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Abstract: Water environment pollution due to chemical spills occurs constantly worldwide. When a
chemical accident occurs, a quick initial response is most important. In previous studies, samples
collected from chemical accident sites were subjected to laboratory-based precise analysis or predictive
research through modeling. These results can be used to formulate appropriate responses in the
event of chemical accidents; however, there are limitations to this process. For the initial response,
it is important to quickly acquire information on chemicals leaked from the site. In this study, pH
and electrical conductivity (EC), which are easy to measure in the field, were applied. In addition,
13 chemical substances were selected, and pH and EC data for each were established according to
concentration change. The obtained data were applied to machine learning algorithms, including
decision trees, random forests, gradient boosting, and XGBoost (XGB), to determine the chemical
substances present. Through performance evaluation, the boosting method was found to be sufficient,
and XGB was the most suitable algorithm for chemical substance detection.

Keywords: machine learning; chemical contamination; alternative indicator; initial response;
chemical detection

1. Introduction

Chemical accidents in water environments have both natural and anthropogenic
causes and refer to situations where large amounts of chemicals flow into rivers due
to accidents occurring while handling or transporting chemicals [1]. Globally, chemical
spills are a major cause of water pollution. Large-scale accidents causing water pollution
occur regularly, such as the 1985 Old Delhi sulfuric acid spill in India, the 2004 Delaware
River oil spill in the US, the 2005 sodium hydroxide spill in Canada, the 2007 Geelong
River oil spill in France, the 2014 Arkansas River ferric sulfate spill in the US, and the
2015 sodium cyanide spill in Tianjin Port, China [2–11]. Despite the high rate of domestic
river water use, industrial complexes in Republic of Korea are located near rivers. For
example, the Nakdonggang is a major potable water source in the Yeongnam region, and
large-scale industrial complexes are concentrated in the middle and upper regions of the
river. Furthermore, chemical spills of substances such as phenols and 1,4-dioxane have
caused pollution in the Nakdonggang [12,13].

Following a chemical spill, samples are typically collected in the field, and analyses
are performed in the laboratory. Laboratory-based analyses are a common method for
accurately detecting and quantifying pollutants. Various methods for analyzing chemical
substances have been proposed, including those provided by the National Institute for
Occupational Safety and Health, 1994; EPA ORD NHSRC, 2010a; EPA ORD NHSRC,
2010b; and OSHA Analytical Methods, 2022 [14–17]. In addition, Water Pollution Test
Standards and Hazardous Chemical Test Standards have been established in Republic of
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Korea. Detecting the deterioration of water quality is critical for water conservation and
public health [18]. Most methods are expensive and require specialized laboratories with
sophisticated scientific equipment. In addition, highly qualified personnel are required to
operate these devices [19].

In the event of a chemical accident, it is important to respond quickly to minimize
the effect on aquatic ecosystems and humans. While petrochemical leaks can be observed
with the naked eye, many chemicals that are likely to enter rivers are often colorless and
water-soluble, making visual detection difficult. Furthermore, depending on its properties,
a chemical substance may naturally decompose in the aqueous system; however, a non-
reactive substance may remain in the system and cause secondary damage [20].

Studies on the transport and diffusion of oil spills have been performed using leaked-
pollutant prediction [21–23], scenario simulation, and concentration prediction of chemical
spills [24–27]. Additionally, data mining has been applied in several recent studies on
leaked pollutants. To detect oil spills, Tong et al. used the random forest and self-similarity
parameters [28], and Xu et al. used a support vector machine and local adaptive thresh-
old [29]. Furthermore, Pelta et al. and Ozigis et al. analyzed oil spills using remote
monitoring and machine learning (ML) [30,31]. Huang et al. used a support vector machine
and conventional water quality sensors to detect pollutants [32], and Kwon et al. developed
a framework that combines ML and a transient storage zone model to predict the location
of chemical spills and pollutant mass [33].

Scenario analysis of chemical spills through modeling and data mining is important.
However, the most critical aspect of chemical accidents is the early detection of leaks.
Damage can be reduced by quickly determining the properties of the chemicals leaked into
the river and implementing an appropriate response. In this study, chemical experiments
were conducted using pH and electrical conductivity (EC), which are easy to measure
in rivers. Thirteen types of chemicals were used in the chemical experiment. Chemical
substances were measured from low to high concentrations, and pH and EC data were
acquired according to concentration changes. Four ML algorithms were used: decision
trees (DTs), random forests (RFs), gradient boosting (GB), and XGBoost (XGB). Finally, the
results of the ML applications were compared to propose the most suitable algorithm for
chemical substance detection. This study was conducted to better determine the optimal
initial response in the event of chemical accidents using commonly used sensors, allowing
quick and inexpensive detection of the spilled chemicals.

2. Materials and Methods
2.1. Chemical Reagents and Alternative Indicators

pH and EC were used as alternative indicators to determine chemical substances. A
PP-50 pH meter (Sartorius AG, Göttingen, Germany) and YSI Pro 2030 (YSI, Yellow Springs,
OH, USA) were used to measure the pH and EC, respectively.

Carbon-based organic materials have a low level of underwater dissociation, thereby
limiting the measurements of pH and EC. In addition, since substances such as oil and
phenol are easy to see with the naked eye when they enter a river, accidents are easy to
detect, and countermeasures for these accident substances are already in place in Republic
of Korea [1]. Therefore, 13 inorganic chemicals were selected in this study. The number
of companies handling chemical substances in Republic of Korea, chemicals designated
in various domestic and foreign agreements, and chemicals involved in actual chemical
accidents were considered for the subject chemical substances. A total of 97 chemicals
(accident preparedness substances) have been designated and managed by the Ministry
of Environment in Republic of Korea as of 2018 after an investigation on the number of
businesses handling each chemical substance [10]. Agreements on the use of chemicals
are in place in not only Republic of Korea, but also globally, including the International
Task Force (ITF-25), Extremely Hazardous Substances (EHSs) list, Chemical Weapons
Convention (CWC), and Australia Group (AG). The ITF-25 regulates and manages 98 types
of chemicals that can be used as chemical weapons for military purposes. In the US,
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356 types of specific hazardous chemicals are designated and managed through the EHS
to respond to environmental and safety risks caused by the storage and handling of toxic
chemicals. The CWC designates and manages 42 types of toxic chemicals in 13 groups
to control the development, production, acquisition, stockpiling, possession, and use of
chemical weapons. Among the chemicals commonly manufactured and distributed in the
private chemical industry, the AG controls imports and exports by identifying 63 kinds of
chemicals that may be used to make chemical weapons. Table 1 shows the domestic and
international designation status of the 13 chemicals selected for this study.

Table 1. Selected hazardous chemicals managed by the International Task Force (ITF-25), Extremely
Hazardous Substances (EHSs) list, Chemical Weapons Convention (CWC), Australia Group (AG),
and Ministry of Environment (ME-97).

No. Name CAS No.
Number of

Factories Using
Chemical (Republic of Korea)

ITF-25 EHS CWC AG
ME-97

(Republic of
Korea)

1 Hydrogen chloride 7647-01-0 3386 O O - - O

2 Ammonium
bifluoride 1341-49-7 577 - - - O O

3 Phosphorus
pentachloride 10026-13-8 15 - O O O O

4 Phosphorus
Pentasulfide 1314-80-3 - - - - O O

5 Ferric sulfate 10028-22-5 - - - - - -
6 Bromine 7726-95-6 37 O O - - O
7 Arsenic trichloride 7784-34-1 - O O O O O
8 Potassium nitrate 7757-79-1 185 - - - - -

9 Potassium
permanganate 7722-64-7 167 - - - - -

10 Potassium chlorate 3811-04-9 19 - - - - -
11 Sodium cyanide 143-33-9 937 - O - O O
12 Potassium cyanide 151-50-8 265 - O - O O
13 Sodium hydroxide 1310-73-2 7998 - - - - -

2.2. Selected Solvents

When high-concentration chemicals flow into a specific point in a river, they are
transported and diffused along the flow direction. Experiments were conducted under the
assumption that the high-concentration chemicals would be diluted over time by transport
and diffusion (Figure 1). To avoid conducting experiments using chemicals in natural rivers,
the water was sampled and used as a solvent (Figure 2). Additionally, rivers have different
pH and EC base levels depending on their surrounding environments. Changes in these
factors may vary depending on the characteristics of the river in the event of a chemical
accident. Therefore, three rivers with different characteristics were selected and used as
solvents for the chemical experiments (Table 2). These include Jomangang (JM), located in
Juchon-myeon, Gimhae-si, Gyeongsangnam-do, which features agricultural and industrial
areas around the water sampling point; Sineocheon (SE), which is a waterfront river in
Gimhae-si, Gyeongsang-nam-do flowing through a residential area; and Seonakdonggang
(SN) which is a lake-shaped river, wherein floodgates cause the water body to stagnate.
The flow rate is controlled by the Noksan Floodgate in the estuary and the upstream Daejeo
Floodgate [1].
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Table 2. pH and EC values of selected solvents for rivers.

River pH EC (µS/cm)

Jomangang (JM) 7.5 335.6
Sineocheon (SE) 8.6 234.1

Seonakdonggang (SN) 8.7 350.2

2.3. Machine Learning

Classification algorithms in ML, a supervised learning technique, were applied in
this study. By entering the measured alternative indicator as an input parameter, the
corresponding chemical substance was produced as an output parameter. The applied ML
algorithms were DTs, RFs, GB, and XGB.

DT is a machine learning method characterized by data searching and modeling [34],
and both classification and regression models are used as nonparametric models [35].
Its advantage over other methods is that researchers can easily understand and inter-
pret the analysis process [36]. DTs also require only a short time to develop and allows
short-term predictions.

However, overfitting can easily occur in DTs; therefore, RFs, GB, and XGB were also
compared and analyzed, and applied to an ensemble model to overcome this disadvantage.
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RF is a bagging ML algorithm that outputs classifications or average predictions from
multiple DTs constructed during the training process, i.e., multiple DTs are created, and the
outcome is determined by majority votes [37]. Each DT predictor for the RF is constructed
by the random selection of samples and variables.

GB and XGB are boosting ML algorithms. Boosting combines inaccurate and weak
learners to develop a more accurate and robust learner. The error resulting from a slightly
inaccurate tree is compensated in the following tree to supplement the weakness before
forming the next tree. GB achieves robust performance by combining weak learners to
reduce the residuals; however, the method tends to overfit. XGB is an algorithm that
is based on GB and adds a regularization term to the objective function to address this
limitation. Compared with the existing GB method, XGB is a stepwise forward addition
model and automatically utilizes multicore and distributed settings for an efficient learning
process [38,39].

The ML algorithm was constructed using the chemical measurement database based
on the alternative indicators. When establishing the ML algorithm, 80% of the overall
data were used as training data and 20% as test data. While the training and test data
were fixed datasets, the ML algorithm, which revises the hyperparameter using fixed data,
only overfitted the fixed datasets; therefore, cross-validation was performed. In the cross-
validation, the dataset was divided into ten parts, wherein one part was used to validate the
effectiveness, while the others were used as a learning set to evaluate the ML algorithm [40].
All data were used to evaluate the applicability of the constructed ML algorithm for other
datasets. All models and performance assessments were implemented using scikit-learn
and XGBoost libraries in Python 3.9 (Python Software Foundation, Beaverton, OR, USA).

3. Results and Discussion
3.1. Alternative Indicator Measurement for the 13 Hazardous Chemical Substances

Table A1 shows the lab-scale experiment results of the alternative indicators (pH and
EC) at each concentration of the 13 harmful chemical substances using three solvents (water
from the Jomangang, Sineocheon, and Seonakdonggang). Measurements were carried
out for 30 concentrations from 0 mg/L to 2000 mg/L. The pH values were affected by
the base concentration of the rivers depending on the solvent, even when the chemical
substance remained the same, resulting in differences in the low-concentration range.
However, this difference gradually decreased to 100 mg/L. On the other hand, the EC was
negligibly affected by the base concentration and constantly increased with the increase
in the concentration for 11 of the 13 chemical substances, excluding bromine and arsenic
trichloride. Therefore, the pH was affected by the base concentration of the chemicals in
the rivers at low concentrations, whereas the EC was minimally affected.

Chemical substances with similar tendencies were classified into four groups based
on their alternative indicator measurements (Table 3). Group 1 includes hydrochloric acid,
ammonium difluoride, phosphorous pentafluoride, phosphorous pentasulfide, and ferric
sulfate. As the concentration of these chemicals increased, the pH decreased and the EC
increased. Furthermore, acidic properties were observed at 100 mg/L as the pH converged
at approximately 2. Group 2 includes bromine and arsenic trichloride, which exhibited
very little change in the EC, but a decrease in the pH as their concentrations increased.
Group 3 includes potassium nitrate, potassium permanganate, and potassium chlorate.
This group exhibited the opposite tendency of Group 2; i.e., for a given concentration
change, the pH variation was very small, but the EC variation was significant. Finally,
Group 4 includes sodium cyanide, potassium cyanide, and sodium hydroxide, which
exhibited basic properties as both the pH and EC increased with changes in concentration.

The trends of the chemical substances were compared and classified by visualizing
the changes in alternative indicators with their concentration. However, the individual
detection of the 13 chemical substances was limited; therefore, ML was applied to detect
the chemical substances. The ML algorithms DTs, RFs, GB, and XGB were compared and
analyzed to select the optimal ML algorithm to detect the chemical substances.
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Table 3. Group classification of the 13 chemicals.

Group No. Chemical

Group 1

1 Hydrogen chloride

2 Ammonium bifluoride

3 Phosphorus pentachloride

4 Phosphorus pentasulfide

5 Ferric sulfate

Group 2
6 Bromine

7 Arsenic trichloride

Group 3

8 Potassium nitrate

9 Potassium permanganate

10 Potassium chlorate

Group 4

11 Sodium cyanide

12 Potassium cyanide

13 Sodium hydroxide

3.2. Application of ML for Detecting the 13 Chemical Substances

Hyperparameter tuning of DTs, RFs, GB, and XGB was performed, as shown in Table 4.
Furthermore, a confusion matrix indicated whether the measured data agreed with the
predicted data generated using the ML algorithms (Figure 3). The numbers in the confusion
matrix represented the predicted results of the model. The detection and cross-validation
results were evaluated in terms of accuracy. Receiver–operator characteristic (ROC) curves
and AUC (area under the curve) were used to evaluate the performance of the four models.
The ROC curve is a visual representation used to explain the diagnostic capability of the
binary classifiers. The ROC curve reveals the sensitivity (true positive rate (TPR)) and
specificity (1–falsefalse-positive rate (FPR)). Classifiers that provide curves closer to the top-
left corner represent a reliable performance. As a baseline, a random classifier is required
to place points along the diagonal line (FPR = TPR). When the curve reaches closer to the
45◦ diagonal of the ROC area, the test is less accurate [41].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

True positive rate(TPR) =
TP

TP + FN
(2)

False positive rate(FPR) =
FP

TN + FP
(3)

Table 4. Setting up machine learning (ML) hyperparameters for the detection of the 13 chemicals.

ML Hyperparameter

Decision tree Criterion = Gini, Max_depth = 50
Random forest Criterion = Gini, Max_depth = 50, N_estimators = 10

Gradient boosting Learning_rate = 0.15, Criterion = Fried_mse,
Max_depth = 3, n_estimators = 70

XGBoost Eta = 0.5, Max_depth = 20, N_estimators = 40,
Minchild_weight = 1
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3.2.1. Decision Tree

DTs are easy to understand and interpret and only require a short time to build, al-
lowing for short-term predictions. The classification results of the 13 chemical substances
determined by applying DTs are presented in a confusion matrix (Figure 4), which con-
firmed that chemical substances in the same group were also classified. The performance
evaluation also showed a satisfactory result, with an accuracy of 0.7152. However, the
deviation was between 0.5806 and 0.8333 in the cross-validation results, suggesting that it
would be difficult to apply the constructed DT to other datasets. Therefore, the application
of DTs for detecting the 13 chemical substances is limited.
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3.2.2. Random Forest

The performance of RFs in detecting the chemical substances in Group 1 was lower
than that of DTs, as shown in the confusion matrix in Figure 5. Additionally, the ac-
curacy was 0.7185 in the evaluation performance, and the cross-validation results were
0.5667–0.8333, which is similar to those values of DTs. Therefore, the application of RFs is
also limited.
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3.2.3. Gradient Boosting

GB exhibited higher performance than DTs and RFs (accuracy = 0.7483) in the detection
of the 13 chemical substances (Figure 6). Additionally, the cross-validation results were
0.6333–0.8065 and indicated no significant deviation, confirming the applicability of GB for
different datasets. Therefore, GB was more suitable than the DT and bagging RF methods.
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3.2.4. XGBoost

The performance of XGB in the detection of the 13 chemical substances was higher
than that of the GB method (Figure 7). The detection results for Groups 1–3 are similar to
those of the DTs, RFs, and GB; however, the detection of Group 4 presented the best result.
The performance evaluation also demonstrated the highest accuracy of 0.7517, and the
deviations in the cross-validation results were also the smallest (0.6667–0.8000). Therefore,
both boosting methods are sufficient for detecting the 13 chemical substances, with XGB
being the most suitable.
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To detect the 13 chemical substances, pH and EC were selected as alternative indicators
to establish a database. The chemical substances with similar tendencies were classified
based on the measurements of the alternative indicators according to changes in concentra-
tion; however, individual detection was limited, and therefore, ML was used to perform
individual substance detection. Consequently, a significant deviation occurred when a
different dataset was applied in the DT and RF methods, and the successful application
of these methods was limited. The boosting methods, GB and XGB, exhibited a small
deviation in the cross-validation results. Furthermore, XGB achieved the best performance
in terms of accurately with detecting the 13 chemical substances, albeit only slightly. In
summary, XGB is the most suitable ML algorithm for chemical detection. When using pH
and EC as alternative indicators, the accuracy was 0.7-fold higher in most cases.

Figure 8 visualizes the ROCs for the four ML algorithms and shows the results of AUC
calculations. Among the algorithms, XGB showed the best performance. Figure A1 shows
the identification performance for the 13 chemical substances as ROC and AUC for each
ML algorithm. The four algorithms successfully detected five chemicals (phosphorus pen-
tasulfide, potassium permanganate, potassium chlorate, sodium cyanide, and potassium
cyanide). The AUC of the DT (Figure A1a) was mostly below 0.9 and showed the lowest
performance with an AUC of 0.83. For the RF (Figure A1b), which uses a bagging method,
the detection performances for four chemicals (hydrogen chloride, ammonium bifluoride,
phosphorus pentachloride, and potassium chlorate) were below 0.9, and the AUC was 0.92.
GB (Figure A1c) and XGB (Figure A1d), which are boosting methods, showed a detection
performance of 0.9 or higher for the 13 chemical substances. Among them, XGB showed
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the best detection performance for 12 out of 13 chemicals, not including sodium cyanide.
Therefore, the boosting methods were the most suitable, and XGB was considered the most
suitable ML algorithm for chemical detection.
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4. Conclusions

In this study, changes in pH and EC caused by chemical substances entering three
rivers in Republic of Korea in the event of a chemical accident were investigated. As
direct detection of chemical substances is limited, a database of chemical concentrations
was developed using pH and EC measurements as alternative indicators. Furthermore,
the constructed database was applied to ML models to determine the best model for
chemical detection.

The 13 types of chemical substances exhibited very similar tendencies when solvents
of different base concentrations were used. There was a slight difference in pH at the low-
concentration range, which was likely affected by the base concentration in the solvents.
However, this difference decreased at ≥ 100 mg/L, and the effect of base concentration
decreased in the high-concentration range. The effect of the base concentration on EC
was minimal, and the EC of most chemical substances increased at a constant rate with
increasing concentrations.

The chemical substances could be classified into four groups by visualizing the mea-
surement results of the alternative indicators in response to substance concentrations where:
Group 1 exhibited acidity; Group 2 exhibited decreased pH but showed little change in
EC; Group 3 showed no change in pH, but an increase in EC; and Group 4 exhibited basic
properties. The chemical substances could be detected in groups; however, the detection of
individual chemical substances was limited; therefore, ML was applied.

The ML algorithms used in this study were DTs, RFs, GB, and XGB. Chemical sub-
stances in the same group could be detected using all four models. Moreover, all four
models demonstrated a satisfactory accuracy of ≥0.7. The results of cross-validation varied
among the models, with the DT and RF exhibiting considerable deviation. However, in



Toxics 2023, 11, 314 11 of 16

boosting methods such as GB and XGB, the variance was found to be less pronounced
in cross-validation. Based on these results the boosting methods were found to be more
suitable than the DT and bagging methods. Among the boosting methods, XGB showed the
highest accuracy in detecting chemical substances, making it the most appropriate method
for this task.

In this study, a database of 13 chemical substances was created using alternative
indicators. Furthermore, the chemical substances were detected using ML algorithms.
Detecting chemical substances presents some challenges. However, this study provides
a method that can quickly provide information about the leaked chemicals through an
alternative index that can easily be measured in the field should a chemical accident occur.
More precise and diverse chemical detection may be attained in the future by using various
sensors and alternative indicators. The findings of this study can serve as basic data for
developing an initial response to chemical accidents.
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