
Citation: Ma, Y.; Zhang, J.; Yu, N.;

Shi, J.; Zhang, Y.; Chen, Z.; Jia, G.

Effect of Nanomaterials on Gut

Microbiota. Toxics 2023, 11, 384.

https://doi.org/10.3390/

toxics11040384

Academic Editor: Dirk

W. Lachenmeier

Received: 8 March 2023

Revised: 7 April 2023

Accepted: 16 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Review

Effect of Nanomaterials on Gut Microbiota
Ying Ma 1,2, Jiahe Zhang 1,2, Nairui Yu 1,2, Jiaqi Shi 1,2, Yi Zhang 1,2, Zhangjian Chen 1,2,* and Guang Jia 1,2

1 Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University,
Beijing 100191, China

2 Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety,
School of Public Health, Peking University, Beijing 100191, China

* Correspondence: zhangjianchen@pku.edu.cn

Abstract: Nanomaterials are widely employed in everyday life, including food and engineering.
Food additives on a nanoscale can enter the body via the digestive tract. The human gut microbiota
is a dynamically balanced ecosystem composed of a multitude of microorganisms that play a crucial
role in maintaining the proper physiological function of the digestive tract and the body’s endocrine
coordination. While the antibacterial capabilities of nanomaterials have received much interest in
recent years, their impacts on gut microbiota ought to be cautioned about and explored. Nanomateri-
als exhibit good antibacterial capabilities in vitro. Animal studies have revealed that oral exposure
to nanomaterials inhibits probiotic reproduction, stimulates the inflammatory response of the gut
immune system, increases opportunistic infections, and changes the composition and structure of
the gut microbiota. This article provides an overview of the impacts of nanomaterials, particularly
titanium dioxide nanoparticles (TiO2 NPs), on the gut microbiota. It advances nanomaterial safety
research and offers a scientific foundation for the prevention, control, and treatment of illnesses
associated with gut microbiota abnormalities.

Keywords: nanomaterials; gut microbiota; antimicrobial properties; oxidative stress; titanium dioxide
nanoparticles

1. Exposure of the Gut Microbiota to Nanomaterials

Nanomaterials (NMs) are materials with unique properties that are made up of nanos-
tructured basic units or at least one dimension at the nanoscale (geometric scales ranging
from 1 nm to 100 nm), such as nanopowders, nanofibers, nanofilms, nanoblocks, and
nanopores. According to the classification of chemical composition, they can be divided
into metal nanomaterials, nanocrystalline materials, inorganic nonmetallic materials, poly-
mer nanomaterials, and nanocomposites. Nanomaterials exhibit characteristics of a small
size effect, high specific surface area, and quantum size effect [1]. Nanomaterials have
a wide range of uses due to their superior physical and chemical characteristics, such
as biomedicine, diagnostic imaging, DNA nanotechnology, biosensing, and drug-loaded
treatment [2]. Notably, nanomaterials have several uses in food engineering [3]. They
can be utilized as coatings to minimize mechanical damage or microbiological contami-
nation and improve food color and flavor. Nanocapsules can be employed as carriers to
enter, protect, and transport active chemicals in food and medications while preserving
the product’s appearance and taste [4]. Nanofilms are commonly utilized in chocolate,
confectionery, baked goods, and other food-related products because they protect food
surfaces from moisture, oil, and gas [5]. Currently, whether it is food itself, food packaging,
or the entire process of food manufacturing and production, using different nanomaterials
is unavoidable, which undoubtedly increases people’s intestinal exposure risk.

Despite their importance in medicine, engineering, food processing, and other fields,
the safety of nanomaterials remains a major concern. One of the current and future focuses
of nanomaterials is the study of their biological effects and toxicity. To date, many in vivo
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and in vitro studies have been conducted on a range of nanomaterials, such as nano-TiO2,
SiO2, carbon nanotubes, fullerenes, and iron nanoparticles, demonstrating their impact on
redox balance and metabolism. Many safety assessments of oral exposure to nanomaterials
have revealed that they harm the human digestive system. Therefore, the purpose of
this review is to investigate the effects of nanomaterials represented by titanium dioxide
nanoparticles on the gut microbiota and to propose ideas for nanomaterial safety evaluation.

2. The Function of the Gut Microbiota

With 1014–1015 microorganisms in the gut, such a high population plays an important
part in human health [6]. The primary function of the gut microbiota is to process undi-
gested foods such as protein and dietary fiber [7]. The gut microbiota contains a variety of
enzymes that aid in carbohydrate digestion, including glycoside hydrolases, glycosyltrans-
ferases, glycosyltransferases, and carbohydrate esterases [8]. The gut microbiota creates
short-chain fatty acids (SCFAs) through the anaerobic fermentation of carbs, the majority of
which are made up of acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric
acid, and valeric acid. Short-chain fatty acids facilitate contact between the intestinal mi-
crobiota and the host, as well as the regulation of cell growth and differentiation [9–11].
For example, butyrate, which is the most abundant in production, at physiological con-
centrations promotes cell differentiation and inhibits growth [12,13]. Butyrate functions
as an agonist of histone deacetylase (HDCA) inhibitors and histone transferases, boosting
histone acetylation and promoting post-translational histone modification [14,15]. Histone
deacetylase inhibitors prevent cell growth by halting the cell cycle [16]. Butyrate triggers
Caco-2 cell differentiation and alkaline phosphatase activation, as well as cell interleukin 8
(IL-8) release [17].

The gut microbiota can also influence host immunity. When compared to normal mice,
germ-free (GF) mice had undeveloped immune systems, as proven by lower antimicro-
bial peptide expression, lower IgA production, fewer T-cell types, and higher microbial
sensitivity [18]. In normal mice treated with antibiotics, Clostridiales decreased, causing a
drop in T regulatory (Treg) lymphocytes in the gut [19]. Tregs are the primary regulators of
immune tolerance and inflammation as T cells that can suppress the proliferation of Th0
cells. Treg dysregulation is often closely linked to intestinal autoimmunity, such as causing
inflammatory bowel disease (IBD) when Treg anti-inflammatory activity is decreased [20].
Moreover, the gut microbiota encourages the proliferation of the CD4 T-cell population [21],
which is the primary source of IL-22 in the gut and is important in the regulation of in-
testinal inflammation [22]. The immunomodulatory protein polysaccharide A (PSA) from
Bacteroides fragilis promotes the conversion of CD4 (+) T cells to Foxp3 (+) Treg cells [23],
promoting the establishment of immune tolerance [24].

The gut microbiota is also a key regulator of host metabolism, influencing host energy
balance, glucose metabolism, and lipid metabolism [25]. The gut microbiota can react with
the fatty acid duplex in food to form metabolites that the host cannot synthesize, such as
conjugated linoleic acid (CLA). Conjugated linoleic acid reduces insulin sensitivity and
atherosclerosis by inhibiting the expression of PPARγ and LXRα [26–28]. The fatty acids
generated by lactic acid bacteria in the gut drive adipocyte differentiation by activating
PPARγ, as well as boosting adiponectin synthesis and glucose absorption, which influences
glycolipid metabolism [29]. When compared to GF mice, normal mice had greater metabolic
levels of pyruvate, citric acid, fumaric acid, and malic acid while having lower blood
triglyceride levels, altering host energy and lipid metabolism [30].

3. Antimicrobial Properties of Nanomaterials

Most nanomaterials have antibacterial properties that are effective against common
bacteria. Metal oxide nanomaterials such as nano-TiO2, ZnO, and Ag2O can inhibit common
bacteria such as E. coli, Bacillus subtilis, and Staphylococcus aureus [31]. Nano-TiO2 and ZnO
are poisonous to gram-negative, gram-positive, and fungal microorganisms [32]. Even in
the absence of UV irradiation, nano-TiO2 retains its antibacterial ability against E. coli [33].



Toxics 2023, 11, 384 3 of 16

The antibacterial ability of nanomaterials is affected by their size, production process,
and crystal form. Moreover, the temperature, pH, and ionic strength of the environment
also have an impact on the antibacterial capabilities of nanomaterials. Smaller particle
size nano-TiO2 and the anatase phase have been shown to be more harmful to E. coli;
nevertheless, the toxicity of nano-TiO2 diminishes with increasing pH (5.0–10.0) and ion
concentration [34]. It is worth noting, however, that the above characteristics do not apply
to fungi associated with plant rhizomes. According to reports, there were no effects of
nanomaterial type, concentration, or charge on the community structure of either rhizobia
or AM fungi colonizing plant roots [35].

There are several possible hypotheses for the antibacterial mechanism of nanomaterials
(Figure 1). The electronegative complex groups on the bacterial membrane can attract each
other with electropositive metal ions, causing metal nanomaterials to accumulate on the
bacterial surface and enter the cell, altering the permeability of the bacterial membrane
and allowing bacterial contents to leak out [36]. Nanomaterials that enter bacteria can
also alter the function of enzymes and proteins, interfering with the bacterium’s regular
physiological metabolism [37]. Antimicrobial properties in nanomaterials can also be
produced through oxidative stress [38]. H+ dispersed on the surface of metal nanoparticles
can oxidize OH− and H2O to OH. As a powerful oxidant, ·OH causes bacterial redox
imbalance. Under UV irradiation, this behavior will be more severe [39]. Nanomaterials
offer a unique multiple antibacterial mechanism and have a good killing impact on a range
of drug-resistant bacteria when compared to typical disinfectants and medicines [40]. As a
result, nanomaterials may offer a solution to multidrug-resistant bacteria.
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Figure 1. The provision of various antibacterial mechanisms by nanoparticles. Nanoparticles and the
ions they release produce free radicals that induce oxidative stress, which induces bacterial death.
(A) Reproduced with permission [31]. Copyright 2012, Elsevier. (B) “?” represented that there is no
consensus on the signal of bacterial death caused by nanomaterials. Reproduced with permission [41].
Copyright 2017, Elsevier.

4. Effects of Nanomaterials on Gut Microbiota
4.1. Titanium Dioxide Nanoparticles (TiO2 NPs)

TiO2 NPs have limited impacts on gut microbiota, as evidenced by acute or subchronic
experiments that have limited influence on gut microbiota diversity but have a greater impact
on gut microbiota quantity (Figure 2, Table 1). Among these, TiO2 NPs have a significant
impact on bacteria, particularly Lactobacillus, Firmicutes, and Proteobacteria [33–35].

Subacute or subchronic exposure to TiO2 NPs had less of an effect on the gut mi-
crobiota in typical rodent models. Li et al. [42] treated mice with TiO2 NPs (100 mg/kg)
for 28 days and observed that TiO2 NPs did not affect the diversity of gut microbiota but
modified the composition structure of the microbiota, in which the abundance of Proteus
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was reduced dramatically. Wei et al. [43] investigated the long-term toxicity of TiO2 NP ex-
posure. Weaned young mice were given TiO2 NPs for three months, and their body weight
was found to be lower than that of the control group, which intensified the chronic colitis
and immunological response generated by dextran sulfate sodium salt (DSS). According to
research, TiO2 NPs have no effect on the diversity of gut microbiota but drastically affect the
quantity of probiotics such as Bifidobacteria and Lactobacilli. Chen et al. [44] found that after
30 days of oral treatment (2, 10, and 50 mg/kg) the structure and composition of the rat gut
microbiota were altered, resulting in significant increases in L. gasseri and Turicibacter, while
Veillonella was dramatically reduced in the exposure group at 14 days. After 28 days, the
abundance of L. gasseri continued to increase significantly, as did L.NK4A136_group. An-
other study demonstrated that TiO2 NPs (2, 10, and 50 mg/kg) significantly enhanced the
abundance of Lactobacillus and Allobaculum and decreased the abundance of Adlercreutzia
and unclassified Clostridiaceae in the exposed group following 21 days of subchronic expo-
sure [45]. In the population, the average long-term intake of titanium dioxide is 0.06 mg/kg
bw/day for people over 70 years old, 0.17 mg/kg bw/day for people aged 7–69 years, and
0.67 mg/kg bw/day for children aged 2–6 years [46]. The dose settings of the above animal
experiments were considered with a safety factor (100×), which well reflects the situation
after TiO2 NPs exposure.

TiO2 NPs also have an impact on the gut microbiota in other animal or in vitro mod-
els. When TiO2 NPs were coexposed to bisphenol A (BPA), they increased the abun-
dance of Lawsonia in Danio rerio while decreasing the abundance of Hyphomicrobium [47].
Dudefoi et al. [48] used food-grade TiO2 NPs to imitate human digestive system dosages in
an in vitro model. Following two days of bacterial culture, there were very minor impacts
on the gut microbiota. Clostridium cocleatum increased in abundance, whereas Bacteroides
ovatus decreased. In vitro studies show that TiO2 NPs can still have antibacterial properties.
According to Albukhaty et al. [49], TiO2 NPs can effectively inhibit Staphylococcus aureus
and Escherichia coli activity in vitro.

TiO2 NPs can disrupt the tight junctions of intestinal epithelial cells, producing a loss
of intestinal barrier structure and altering the diversity and composition of gut microbiota
communities in organisms. Li et al. [42] examined the two primary TiO2 NPs crystals,
anatase and rutile, and discovered that the latter had a greater influence on the intestinal
ecological habitat of mice. Long intestinal villi and an uneven arrangement of villus
epithelial cells were observed in mice fed rutile. However, in the Chen experiment, the
intestinal shape of rats was changed significantly by anatase, as evidenced by inflammatory
infiltration and mitochondrial abnormalities [44]. Obese mice were more susceptible to
this. Mice fed a high-fat diet and exposed to TiO2 NPs experienced goblet cell loss, the
structural distortion of crypts, and the infiltration of inflammatory cells around crypts. The
number of dendritic cells and macrophages in the colonic mucosa increased significantly,
as did the levels of IL-12, IL-17, KC/GRO, and IL-10 [50].

Moreover, TiO2 NPs may be hazardous to other digestive system organs, which might
have an indirect impact on the gut microbiota. Li et al. [42] showed that TiO2 NPs accumu-
lated in the spleen, lungs, and kidneys affected the shape and organization of intestinal
epithelial cells and altered the composition of gut microbiota over time. Chen et al. [51]
discovered that the gut–liver axis regulating mechanism may play a significant role in the
influence of nanomaterials on gut microbiota. In rats, subchronic oral TiO2 NP treatment
produces hepatotoxicity, including hepatocyte steatosis and mitochondrial dysfunction.
Substantial changes in the alanine, aspartate, and glutamate pathways and metabolic path-
ways may be critical metabolic pathways leading to disruptions in energy metabolism and
oxidation/antioxidant imbalances. A significant increase in the synthesis of lipopolysac-
charide (LPS) by the gut microbiota in rats might be proof of the connection between liver
metabolism disorder and gut microbiota dysregulation.
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NPs generate reactive oxygen during the photocatalytic reduction and oxidation of oxygen and
water. Reproduced with permission [52]. Copyright 2017, American Chemical Society. (B) Damage
of TiO2 NPs to E. coli and S. aureus. Reproduced with permission [53]. Copyright 2019, MDPI.
(C) Scanning electron microscopy images of E. coli bacterial cells exposed to TiO2 NPs at various
concentrations (0.01, 0.1, and 1.0 mg/mL). The initial bacterial concentration was 106. Reproduced
with permission [54]. Copyright 2016, Nature.

Table 1. Effects of TiO2 NPs on gut microbiota.

Animal Physicochemical
Properties Exposure Dose Exposure

Time
Antibacterial

Activity Others

Albino mice [55] Hexagonal
(25.12 nm) 50 µg, 100 µg 18 d Firmicutes ↓

C57BL/6 [45] Spherical E171 (28–1158 nm) 2, 10, 50 mg/kg 21 d

Levilactobacillus
↑ Allobaculum ↑

Adlercreutzia
↓ Unclassified
Clostridiaceae ↓

C57BL/6 [56] Anatase (25 nm) 1 mg/kg 7 d Bifidobacterium ↓

C57BL/6 [42] Rutile 100 mg/kg 28 d Proteobacteria ↓
The small intestine villi were long,
and the villi epithelial cells were

arranged irregularly.

C57BL/6J [43] Anatase (10 nm, 50 nm) diets containing
0.1% TiO2 NPs 90 d Bifidobacterium

↓ Lactobacillus ↓

The body weight was lower than
that of the control group, and it

exacerbated the chronic colitis and
immune response induced by

Dextran Sulfate Sodium Salt (DSS).

Sprague–Dawley
rats [44] Anatase 2, 10, 50 mg/kg 28 d L. gasseri

↑ L.NK4A136_group ↑

Pathological inflammatory
infiltrates and mitochondrial

abnormalities cause significant
alterations in the shape of the gut.

Sprague–Dawley
rats [57] Anatase (25.2 nm) 100 mg/kg 14 d

Anaerobium
↑ Prevotella

↑ Granulicatella ↑
Lactobacillaceae ↓
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4.2. Silver Nanoparticles (Ag NPs)

Silver NPs are one of the most extensively researched antimicrobial noble metal
nanoparticles, with strong antibacterial activity against a wide range of diseases, including
drug-resistant bacteria (Figure 3, Table 2). Silver NPs can alter the diversity and compo-
sition of gut microbiota, and the effect is relatively consistent across species. Specifically,
this increases the amount of gram-negative bacteria in the gut microbiota, primarily af-
fecting Lactobacillus of the Firmicutes phylum and E. coli of the Proteobacteria phylum [58].
Han et al. [59] discovered that the gut microbiota diversity of fruit flies was dramatically
reduced after Ag NP exposure, with the abundance of Acetobacter dropping while Levilacto-
bacillus brevis had a stronger advantage.

In vitro, Ag NPs have strong antibacterial capabilities, and the mechanism is assumed
to be direct contact and oxidative stress. The former considers that Ag NPs can slowly
release silver ions and covalently bind to sulfhydryl groups (-SH) in proteins, rendering
them inactive [60]; the latter believes that Ag NPs catalyze the synthesis of huge amounts of
reactive oxygen species (ROS) from water and oxygen, damaging cellular genetic material
and triggering apoptosis. Studies have revealed that both pathways occur, with oxidative
stress being the primary mechanism of Ag NP antibacterial activity, while silver ions have
a limited impact [61,62].

In vivo, the antibacterial mechanism is connected to immunological regulation. Williams
et al. [58] investigated the effects of different sizes of nanosilver and silver acetate on gut
microbiota and mucosal gene expression in SD rats. Low dosages and small sizes of Ag NPs
were discovered to change intestinal gene expression, resulting in the reduced expression
of critical immunomodulatory genes such as MUC3, TLR2, TLR4, GPR43, and FOXP3.

Oral Ag NPs affect animal growth and development, but their advantages and risks
remain unknown. Fondecila et al. [63] discovered that Ag NPs may decrease the abundance
of E. coli linearly in vitro. When giving Ag NPs to piglets, their daily feed intake and
weight rose linearly with the dosage of Ag NPs. At the same time, the concentration of
E. coli in feces was reduced, whereas the concentration of Lactobacilli was unaffected. Silver
NPs altered the composition of the piglet gut microbiota, which benefits development and
metabolism. Han et al. [59] discovered that the toxicity of Ag NPs was greater than that
of microsilver in fruit flies. Although Ag NPs have no effect on adult fruit flies, they do
reduce the rate of development and reproduction. In conclusion, the interference of Ag
NPs in gut microbiota may be due to their own antibacterial properties, and an imbalanced
gut microbiota exacerbates Ag NP toxicity.



Toxics 2023, 11, 384 7 of 16Toxics 2023, 11, 384 7 of 17 
 

 

 
Figure 3. Effects of Ag NPs on gut microbiota. (A,B) The TEM images of E. coli co-incubated with 
Ag NPs. Reproduced with permission [64]. Copyright 2015, American Chemical Society. (C) Mech-
anisms of Ag NPs’ impact on bacterial cells. Reproduced with permission [65]. Copyright 2018, Else-
vier. 

Table 2. Effects of Ag NPs on gut microbiota. 

Animal 
Physicochemical 

Properties 
Exposure Dose 

Exposure 
Time 

Antibacterial Activity Others 

C57BL/6 [66] 22.2 ± 6.1 nm 0.1,2,40 μg 120d 
Firmicutes ⬆ 

Bacteroidetes ⬇ 
Changes in liver metabolism 

C57BL/6 [67] 55.17 ± 2.67 nm 
46, 460, 4600 
μg/kg 

28d 
Firmicutes ⬆ 

Bacteroidetes ⬇ 
 

Figure 3. Effects of Ag NPs on gut microbiota. (A,B) The TEM images of E. coli co-incubated with Ag
NPs. Reproduced with permission [64]. Copyright 2015, American Chemical Society. (C) Mechanisms
of Ag NPs’ impact on bacterial cells. Reproduced with permission [65]. Copyright 2018, Elsevier.
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Table 2. Effects of Ag NPs on gut microbiota.

Animal Physicochemical
Properties Exposure Dose Exposure

Time Antibacterial Activity Others

C57BL/6 [66] 22.2 ± 6.1 nm 0.1, 2, 40 µg 120 d Firmicutes ↑
Bacteroidetes ↓ Changes in liver metabolism

C57BL/6 [67] 55.17 ± 2.67 nm 46, 460, 4600 µg/kg 28 d Firmicutes ↑
Bacteroidetes ↓

C57BL/6J [68] 60–150 nm 0.5, 2.5 mg/kg 14 d
28 d

Lachnospiraceae ↑
Bacteroidetes S24-7 ↓

Accumulates in the liver, spleen,
and lungs.

Wistar rats [69] 7 nm 100 mg/kg 28 d

Bacteroidota ↑
Verrucomicrobia ↓

Proteobacteria
↓ Lactobacillaceae ↓

Minor inflammatory cell
infiltration in the submucosa of

the gastric mucosa; there are small
yellowish to dark granules in the
submucosa and macrophages at

the tip of the duodenal villi.

Sprague–Dawley
rats [70]

Spherical (50 nm) cube
(45 nm) 3.6 mg/kg 14 d

Cube: Clostridium spp. ↓
Bacteroides uniformis
↓ Christensenellaceae ↓
Coprococcus eutactus ↓
Spherical: Coprococcus

eutactus ↓
Dehalobacterium spp. ↓

Peptococcaeceae ↓
Corynebacterium spp. ↓

Aggregatibacter
pneumotropica ↓

Sprague–Dawley
rats [58] 10, 75, 110 nm 18, 36 mg/kg 91 d Bifidobacterium ↑

Firmicutes ↓

The expression level of MUC3,
TLR2, TLR4, GPR43, FOXP3

were decreased.

Broiler chickens [71] 50 nm 25, 50, 75 ppm 42 d Total anaerobic bacteria
↓ Escherichia coli ↓

It had side effects on the
immune mechanism.

Zebrafish [72] 10, 33, 100 µg/L 45 d Proteobacteria ↑
Drosophila

melanogaster [59]
7 µm

1.5 µm 450 mg/mL 7 d Acetobacter ↓

Weaned pigs [63] 20, 40 mg/kg 14 d Coliforms ↓

4.3. Zinc Oxide Nanoparticles (ZnO NPs)

ZnO NPs have a strong antibacterial effect and inhibit a wide range of bacteria in the
gut (Table 3). They have the potential to alter the diversity and composition of the gut
microbiota; for example, the abundance of gut probiotics such as Lactobacillus was increased.
After 28 days of ZnO NP 1000 mg/kg administration to rats, the abundance of several
Lactobacillus probiotics in the intestines of female rats increased significantly [73].

There are several hypotheses about the antibacterial mechanism of ZnO NPs (Figure 4).
Antimicrobial processes such as oxidative stress, direct interaction with bacteria, and zinc
ion release are all considered feasible. Several investigations have suggested that oxidative
stress is the primary antibacterial mechanism of ZnO NPs. In an aqueous solution, ZnO NPs
may generate •OH, singlet oxygen or superoxide anions (O2•−), and hydrogen peroxide
(H2O2). The larger the ZnO NP surface area is, the higher the ROS output [74,75]. During
the direct interaction of ZnO NPs with E. coli, the ROS generated trigger the oxidation
of the lipid membrane in the cell wall, leading to the leakage of cell contents [76]. Zinc
ions produced by ZnO NPs are considered to have antibacterial properties. Nevertheless,
ZnO NPs have limited solubility and are sensitive to ambient pH. ZnO NPs tend to remain
intact at neutral pH, but in acidic conditions ZnO NPs dissolve and release zinc ions
that bind to biomolecules (proteins, carbohydrates, etc.) in bacteria and impede their
development [77,78].
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Table 3. Effects of ZnO NPs on gut microbiota.

Animal Physicochemical
Properties Exposure Dose Exposure

Time Antibacterial Activity Others

Weaned piglets [81] 23 nm diets containing 0.3, 0.4,
0.5, 0.6 g/kg ZnO NPs 14 d Lactobacillaceae ↑

Coliforms ↓

Improves growth performance,
reduces the incidence of

diarrhea, regulates immune
status and antioxidant activity.

Weaned pigs [82] 71.61 nm 150, 300, 450, 3000
mg/kg 21 d Coliforms ↓ Reduces diarrhea and improves

intestinal morphology.

Weaned piglets [83] 23 nm 600 mg/kg 14 d

Ileum: Proteobacteria ↑
Firmicutes ↓

Cecum: Firmicutes ↑
Colon: Firmicutes ↑

Bacteroidetes ↓

Reduces diarrhea and improves
intestinal morphology.

Wistar albino rats [73] 1000 mg/kg 28 d

Male: Firmicutes ↑
Bacteroidetes ↓

Female: Firmicutes
↓ Verrucomicrobia ↑

C57BL/6 [84] 50 nm 26 mg/kg 30 d Actinobacteria ↓

Hens [85] 30 nm 25, 50, 100 mg/kg 63 d
SMB53 ↑
Proteus ↓

Lactobacillus ↓

Cyprinus carpio [86] diets containing
500 mg/kg ZnO NPs 42 d Flavobacteriumspecies

↑ Aeromonasspp ↑

4.4. Carbon-Based Nanomaterials (CNMs)

Carbon-based nanomaterials with at least one dimension less than 100 nm. There
are several common types, such as fullerenes, carbon nanotubes (CNTs), carbon dots, and
graphene and its derivatives. Carbon-based nanomaterials can exert antibacterial properties
via a variety of mechanisms, including physical destruction, the inflammatory immune
response, and oxidative stress (Figure 5, Table 4).

One of the most typical antimicrobial mechanisms in CNMs is the physical destruction
of the outer cell membrane or cell wall. Carbon-based nanomaterials bind to peptidogly-
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can and proteins in the cell membrane, causing cell membrane rupture [87,88]. Carbon
nanotubes and graphene, for example, have sharp edges that may puncture bacterial
membranes, resulting in the release of bacterial internal components such as RNA [89,90].

The metabolic inflammatory response is linked to changes in the gut microbiota
caused by CNMs. Carbon nanotubes boosted the release of inflammatory factors such
as IL-1β, IL-6, and TNF-α in the duodenum and colon, as well as the transition of the
phylum Firmicutes to Bacteroidetes and the abundance of the pro-inflammatory bacteria
Alitipes_uncultured and Lachnospiraceae bacterium A4 [91].

Oxidative stress is another major antibacterial mechanism in CNMs. Carbon quan-
tum dots generate ROS when exposed to blue light, dramatically inhibiting the activity
of methicillin-resistant Staphylococcus aureus and Escherichia coli [92]. Graphene oxide
and reduced graphene oxide also showed dose-dependent antibacterial action against
Pseudomonas aeruginosa by creating ROS, with graphene oxide inducing bacterial DNA
fragmentation [93].
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Table 4. Effects of CNMs on gut microbiota.

Animal Physicochemical
Properties Exposure Dose Exposure

Time
Antibacterial

Activity Others

CD-1 (ICR) mice [91]
SWCNT diameter:

1.04–1.17 nm, length:
1–5 µm

0.05, 0.5, 2.5 mg/kg 7 d
Bacteroidetes ↑

Lachnospiraceae
bacterium A4 ↑

Histological lesion scores
increased, intestinal permeability

increased, and the levels of
pro-inflammatory cytokine (IL-1β,

IL-6, and TNF-α) increased.

C57BL/6 [96] MWCNT
diameter: 10.7 ± 3.1 nm 2.8 mg/kg 28 d

Firmicutes
↑ Tenericutes ↑
Bacteroidetes

↓ Proteobacteria ↓

Induced inflammation of
the lungs.

C57BL/6 [97]
MWCNT diameter:
20–30 nm, length:

0.5–2 µm
5 µg/kg 15 d Verrucomicrobia ↑

Bacteroidetes ↓

4.5. Effects of Other Nanomaterials on Gut Microbiota

Silica nanoparticles (SiO2 NPs) can affect the abundance of gut microbiota through
inflammatory immune responses (Table 5). Following 7 days of administering 2.5 mg/kg
bw/day SiO2 NPs to mice, pro-inflammatory factors such as IL-1β, IL-6, and TNF-α
increased considerably in the small intestine and colon. Meanwhile, the phylotypes re-
sponded to the Firmicutes increase (39.9% vs. 26.1% in control mice) and Bacteroidete
decline [98].

Copper-loaded chitosan nanoparticles (CNP-Cu) can increase the abundance of Bi-
fidobacterium and Lactobacillus since some microbiota were inhibited by CNP-Cu [99].
Wang et al. fed weaned piglets CNP-Cu to investigate its effects. The results showed
that the abundance of E. coli was dramatically reduced but the numbers of Lactobacillus and
Bifidobacterium were increased [100].

In vitro investigations revealed that the richness of the microbiota increased dose-
dependently when exposed to nano-Al2O3. The structure of the gut microbiota was altered
dramatically at high dosages (50 mg/L), with the number of Firmicutes and Proteobacteria
increasing and Bacteroidetes decreasing [101].

Table 5. Effects of other nanomaterials on gut microbiota.

Animal Nanomaterials Physicochemical
Properties

Exposure
Dose

Exposure
Time

Antibacterial
Activity Others

Weaned piglets [100]
Copper-loaded

chitosan nanoparticles
(CNP-Cu)

diameter: 121.9 nm,
width: 23.1 nm 100 mg/kg 28 d

Levilactobacillus
↑ Bifidobacterium ↑
Escherichia coli ↓

The piglets’ average daily weight
increased, feed intake increased,

and the rate of diarrhea decreased;
increased length of intestinal

epithelial villi.

Broiler chickens [102] nanoselenium 0.075, 0.15,
0.3 mg/kg 42 d Lactobacilli ↑

Coliforms ↓
Improves intestinal morphology

and immune function.

CD-1 (ICR) mice [98] SiO2 NPs 10.8 ± 1.7 nm 2.5 mg/kg 7 d

Firmicutes
↑ Proteobacteria ↑

Bacteroidetes
↓ Lactobacillus ↓

Increased pro-inflammatory
cytokines in the intestine.

Broiler chickens [103]
Iron nanoparticles 50 ± 15 nm 8 mg/kg 42 d

Lachnospiraceae
↑ Bacteroidaceae ↑,

Alistipes
↑ Rikenellaceae ↑
Lactobacillaceae
↓ Anaerobes ↓

Copper nanoparticles 55 ± 15 nm 1.7 mg/kg 42 d

Rumen_occoccidae
↑ genus Blautia
↑Bacteroides ↑

Firmicutes
↓ Lactobacillaceae
↓ Rikenellaceae ↓

A mixture of Cu and
Zn asparaginates 65 ± 15 nm 2.84 mg/kg 42 d

Rumen occoccidae
↑ Bacteroides ↑

Firmicutes
↓ Lactobacillaceae
↓ Rikenellaceae ↓
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5. Summary and Future Outlooks

The structure and abundance of the gut microbiota are dynamic and influenced by
dietary properties. According to the accessible data, Firmicutes were discovered to be
the most susceptible microbiota. Firmicutes are one of the most numerous bacterial fam-
ilies in the gut. Lactobacilli, which function as a probiotic in Firmicutes, were sensitive to
nanoparticles. Another probiotic called Bifidobacterium was another sensitive microbiota,
with increased abundance when exposed to Ag NPs and CNP-Cu NPs and reduced abun-
dance when exposed to titanium dioxide. It can be seen that the change of microbiota is
material-specific.

Over the past few decades, rapid advancements in nanomaterials have provided
intriguing alternatives to antibacterial therapies. Nanomaterials, as opposed to regular
antibiotics, are less prone to causing bacterial resistance. They alter the structure of the gut
microbiota, influencing host health by triggering the intestinal immune system and oxida-
tive stress. Unfortunately, most research on the impact of nanomaterials on gut microbiota
is restricted to animal or in vitro tests, and studying complicated human environments
remains difficult. Since there are still few data on the real exposure concentrations of
nanomaterials, dose selection in animal studies needs to be carefully considered. In future,
experiments should focus on the influence of nanomaterials on the human gut microbiota,
bridging the gap between microbiota disorders and host illnesses and supplementing the
safe use of nanomaterials.
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