidative damage through
the transcriptional inhibition of Hspa1a and Hspb8. Notably, based on the H3K18ac–HSPs
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axis-dependent antioxidative pathway, we identified the active role and mechanism of
R. roxburghii juice in antagonizing arsenic-induced liver injury.

The role of H3K18ac in hepatic diseases is gradually being recognized. An increased
level of H3K18ac was found to promote acute liver injury via the activation of inflammation
and macrophage polarization, and the inhibitor of histone acetyltransferase p300/CBP was
demonstrated to alleviate acute liver injury by correcting this epigenetic distortion [34].
In addition, increased H3K18ac has been observed to respond to Hepatitis B Virus (HBV)
infection [35]. Unlike the abnormal elevation of H3K18ac in previous studies, we found that
a reduction in H3K18ac is the main aberrant mode in response to hepatic oxidative damage
induced by sub-chronic arsenic exposure. These results suggest that the disturbance mode
of H3K18ac may be complex in response to different types of liver injury. The observation
in this study will require further experimental study to better inform regarding the overall
role of H3K18ac as a determinant of oxidative stress. Notably, the role of H3K18ac in
the adverse outcomes induced by environmental pollutants also deserves attention. This
study revealed that H3K18ac could respond to arsenic exposure and participate in arsenic-
induced liver injury. Similarly, a reduction in H3K18ac was also found to be involved in
hexavalent chromium tumorigenicity [36], while it has been found that environmental
pollutants, such as perfluorooctane sulfonate [37] and particulate matters [38], perturb
the transcription of related genes by increasing H3K18ac. Although H3K18ac responds
differently to different pollutant exposures, distorted H3K18ac might be a critical epigenetic
regulator of pollutant toxicity. Therefore, the role of H3K18ac as a biomarker for the risk
assessment of environmental pollutants is also worth looking into.

The value of epigenetic modifications as a target of precision therapy seems to be
more desirable because of their reversibility and sensitivity to disease progression and
prognosis [39,40]. Epigenetic modification has been demonstrated to play an important role
in the transcriptional regulation of HSP40, HSP60, HSP70, HSP90 and HSP110 [41]. The
expression inhibition of Hspa1a and Hspb8 was found to be regulated by DNA hypermethy-
lation [42,43]. Treatment with the DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine
(5-AZA) could improve cellular disorders by targeting the correction of the expression
of these two genes [44,45]. The effect of broad-spectrum histone deacetylase (HDAC) on
the expression of Hspa1a and Hspb8 indirectly proved that histone acetylation is another
epigenetic regulator of these two genes [46,47]. However, the regulation of gene expression
by either 5-AZA or HDAC lacks specificity. Fortunately, more and more site-specific modi-
fication enzymes of histone have been uncovered. For example, SETD2 is responsible for
catalyzing the methylation of H3K36 [48,49]. These findings mean that aberrant histone
modification in a specific site can be targeted more precisely to correct the abnormal gene
expression regulated by the site. Our results revealed that the enrichment levels of H3K18ac
in the promoter regions of Hspa1a and Hspb8 affected the transcriptional capacity of these
two genes, which provides a precise epigenetic target for specific interventions that target
these two heat shock proteins.

Antioxidant activity is one of the main effects of R. roxburghii [32]. The antioxidant
mechanism of R. roxburghii is under intense investigation in order to promote the application
of R. roxburghii in disease therapy and health care. Emerging evidence reveals that the
Nrf2-mediated antioxidant pathway [50], the PPARα-mediated mitochondrial homeostasis
pathway [51] and the activation of oxidative-stress-responsive genes [52] might be the main
antioxidant mechanism of R. roxburghii. For the first time, this study provides evidence of
the epigenetic mechanism of the antioxidant effects of R. roxburghii juice. We demonstrate
that R. roxburghii juice could antagonize arsenic-induced oxidative damage by regulating
the H3K18ac-dependent transcriptional activation of HSP genes. Although we could not
explain the mechanism of how R. roxburghii influences histone modifications based on the
existing literature, the emerging evidence suggests that natural antioxidant components
might affect the expression or activity of methylation- and acetylation-modifying enzymes
to regulate the level of DNA methylation and histone modifications [53,54]. This evidence
provides the clue for our follow-up work.
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There are some limitations to this study. Firstly, while this study revealed the role of
the H3K18ac-dependent transcriptional regulation of HSP genes in arsenic-induced rat liver
toxicity and associated oxidative damage, additional follow-up experiments are required
to further explore the biological significance of the hypothesis as a modulator of chemically
induced liver injury, as well as human liver diseases. In addition, future research should
further explore the mechanisms of arsenic toxicity in R. roxburghii juice antagonism, based
on the consideration of the effects of R. roxburghii juice on the systemic absorption and
excretion of arsenic.

5. Conclusions

This study reveals that a reduction in H3K18ac is involved in arsenic-induced hepatic
oxidative damage by modulating the transcriptional inhibition of HSP genes. R. roxburghii
juice could act against arsenic-induced hepatic oxidative damage, thereby alleviating
histopathological lesions by rescuing the H3K18ac-dependent transcriptional activation of
HSP genes (Figure 7). These findings uncover a novel epigenetic mechanism of R. roxburghii
juice in antagonizing arsenic-induced liver injury and provide useful evidence for the
translational application of R. roxburghii juice in the prevention of liver injury.
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Figure 7. Reduction in H3K18ac is involved in arsenic-induced hepatic oxidative damage via the
modulation of the transcriptional inhibition of HSP genes. Rosa roxburghii Tratt juice antagonized
arsenic-induced hepatic oxidative damage, thereby alleviating histopathological lesions by recovering
the transcriptional activation of the Hspa1a and Hspb8 genes modulated by H3K18ac.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11060503/s1, Table S1 The primers for qRT-PCR. Table
S2 The primers for ChIP-qPCR. Table S3 HSPs genes response to arsenic-exposure obtained from
GSE19662. Table S4 HSPs genes involved in oxidative stress from GeneCard. Table S5 Correlation
between the concentration of liver arsenic and the mRNA levels of heat shock proteins in rat liver.
Fig. S1 The enrichment of H3 (A) and IgG (B) in promoters of Hsp90ab1, Hspa1a and Hspb1 genes
in liver of rats with different doses of NaAsO2 treatment. Fig. S2 The enrichment of H3K18ac in
promoters’ fragments of Hspa1a (A), Hspb8 (B) and Hsp90ab1 (C) genes in liver of rats with different
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doses of NaAsO2 treatment. Fig. S3 The enrichment of H3, IgG and H3K18ac in promoters of Hspa1a
(A) and Hspb1 (B) genes in liver of rats in controls, arsenic group, single R. roxburghii juice group and
R. roxburghii juice antagonist group. Fig. S4 Expression of Hsp90aa1, Hspb1 and Hsp90ab1 (A) and the
enrichment of H3K18ac (B), H3 and IgG (C) in the gene promoters of rats’ liver in controls, arsenic
group, single R. roxburghii juice group and R. roxburghii juice antagonist group.
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