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Abstract: Concentrations of heavy metals (HMs) were assessed in Tilapia spp. from selected com-
munities in Calapan City, Philippines. Eleven (11) inland farmed tilapia samples were collected
and analyzed for HMs concentration using X-ray fluorescence (XRF). The 11 fish samples were cut
into seven pieces, according to the fish body parts, constituting a total of 77 samples. These fish
samples were then labeled as bone, fins, head, meat, skin, and viscera. Results showed that the mean
concentration of Cd in all parts of tilapia exceeded the Food and Agriculture Organization/World
Health Organization (FAO/WHO) limits. The highest concentration was recorded in the fins, which
was sevenfold higher than the limit. The trend of the mean concentration of Cd in different parts
of tilapia was fins > viscera > skin > tail > head > meat > bone. The target hazard quotient (THQ)
recorded a value less than 1. This means that the population exposed to tilapia, within the area
where fish samples originated, were not at risk to non-carcinogens. The concentrations of Cu, Pb, Mn,
Hg, and Zn in different parts, particularly in skin, fins, and viscera, also exceeded the FAO/WHO
limits. The calculated cancer risk (CR) in consuming the fish skin, meat, fins, bone, viscera, and
head was higher than the USEPA limit. This indicated a possible carcinogenic risk when consumed
regularly. Most of the correlations observed between HMs in various parts of the tilapia had positive
(direct) relationships, which were attributed to the HM toxicity target organ characteristics. Results
of the principal component analysis (PCA) showed that most of the dominating HMs recorded in
tilapia were attributable to anthropogenic activities and natural weathering within the watershed of
agricultural areas. The agriculture area comprises about 86.83% of the overall land area of Calapan
City. The identified carcinogenic risks were associated with Cd. Therefore, regular monitoring of
HMs in inland fishes, their habitat, and surface water quality shall be carried out. This information is
useful in creating strategies in metals concentration monitoring, health risks reduction program, and
relevant guidelines that would reduce the accumulation of HM in fish.
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1. Introduction

After milkfish, tilapia is the second most farmed fish in the Philippines [1], with an
average annual consumption of 4.6 kg per person [2]. The Mozambique tilapia (Oreochromis
mossambicus), imported from Thailand in 1950, was the first tilapia to be introduced to the
Philippines. Meanwhile, the Nile tilapia (O. niloticus) was introduced in 1972 and is now the
country’s main species of tilapia being farmed [3] (pp. 75–91). In 2019, the tilapia per capita
availability for Filipinos was 2.9 kg/y, compared to 2.5 kg/y for milkfish [4] (p. 25). Luzon
(mostly freshwater) is the country’s largest producer of farmed tilapia, accounting for 92% of
total output (261,210 MT) in the country, followed by Mindanao (freshwater and seawater)
at 6%, as well as the Visayas (mostly brackish water) at 2% [1,5]. Tilapia aquaculture is
one of Calapan City’s inland fishing industries, providing living and a source of food to
many residents. The city of Calapan is located on the northeastern coast of the island of
Mindoro and the capital city of Oriental Mindoro. It covers an area of 21,730 hectares and
is composed of 62 barangays (the smallest administrative local government unit). A total
of 18,607.8 hectares (86.83% of the total area) are dedicated to agriculture (rice fields) and
fishing, with 1300 hectares (5.98% of the total area) dedicated to inland fishing and the rest
to other agricultural, residential, commercial activities, and few industry sectors [6].

Fish, including tilapia, are some of the most consumed animal-derived food items due
to their high nutritional content, which includes high-quality animal protein and a variety
of minerals and other essential nutrients [7–11]. With food safety being a significant public
health concern worldwide, there is a tremendous demand for studies on the safety of food
products such as fish consumed by people. Risks connected with consuming of contami-
nated foods have been a prominent focus of scientific investigation in recent decades [12].
Heavy metals (HMs) are among the most dangerous contaminants in food production and
distribution [13,14], including fisheries. These issues are becoming increasingly serious
over the world, particularly in developing countries [12].

HMs introduced to the aquatic environment, primarily as a result of human activi-
ties [15], accumulate in the water environment and subsequently pass via the food chain to
aquatic organisms [16]. The quantities of HMs in fish have been intensively examined in
many locations throughout the world during the last several decades [17]. Fish are also em-
ployed as bioindicators of aquatic ecosystems to determine the extent of HM pollution and
the risk of bioaccumulation to humans [18]. This is because fish are particularly vulnerable
to pollution and changes in their surrounding environment [19]. The study of Ali et al. [20]
shows that fish, indeed, can be used for the biomonitoring of aquatic ecosystems.

Several studies have been conducted in the Philippines in recent years to study the
level of HM concentrations in selected species of tilapia [21–23] and their potential as
bioindicators of water pollution [24–26]. To the best of the authors’ knowledge, this is the
first study that investigated the level of concentrations of HMs in meat and various organs
of Tilapia spp. in Calapan City and even in the whole province of Oriental Mindoro. With
that, this study aimed to (i) provide baseline data on the distribution of HMs in various
parts of Tilapia spp. samples from selected communities in Calapan City, Philippines and (ii)
assess the health risks associated with the consumption of the investigated tilapia samples.
The levels of HMs in the fish samples can give preliminary insights on the level of aquatic
pollution in the area, while the result of the health risks assessment will have implications
on food safety and quality.

2. Materials and Methods
2.1. Study Area and Sample Collection

Eleven (11) samples of Tilapia spp. were collected from vendors in the barangays of
Calapan City, as described by the global positioning system (GPS) plots in Figure 1. These
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are the barangays that had available Tilapia spp. that could spatially represent Calapan City.
This city is about 73.28 nautical miles (about 5 h of travel by land and sea) from Manila, the
Philippines’ capital city. Barangays are the most basic territorial, administrative, and local
government units in the Philippines [21]. In addition, GPS coordinates for collection sites
were recorded to map the source or origin of fish samples. The eleven (11) barangays from
which the fish samples were collected were: Bayanan II, Biga, Comunal, Lalud, Managpi,
Nag-iba I, Nag-iba II, Panggalaan, Parang, Sta. Isabel, and Suqui.
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2.2. Sample Collection, Preparation and Analysis

Approximately one (1) kilogram of each Tilapia spp. of the same size (length of
±7”) from eleven (11) sampling sites were bought from local fish vendors. The collected
samples were wrapped in a cleaned plastic container, sealed, labeled, and kept in an icebox
cooler before transporting them to MIMAROPA Food Innovation Center. The fish samples,
bought from 11 sites, were cut into seven parts, namely, the tail, scale/skin, meat, fins,
bones, viscera/stomach, and head, and they were weighed, grouped, and labeled according
to fish parts, such as bone, fins, head, meat, skin, tail, and stomach/viscera. The 11 Tilapia
spp. fish samples became 77 samples for metal analysis. This is to identify which part of the
Tilapia spp. contains the lowest and the highest metals concentration. Figure 2 illustrates the
tilapia fish and its various parts. The 77 samples were then dried in the Electric Dehydrating
Memmert UF750 oven with the aid of a tray. The oven was set at 65 ◦C, and the fish samples
were dried for eight hours. After drying, the tilapia fish samples were powdered using
the Dowell Portable Blender. Powdered samples were then placed in resealable plastic
bag No. 2 (60 × 85 × 0.04 mm) and labeled accordingly. The 77 powdered samples, with
mean dry weight shown in Table 1, were prepared following the USEPA 823-B-00-007 [27].
The typical minimum sample weight for Vanta XRF analysis is 5 g. The sample weight
does not affect the elemental detection capability and sensitivity of XRF. The fish samples
were analyzed for their metals concentrations using the portable Olympus Vanta X-ray
Fluorescence (XRF) spectrometer, of the Yuchengco Innovation Center of Mapua University,
at the Food Processing Technology Research and Development Center of Mindoro State
University Calapan City Campus. The XRF, set to soil mode, was calibrated with the aid of
the manufacturer using the Olympus Vanta XRF standard reference in a No. 2 resealable
plastic bag, together with the ICP-OES results of comparable set of samples. ICP-OES has
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been internationally accepted as the primary instrument for elemental analysis. Hence, this
study used ICP-OES as a calibration aid to ensure an accurate result of the XRF. The new
model, as a result of calibration to adjust default calibration values and meet site specific
factors, has been labelled as ‘soil ziploc mode’. After this, the portable XRF is ready for
elemental analysis and becomes a reliable instrument for metal detection in this study
for various media, and it has been used in various studies [28–34]. The 77 samples were
analyzed for the presence of ten (10) metals, such as arsenic (As), barium (Ba), cadmium
(Cd), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), and
zinc (Zn). The limit of detection (LOD) of XRF with respect to the identified HMs is shown
in Table 2. All extracted data values showing “LOD” were represented by a number that
is one step lower than the XRF LOD value shown in Table 2. This is to represent numeral
values in calculating the quantitative health risks.
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Table 1. The mean dry weight of fish parts, n = 77.

Fish Part Mean Dry Weight (g)

Bone 74.73
Fin 9.73

Head 54.71
Meat 40–92
Skin 69.64
Tail 6.27

Viscera 5.00

Table 2. Limit of detection (LOD) of Olympus Vanta XRF [35].

Name of Metals LOD (mg/kg)

As 1
Ba 15
Cd 2
Cu 1
Fe 1
Hg 1
Mn 3
Ni 3
Pb 1
Zn 1

2.3. Health Risk Assessment

The health risk was assessed using the chronic daily intake (CDI), target hazard
quotient (THQ), and cancer risk (CR). These were calculated to estimate the various health
consequences associated with HM consumption of tilapia, particularly its meat.
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2.3.1. Chronic Daily Intake (EDI)

The CDI of all HMs detected through ingestion of various parts of tilapia was deter-
mined following Equation (1) [28].

CDI =
Cm × IR × EF × ED

BW × AT
(1)

where Cm is the concentration of HMs (mg/kg), IR is the ingestion rate of various parts
(kg/person/day) (Table 3), EF is the exposure frequency (365 days/year) [28], ED is
exposure duration (70 years) [28], BW is the average body weight of an adult Filipino
(70 kg) [28], and AT is the averaging time (EF × ED).

Table 3. Estimated ingestion rate of various parts of Tilapia spp. [36,37].

Part Ingestion Rate (kg Person−1 Day−1)

Bone 1.53 × 10−3

Fin 3.01 × 10−4

Head 2.91 × 10−3

Meat 3.88 × 10−3

Skin 9.74 × 10−4

Tail 3.01 × 10−4

Viscera 9.59 × 10−3

2.3.2. Target Hazard Quotient (THQ)

The non-carcinogenic health risk (NCHR) posed by the consumption of the vari-
ous parts of tilapia contaminated with HMs was defined by THQ and was estimated by
following Equation (2) [28,38].

THQ =
CDI
R f D

(2)

where RfD is the reference dose of metals that provides an estimate of the daily exposure of
an individual to a particular contaminant such as HM with a potential non-carcinogenic
health risk [39] The RfDs for As, Ba, Cd, Cu, Fe, Pb, Mn, Hg, Ni, and Zn are 0.0003, 0.2,
0.001, 0.04, 0.7, 0.0035, 0.14, 0.0001, 0.02, and 0.3 mg kg−1, respectively [40–46]. Generally, a
THQ < 1 implies very little to no non-carcinogenic health effects. This means no adverse
health effect is expected for the population. A THQ of ≥1 means that the population
exposed to the metals hazards in fish is at risk.

To understand the overall non-carcinogenic health risks due to the intake of vari-
ous parts of tilapia, the total target hazard quotient (TTHQ) was calculated following
Equation (3) [21].

TTHQ = THQAs + THQBa + THQCd + THQCu + THQFe + THQPb + THQMn+
THQHg + THQNi + THQZn

(3)

As with the THQ, a computed TTHQ of <1 implies no adverse health effect is expected.
A TTHQ of ≥1 implies that the exposed population is at risk.

2.3.3. Cancer Risk (CR)

To assess the potential carcinogenic risk due to lifetime exposure to carcinogens,
Equation (4) was followed [47].

CR = CDI × SF (4)

where SF (mg kg−1 day−1) denotes the cancer slope factors set by the United States En-
vironmental Protection Agency(USEPA) for a certain carcinogen. In this study, only As,
Cd, Pb, and Ni were included in the calculation of CR, as they were identified as carcino-
gens by the USEPA [48]. The SF values for As, Cd, Pb, and Ni are 1.5, 6.3, 0.0085, and
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0.84 mg kg−1 day−1, respectively [28,49,50]. CR values greater than 1 × 10−4 indicate that
there is a high probability of the occurrence of cancer risk in the population [51].

2.4. Data Analysis

Descriptive statistics of the HM concentration in various parts of tilapia were provided
using Microsoft Excel 2016. The concentrations of HMs in tilapia were Box-Cox transformed
prior to multivariate analysis [52] using IBM SPSS Statistics 23 to ensure that the data were
normally distributed [53]. One-way ANOVA was employed to indicate the significant
differences in HMs in various parts of tilapia. To understand the relationships of HMs
in various parts of tilapia, a correlation matrix (CM) in the form of a correlogram was
performed using RStudio. Similarly, principal component analysis (PCA) was employed
using PAST 4.03 to further support the result of the CM and evaluate the possible sources
of HMs in the study area. The principal components (PC), which had eigenvalues greater
than 1 and comprised >70% of the total variance, were retained after the PCA [53,54].

3. Results
3.1. Concentration of HMs in Different Parts of the Fish

X-ray fluorescence (XRF) analysis was used to determine the levels of HMs (As, Ba,
Cd, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) in tilapia collected from eleven (11) barangays in
Calapan City, Oriental Mindoro, Philippines. The mean concentrations of these HMs in the
tail, skin, meat, fins, bone, stomach, and head of the tilapia are shown in Table 4.

The mean concentration of Cd in all parts of tilapia exceeded the FAO/WHO limit [55,56].
The highest concentration was recorded in the fins, which was sevenfold higher than the
limit. The mean concentration of Cd in different parts of tilapia is in decreasing order
of fins > viscera > skin > tail > head > meat > bone. For the Cu concentration, only the
concentration in the viscera exceeded the FAO/WHO limit [55,56]. The mean concentration
of Cu in several parts of tilapia is in the following order: viscera > fins > skin > meat > bone >
tail > head. Similarly, the mean concentrations of Pb in the skin and fins of tilapia exceeded
the FAO/WHO limit [55,56]. The mean concentrations of Mn in all parts of tilapia except
for the bone exceeded the limit of 1. The Mn concentration in the parts of tilapia follows
the order of skin > fins > tail > meat > head > viscera > bone. For the mean concentration of
Hg, only the concentration in viscera exceeded the FAO/WHO limit [55,56]. On the other
hand, only the mean concentration of Zn in the viscera of tilapia exceeded the allowable
limit. Results of the one-way ANOVA (Table 5) show that the accumulation of Ba, Cu, Mn,
and Zn in various parts of the tilapia was significantly different (p < 0.005). Figure 3 shows
the concentration (%) of HMs in each part of the tilapia. Fe and Zn were recorded to have
the highest concentration in each part.
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Table 4. Mean concentration of HMs (mg kg−1) in various parts of Tilapia spp.

Part As Ba Cd Cu Fe Pb Mn Hg Ni Zn

Tail ND 3.27 ± 1.2 2.55 ± 2.0 3.73 ± 3.5 34.00 ± 29.1 0.30 ± 0.5 5.39 ± 9.5 ND ND 64.56 ± 55.3
Skin ND 4.14 ± 0.8 3.00 ± 2.2 6.28 ± 5.4 54.04 ± 47.9 1.35 ± 1.0 8.22 ± 11.7 ND ND 46.28 ± 32.3
Meat ND 2.23 ± 0.5 1.45 ± 0.9 4.61 ± 7.5 29.17 ± 30.1 ND 2.17 ± 4.82 ND ND 30.38 ± 52.8

Fins 0.09 ± 3 2.90 ± 0.7 3.82 ± 5.8 11.02 ± 38.2 58.67 ± 124.2 1.85 ± 5.4 6.43 ± 6.4 ND 6.36 ± 2.11
ND 78.65 ± 57.7

Bone ND 1.91 ± 0.7 1.00 ± 1.3 4.22 ± 3.6 52.48 ± 41.9 ND 0.74 ± 0.14 ND ND 22.73 ± 14.8
Viscera ND 2.25 ± 0.7 3.30 ± 1.9 41.95 ± 73.3 216.50 ± 566.9 ND 1.77 ± 5.1 0.60 ± 1.9 ND 112.53 ± 332
Head 0.45 ± 5 1.80 ± 0.6 1.73 ± 1.9 3.13 ± 3.1 44.00 ± 59.6 ND 2.09 ± 3.1 ND ND 27.92 ± 18.8

FAO/WHO
Limits [55,56] 1.4 N/A 0.5 30.0 100.0 0.5 1.00 0.50 30.0 100.0

ND—Not Detected.
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Table 5. One-way ANOVA of the HMs in various parts of Tilapia spp.

HM df F p Value

Ba 6 11.47 6.81 × 10−9

Cd 6 1.456 0.2062
Cu 6 3.781 0.0026
Fe 6 1.837 0.1043
Mn 6 4.234 0.0011
Zn 6 5.151 0.0002
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3.2. Health Risk Assessment
3.2.1. Non-Carcinogenic Health Risk (NCHR) Assessment

The NCHR of HMs to the locals of Calapan City is shown in Table 6. The NCHR of
the HMs in the various parts of tilapia, as represented by the target hazard quotient (THQ),
did not exceed 1. This means that the population exposed to the fish is not at risk [21] to
non-carcinogens. The highest THQs were recorded for Hg in the viscera at 0.0822 and Cd in
the meat at 0.0805. As shown in Figure 4, the highest percent (%) contribution to the THQ
of the tail, skin, meat, fins, bone, and head was due to Cd, which ranged from 49.34–83.63%.
On the other hand, Hg contributed much to the THQ of the viscera at 54.26%. Generally,
the THQ of HMs in various parts of tilapia follows the decreasing order of Cd > Hg > As >
Cu > Zn > Pb > Fe > Ni > Mn > Ba.

Table 6. THQ of HMs in each part of Tilapia spp.

Parts As Ba Cd Cu Fe Pb Mn Hg Ni Zn

Tail 0 0.0001 0.0110 0.0004 0.0002 0.0004 0.0002 0 0 0.0009
Skin 0 0.0003 0.0417 0.0022 0.0011 0.0053 0.0008 0 0 0.0021
Meat 0 0.0006 0.0805 0.0064 0.0023 0.0000 0.0009 0 0 0.0056
Fins 0.0013 0.0001 0.0164 0.0012 0.0004 0.0023 0.0002 0 0.0014 0.0011
Bone 0 0.0002 0.0219 0.0023 0.0016 0 0.0001 0 0 0.0017

Viscera 0 0.0002 0.0452 0.0144 0.0042 0 0.0002 0.0822 0 0.0051
Head 0.0631 0.0004 0.0719 0.0033 0.0026 0 0.0006 0 0 0.0039
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3.2.2. Carcinogenic Risk Assessment

The carcinogenic risk (CR) of consuming various parts of tilapia contaminated with
As, Cd, Pb, and Ni was assessed. As shown in Figure 5, except for the tail, all of the
CR through the consumption of several parts of tilapia exceeded the threshold value of
1 × 10−4, implying that cancer risk was highly probable [51]. The highest CR was recorded
in the meat, which was approximately 0.00051. This was followed by the head at 0.00048.
The sequence of CR in various parts of tilapia followed the order of meat > head > viscera >
skin > bone > fins > tail.
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Figure 6 shows the % contribution of each HM identified as a carcinogen to the CR.
More than 99% of the CR in the tail was contributed by Cd. Similarly, the Cd contributed
99.94%, 100%, 81.40%, 100%, 100%, and 94.10% to the CR in the skin, meat, fins, bone,
viscera, and head, respectively, of tilapia. It also contributed 5.90% to the CR in the head,
while Ni contributed 18.09% to the CR in the fins.
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3.3. Relationship of HMs in Various Parts of Tilapia spp.

Figure 7 shows the correlation of HMs in different parts of tilapia. As shown in
Figure 7a, a high positive correlation exists between Cu-Zn (0.865, 0.01 level) and Fe-Zn
(0.732, 0.05 level) in the bone of tilapia. In the fins, a moderate negative correlation was
observed between As-Ba (−0.663, 0.05 level), while a very high negative correlation was
observed between Cu-Ni (−0.998, 0.01 level) and Fe-Ni (−0.976, 0.01 level). On the other
hand, there is a very high positive correlation between Cu-Fe (0.972, 0.01 level) (Figure 7b).
In Figure 7c, high positive correlation was observed between Ba-Fe (0.780, 0.01 level),
while a high negative correlation was observed between As-Zn (−0.740, 0.01 level) in the
head of the tilapia. Similarly, there are very high positive correlations between Cu-Fe
(0.916), Cu-Mn (0.975), Fe-Mn (0.916) Fe-Zn (0.952), and Mn-Zn (0.979) in the meat of tilapia,
which are significant at 0.01 level (Figure 7d). In Figure 7e, a moderate positive correlation
was observed between Ba-Mn (0.680) in the skin, which is significant at the 0.05 level,
while a high positive correlation was observed between Fe-Zn (0.842, 0.01 level) in the tail
(Figure 7f). In Figure 7g, three (3) significant correlations were observed in the viscera of
tilapia—a very high negative correlation between Fe-Hg (−0.939) and Hg-Zn (−0.976) and
a very high positive correlation between Fe-Zn (0.987). All the observed correlations were
significant at the 0.01 level.

Furthermore, PCA was carried out to evaluate if the sources of HM contamination in
tilapia are either due to anthropogenic or natural causes [57]. Principal component (PC)
1 explained 57.23% of the total variance and exhibited an eigenvalue of 7.13 (Figure 8).
Ni dominated PC1 with a loading of 0.8684. Similarly, PC2 explained 24.81% of the total
variance with an eigenvalue of 3.09. Cu and Fe dominated PC2 with loadings of 0.56193
and 0.5651, respectively. PC3, on the other hand, has an eigenvalue of 2.05 and explained
16.46% of the total variance. PC3 was dominated by Ba and Mn with loadings of 0.6399
and 0.5392, respectively.
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4. Discussion

Several parts of tilapia in Calapan City, Philippines were analyzed for the concentration
of heavy metals (HMs). The Cd concentration in all parts of tilapia exceeded the FAO/WHO
limit, indicating possible health risks to consumers. Cd is a highly toxic HM that can
adversely affect organisms even at low concentrations [58]. Generally, Cd is ubiquitous
in the environment, but its concentration increases due to anthropogenic causes, such as
fertilizer application, sewage, batteries, and pigments [59,60]. Elevated concentrations of
Cd in the meat and gills of Oreochromis niloticus were also observed in Southwestern Nigeria,
attributed to the contaminated river where the fish was caught [61]. Some organ systems
mainly targeted by Cd in humans are the urinary, skeletal, and respiratory systems, which
may result in renal tubular dysfunction and osteomalacia when continuously exposed
to high concentrations [62]. Moreover, a high concentration of Mn was also observed in
all the parts of the tilapia except in the bone. Similar to Cd, Mn is also ubiquitous in the
environment, and it originates from a variety of sources, including agricultural, industrial,
and urban pollution [63]. The study area is mainly an agricultural land, and the high
concentrations of Cd and Mn can be attributed to this condition. The highest concentrations
of Cu, Hg, and Zn were found at the viscera of tilapia. Aquatic organisms such as fish
are vulnerable to the bioaccumulation of metals present in the water. Hence, the elevated
concentrations of metals in fish samples were attributable to the fish pond’s water quality.
It is estimated that most of the total Hg in the meat and organs of fish such as tilapia is
methylmercury (MeHg), which is the most toxic form of Hg. Th MeHg usually binds
with the cysteine-rich tissues of the fish, particularly the meat and viscera [64], such as the
recorded data of the fish samples in this study. However, a study focusing on speciation is
helpful in identifying the species of metals found in tilapia species. Cu and Zn, on the other
hand, are considered essential metals, but they can pose adverse health effects to humans
in excessive amounts [65]. This is comparable to the results of other studies in an island
province in the Philippines [21], Hong Kong [66], and Malaysia [67]. The common site of
metal accumulation in fish is the viscera where food is stored and processed. Additionally,
metal metabolism in the fish played a role in this condition [68]. Additionally, the HMs
ingested by fish are stored in the kidney and liver, and some excessive metals remain in the
fish’s viscera [66].

In addition, it was observed that external parts of the tilapia, such as the tail, scale,
and fins, recorded as accumulated, and they had the highest mean concentration of all the
detected HMs. This finding may be implied by the fact that these parts are in direct contact
with water, from which the fish absorb HMs [69]. Meanwhile, on average, meat recorded
minimal absorption of HMs compared to tail, scale, fins, and viscera. This is consistent
with the findings of Ju et al. [70] and Abdel-Baki et al. [71]. This is because fish meat is
considered a passive location of metal biotransformation and build-up [17,72].
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Meanwhile, none of the HMs in the various parts of tilapia exceeded the THQ of
1 [21]. Ishak et al. (2020) [60] also determined the concentration of Pb and Cd in tilapia
(Oreochromis niloticus) from Kuala Lumpur, Malaysia and found that the THQs for these
HMs were less than 1. However, the highest THQs were recorded for Hg in the viscera
and Cd in the meat. The high CDIs and low reference doses of Hg and Cd contributed
to the high THQs [40]. A high concentration of Hg was also observed in the viscera of
clupeid (Brevoortia tyrannus) caught in the northeast bay of the United States of America.
Hence, evisceration of the fish prior to cooking or processing was recommended by the
authors [73]. To prevent the possible non-carcinogenic health risk due to the intake of Cd
in the meat of tilapia, the authors recommend that consumption of this part should not
exceed 0.048 kg/person/day. Results of the CR, on the other hand, showed that there is
potential cancer risk via ingestion of the fish’s skin, meat, fins, bone, viscera, and head.
The high CR in these parts was primarily attributed to the high concentration and slope
factor of Cd [50]. Chronic and acute exposures of humans to high concentration of Cd can
potentially cause lung, kidney, and pancreatic cancers [74].

The result of the correlogram in each part of the tilapia showed that most of the
HMs analyzed had a significant positive correlation. This implies that, when a particular
HM tends to increase, the other correlated variable (i.e., HM) does the same. This is also
an indication that the correlated HMs may have a similar source of contamination [75].
Similarly, the result of the PCA showed that there were three (3) major PCs observed.
PC1 was dominated by Ni. Generally, food is the major source of human exposure to Ni.
Common anthropogenic sources of Ni to the environment include dust or fumes from power
plants, waste incinerators, welding industries, and pesticides [76,77]. Through deposition,
this Ni may be transported to aquatic environments such as rivers and lakes, where fish
and other aquatic organisms may be exposed. PC2, on the other hand, was dominated by
Cu and Fe. These HMs are naturally abundant due to the weathering of rocks. However,
Cu concentration in the environment, particularly in water systems, increases due to major
anthropogenic sources such as mining, agriculture, waste treatment plants, and industrial
and municipal solid waste [78]. Furthermore, the dominant HMs in PC3 were Ba and Mn.
Both Ba and Mn are also naturally occurring in the environment from weathered rocks,
primarily sedimentary rocks. However, their concentration in the environment increases
due to various man-made sources such as paints, oils, pesticides/fertilizers, manufacturing,
and mining [79,80]. Overall, the PCA revealed that HM contamination in the investigated
tilapia samples can be attributed to anthropogenic causes, especially agricultural run-offs.
To emphasize, the tilapia collected from Panggalaan and Bayanan II recorded the highest
total HM content. These sampling sites are comprised of numerous agricultural fields,
mills, resorts, and other industrial establishments. Elevated concentrations of HMs were
also recorded in fish collected in rivers that receive run-off from agricultural fields, such as
in Bangladesh [81], Iran [82], and Mozambique [83].

It is also important to note that tilapia is commonly cultured or farmed in fishponds.
The source of the water and the feeds given to the fish probably contribute to the con-
centration of HMs in various parts of tilapia. Yilmaz et al. [84] and Al-Majed et al. [85]
emphasized that fish habitat and feeding habits may influence these varying levels of HM
concentration. Hence, it is highly recommended to regularly monitor the water quality of
these fishponds to mitigate the bioaccumulation of HMs in tilapia and reduce or eliminate
the possibility of human health risks. Additionally, physiological conditions, types of
tissues analyzed, growing rate, age, gender, and size were also contributing factors for the
varying HM concentrations in fish [65,86,87].

5. Conclusions

This study investigated the levels of heavy metals (HMs) in various parts of Tilapia
spp. in Calapan City, Province of Oriental Mindoro, Philippines. The mean concentrations
of Cd and Mn in all parts of the tilapia exceeded the FAO/WHO limits. Similarly, the mean
concentrations of Cu, Fe, and Hg in the viscera exceeded the limits recommended by FAO
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and WHO. An elevated concentration of Pb was recorded in the skin and fins of tilapia. The
result of the calculated CR recorded that consumption of tilapia, specific to the fish’s skin,
meat, fins, bone, viscera, and head, may pose a potential cancer risk, as the CR of these fish
parts exceeded the threshold value of 1 × 10−4 set by USEPA. The correlogram showed
that most of the correlations between HMs in various parts of the tilapia had a positive
(direct) relationship, which is attributed to the HMs toxicity target organ characteristic.
Regular monitoring of HM concentration in tilapia, the inland fish habitat, and surface
water quality shall be carried out.
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